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Abstract

The purpose of this thesis is to help in the preoperative planning of the neck dissec-
tion by an interactive visualization of the patient specific anatomy and pathological
situation of the sternocleidomastoid muscle. This requires segmentation of the ster-
nocleidomastoid muscle. The high density of soft tissues around the muscle, large
variations in the shape and the size of the muscle and the inhomogeneous nature of
the muscle interior makes the segmentation a challenging task.

Stable Mass Spring Model will be used for the segmentation of the muscle from CT
datasets. Three different SMSM prototypes exists as blue prints and they are created
on the fly, after obtaining cues about the muscle shape with respect to individual
datasets. The cues about muscle shape are obtained from the strokes entered by the
user. The prior shape and the size knowledge of the muscle is used to bridge gaps in
the contour or bridge the muscle contour destroyed by the tumor infiltration.

The developed prototype was tested on 14 CT datasets from 14 individual patients.
The segmentation is generally good with the muscle being segmented in all datasets,
however, there were some problems in a couple of datasets where we experienced that
in some slices the SMSM went over the weak edges. The average error between the
gold standard and the segmented muscle is 0.888 mm and the average similarity score
between them is 0.75. We have tried to justify that the results are much better than
what the numbers show.
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Chapter 1

Introduction

In the beginning medical imaging was solely used for visualization and inspection
of the human organs. X-Rays provided the first ever medical image data about the
internal organs of a human body [38]. The invention of X-Ray Computed Tomography
by Godfrey Hounsfield in 1968 has led to rapid developments in the field of medical
imaging technologies. These developments have enabled radiologists and physicians
to extract useful life saving information by intra-operatively navigating through the
human body. The radiologists and physicians can use information from medical image
data for diagnosis, therapy planning and post operative monitoring. The volumetric
data obtained from the medical imaging devices gives a better idea about the relative
positioning of the anatomical structures which is useful for minimizing the collateral
damage to other healthy organs [35]. In turn this helps the patient with less risky,
reduced pain, shorter hospitalization and faster recovery process [39].

With the advances in the medical imaging technologies like Computed Tomogra-
phy (CT), Magnetic Resonance (MR), Positron Emission Tomography (PET), it has
become increasingly important to extract useful information about the anatomical
structures from the imaged data [47]. The use of the computers has opened new
spectrum to extract accurate, repeatable and quantitative data 1.

The main hurdles in obtaining accurate information from the data are due to the
huge size of the datasets and the variability of the anatomic structures. The problem
becomes more complex with the introduction of the imaging artifacts, spatial aliasing,
noise and indistinct boundaries of the neighboring anatomical structures. The main
task is then to glean accurately all the elements of one structure and excluding all
the elements of the neighboring structure [35].

Low level image processing techniques operating just with the local information
fail to extract the accurate boundaries due to the lack of global knowledge about the

1Duncan et al. [20] gives a detailed overview of the technological and the algorithmic develop-
ments in the area of medical image analysis during 1980s and 1990s

1



2 CHAPTER 1. INTRODUCTION

size and shape of the target structure. Deformable Models combine the advantages of
the low level image processing algorithms together with the global information and
are therefore, better suited to segmenting anatomical structures from these datasets.
They use bottom-up and top-down strategies to accurately identify the target struc-
ture boundaries. They are also flexible enough to adjust to the significant variability
of the anatomical structure across different patients [35].

1.1 Motivation

The motivation behind this dissertation is to support the preoperative planning of the
neck dissection by a 3D visualization of the patient specific anatomy and the patho-
logical situation of the sternocleidomastoid muscle. This requires the segmentation
of the sternocleidomastoid muscle from the neck CT dataset which could be used by
orthopaedists, biomechanicians and kinesiologists. The segmentation of the muscle
is a challenging task because the muscle is surrounded by quite a few soft tissues
of high signal intensity. The proximity of the muscle to the skin creates additional
problems, not to mention the inhomogeneous internal region of the muscle and its
shape and size variability. The most challenging task of all is bridging the invisible
edges in region where the muscle is adjacent to another muscle and in regions where
the muscle boundary has been destroyed due to tumor affection.

Traditional image based techniques fail to segment the muscle in such challenging
labyrinth. The solution lies in combining the local image information such as gradient
and intensity information with the shape and size information of the muscle. In this
work Stable Mass Spring Model (SMSM) proposed by L. Dornheim [15] have been
used for segmenting the sternocleidomastoid muscle. The model combines the local
image information with the shape and size information of the muscle and has already
been successfully used for segmenting anatomical structures from CT datasets like
[19, 14, 13, 32].

1.2 Goals of the Proposed Work

The goal of this thesis is to segment the sternocleidomastoid muscle from the CT
dataset using the Stable Mass Spring Model. The SMSM could either be generated
automatically through MSML library or a customized SMSM could be build auto-
matically without using the MSML library and human intervention. Cues about the
shape and the orientation of the muscle are provided by the user strokes. The sub
goals include evaluating whether the shape knowledge incorporated in the SMSM is
able to bridge invisible and destroyed muscle boundaries, automating the SMSM and
simulation parameters and evaluating the segmentation accuracy.
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1.3 Thesis Organization

Thesis is organized as follows;

1. Chapter 1 provides an Introduction and discusses motivation and goals be-
hind this thesis.

2. Chapter 2 provides a Medical Background. It provides anatomical details
of the neck. Then it briefly discusses the basics of the CT technology and the
appearance and shape of the muscle in the CT datasets.

3. Chapter 3 reviews the State Of The Art. In this chapter, image based
and model based techniques have been discussed and then some applications of
Stable Mass Spring Model (SMSM) have been presented.

4. Chapter 4 provides details of the technique developed to segment the stern-
ocleidomastoid muscle.

5. Chapter 5 provides details about the Implementation.

6. Chapter 6 provides the results and Evaluate and analyse them.

7. Chapter 7 provides a Conclusion about the developed technique.
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Chapter 2

Medical Background

This chapter will present medical related basic information about the anatomical
structure that needs to be segmented. Together with this information it also seems
relevant to discuss the CT technology, the main source of data, from which the muscle
will be segmented. Some basic information about the CT technology and CT datasets
are provided. A brief description of the artifacts that crop up in the CT datasets is
also given. At the end the appearance of the muscle in the CT datasets is given,
with primary focus on the challenges that will arise during the muscle segmentation
process.

2.1 Anatomy of the Neck

The name of the muscle sternocleidomastoid has been derived from its location in the
human body. It starts from the manubrium of the sternum (sterno) and the clavicle
(cleido), and joins with the mastoid process of the temporal bone of the skull. The
sternum and the clavicle form its two heads [24]. It is a paired muscle situated on
either side of the neck. Sternocleidomastoid muscle is situated near the surface in
the anterior portion of the neck. The pair of muscle helps in flexing, rotating and
protruding the head [24, 36].

The muscle slants across the side of the neck. At both ends it is thin and broad
while in the middle, it is thick and narrow (see figure 2.1, 2.2). The sternal head
forms a rounded cluster of muscle fibers which connects the muscle to bone at the
front. The back part of the muscle which arises from the upper part of the anterior
surface of manibrium sterni is fleshy. From this point the muscle slants across the
side of the neck moving upward and backward. The clavicular head (see figure 2.1)
which emerges from the superior border and anterior surface of the medial third of the
clavicle is also fleshy. From this point, the muscle moves almost vertically upwards.
The two points from where the muscle originates are separated from each other. As

5



6 CHAPTER 2. MEDICAL BACKGROUND

(a) Side View (b) Front View.

Figure 2.1: Muscle attachment at the Sternum and Clavicle. Image Source : [40]. The
images have been edited.

they move upward, they move closer to each other and just below the middle of the
neck they slowly blend together forming a triangle. The junction where the two parts
of the muscle meet is thick and rounded. As the muscle moves further upward, a
strong tendon1 joins it with the lateral surface of the mastoid process from apex to
superior border. A thin aponeurosis2 joins the muscle with the lateral half of the
superior nuchal line of the occipital bone [24]. The mastoid process and the superior
nuchal line are shown in Figure 2.3.

The clavicular head of the muscle varies greatly. The breadth of the clavicular
head could be as narrow as the sternal head or it could be as large as 7.5cm.

2.2 Computed Tomography

Radiological scanning devices provide data for medical imaging and visualization.
These scanning devices include Computed Tomography (CT), Positron Emission To-
mography (PET), 3D Ultrasound, Magnetic Resonance Imaging (MRI) and others.
The purpose of a medical image data is to help radiologists and physicians in diag-
nosis, therapy planning, intra operative navigation and post operative monitoring.

1A chord or band of dense, tough, inelastic, white, fibrous tissue serving to connect muscle with
a bone

2A whitish, fibrous membrane that connects a muscle to a bone or fascia.
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Figure 2.2: Side view of the muscle show-
ing attachment at the mastoid process. Image
Source : [40].

Figure 2.3: The muscle attachment at the
Mastoid Process. Image Source : [40].

During the last 20 years these devices have considerably improved both in terms of
the quality of data obtained and the time required to obtain the data. CT and MRI
datasets are better than the conventional X-Ray imaging because of their high reso-
lution, accurate localization of anatomical structures in depth, being more sensitive
to soft tissues and having good signal to noise ratio [38].

Medical Imaging started in 1895 when William Konrad Röntgen discovered the
X-Rays. For the next many decades, X-Rays were the only medium used for the
diagnosis by inspecting the X-Ray images. These X-Ray images provided only a 2D
view of the internal anatomical structures.

Sir Godfrey Hounsfield invented the first commercial CT scanner in 1968. Figure
2.4 shows a modern CT scanner from Toshiba 3. The scanner for the first time pro-
vided a volumetric representation of objects [38]. A series of individual X-Ray images
are combined together to form a volume dataset called CT dataset. These individ-
ual X-Ray images or slices could be inspected individually too. This corresponds
to viewing a 2D X-Ray image. This slice by slice viewing enables the radiologists
and physicians to select and inspect each and every voxel of the dataset. Figure 2.5
shows a slice of the CT dataset. When these slices are combined together and viewed,
the dataset shows the 3D structure of the anatomical structures and their relative
positioning with respect to the other structures.

The individual X-Ray image is obtained by the scanner that rotates around the
object of interest. Different biological objects absorb different amount of X-Rays. A

3The image is taken from http://www.wired.com/gadgets/miscellaneous/news/2008/04/Toshiba CTScanner
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Figure 2.4: CT Scanner Figure 2.5: CT Dataset showing one slice

dense or thicker object absorbs more radiation as compared to lighter or thinner object
as a result denser object appears brighter than a thinner object in CT dataset. A
detector positioned on the opposite side from where the X-Rays are emitted, measures
the amount of X-Rays received. The amount of X-Ray received is then transformed
into intensity value which can then be viewed on a screen.

The intensity value represents the densities of the different anatomical structures.
The unit for the intensity value is Hounsfield Unit (HU). It is normalized (see Eq. 2.1)
and scaled to cover a range represented by a 12 bit range [38]. The intensity value of
water is 0 while that of air is -1000.

HU =

(
µ− µ ∗H2O

µ ∗H2O

)
∗ 1000 (2.1)

Table 2.1 taken from [38] shows the Hounsfield values of different anatomical
structures. The table shows that some structures have similar or overlapping values.

CT scans are much better than the conventional X-Ray as they are more sensitive
to soft tissues. X-Rays are unable to distinguish between soft tissues like liver and
pancreas; while CT scans can distinguish between them. CT scans also do not suffer
from the drawback of X-Rays, where an X-Ray after being absorbed in many different
soft tissues forms an image [38].

2.2.1 Artifacts in CT Dataset

Although CT datasets are better than conventional X-Ray imaging, they could still
experience artifacts such as the following (see [4]).

1. Aliasing Artifacts or Streak These artifacts produce dark lines which are
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Tissue Type Hounsfield Value Interval

Air -1000
Lung Tissue -900 ... -170
Fat Tissue -220 ... -30
Water H2O 0
Pancreas 10 ... 40
Heart 20 ... 50
Liver 20 ... 60
Kidney 30 ... 50
Bones 45 ... 3000

Table 2.1: Hounsfield values for some anatomical structures

oriented outward from sharp corners. They arise due to motion during scanning
(see Figure 2.7b). If the scanned object is metallic, then these artifacts appear
because of under sampling (see Figure 2.7a). They might also appear because of
insufficient X-Ray tube current which results in insufficient X-Ray penetration
[4].

2. Partial Volume Effect Partial volume effect causes blurring around sharp
edges. When high density material (e.g. bone) and low density material (e.g.
cartilage) are adjacent to each other, the scanner is not able to differentiate
between them. During the processing stage an average of the two values is taken
which results in information loss. This effect can be reduced by increasing the
resolution of the data (see Figure 2.6a) [4].

3. Ring Artifacts This artifact causes rings to appear within an image. This
artifact appears because of a mechanical fault in the detector (see Figure 2.6b)
[4].

4. Noise Artifact Low signal to noise ratio causes grains to appear on the image.
Noise could either be caused by thin slices or by X-Rays not having enough
energy to penetrate anatomical structures [4].

5. Windmill Artifact Intersection between the detector and reconstruction plane
causes streaking to appear on the image. This effect can be reduced by either
decreasing the pitch or using filters (see Figure 2.6c) [4].

6. Beam Hardening Artifact When center of the object is denser than its edges,
X-Rays at and around the center are blocked while those around the edges pass
through resulting in a Cupped Appearance. This effect can be corrected by
filtering [4].
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A complete list of the artifacts and their avoidance techniques has been discussed
in detail by Barrett et al. [4]. Figure 2.7 shows some of the images of the artifacts
found in the CT datasets used for testing the prototype we have developed. Motion
artifacts and metal implant artifacts were the only artifacts that created problems
during the automatic segmentation process.

(a) Partial Volume Effect (b) Ring Artifact (c) Wind Mill Artifact

Figure 2.6: Artifacts found in CT datasets - Image Source : Artifacts in CT: Recognition
and Avoidance by Julia F. Barrett and Nicholas Keat [4].

(a) Aliasing Artifacts Due to Metal Implants (b) Motion Artifact

Figure 2.7: Artifacts found in test CT datasets
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2.3 Muscle Appearance in CT Datasets

Figure 2.8: Categorization of muscle into three different parts. Image Source : [40]. The
image has been edited.

The shape of the sternocleidomastoid muscle can be divided into three parts;
lower, middle and upper as can be seen in figure 2.8. The lower part of the muscle
starts from the clavicle and the sternum. In this region the muscle is divided into
two separate strands. As you move up, the two strands come closer and finally they
combine together into a single unit. This is where the lower part of the muscle ends
and the middle part of the muscle starts. As you move further up the middle part
of the muscle starts to develop a thin, elongated structure. This is where the middle
of the muscle ends and the upper part of the muscle begins. The upper part of the
muscle then ends at the mastoid process.

We have not tried to segment the lower part of the muscle so we will not provide
its appearance in detail. Segmenting the lower part of the muscle is not a trivial task
as the muscle divides into two parts. Sometimes instead of appearing as two different
parts, the two parts appear as a single structure therefore it was out of the scope of
this thesis to segment the lower part.

The middle part is generally elliptical as can be seen in figure 2.9 but in some
datasets its shape resembles a curved rectangle as can be seen in figure 2.10. The
muscle has been marked with a green outline. All other shape variations fall within
these two categories. The upper part of the muscle which is near the mastoid process
is elliptical at one end and thin, elongated and rectangular at the other end as can be
seen in figure 2.11. As can be seen from these figures that no one model is general
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(a) Muscle and Blood Vessel (b) Muscle and Skin (c) Muscle Skin and Blood Vessel

Figure 2.9: Elliptical shape of the Sternocleidemastoid muscle

enough to encompass all the variations found in the sternocleidomastoid muscle. As
will be explained in the chapter 4, three different Stable Mass Spring Models (SMSM)
are constructed for the three different muscle shapes. It should be noted that the
following description is with respect to the muscle which appears to the right of the
user in the CT datasets. The same is true for the muscle which appears to the left
of the user in the CT datasets, only that the structures that appear to the left of the
right muscle, appears to the right of the left muscle.

The top left portion of the starting point of the middle part of the muscle is adja-
cent to another muscle as can be seen in figure 2.9a, 2.9b. Both muscles possess the
same intensity interval, therefore, it is very difficult to identify the muscle boundaries
even with the naked eye. The prior shape knowledge incorporated into the Stable
Mass Spring Model (SMSM) will be used to bridge the non existent boundary.

In some datasets the right boundary of the muscle is very close to the skin, so
close that at some places the muscle and the skin touch each other as can be seen in
figure 2.9c, while in other datasets there is only a very weak edge between the muscle
and the skin as can be seen in figure 2.9b. The boundary of the skin generates a very
high gradient strength which contributes in making the model unstable. The muscle
boundary in figures 2.9b, 2.9c is shown in green while the skin has been outlined in
yellow.

Blood vessels are situated at the left boundary of the muscle in the middle (see
figure 2.10). Blood vessels have higher intensity values than the muscle and they
also generate high gradient strength which also contributes in making the model
unstable. The muscle being surrounded by the blood vessels on the left and skin
on the right ensures that SMSM can not be placed outside the muscle boundary.
Therefore, it is imperative that the SMSM must always be placed inside the muscle
during initialization.

If the right muscle boundary is far away from the skin then a soft tissue is present
between the skin and the muscle boundary as can be seen in figure 2.12. The muscle
has been marked with a green border while the soft tissue has been marked with
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Figure 2.10: Curved rectangular shape of the Sternocleidemastoid muscle

Figure 2.11: Thin Elongated Shape of the Sternocleidemastoid Muscle

(a) Soft tissue situated near the
lower right boundary of muscle

(b) Soft tissue situated near the
middle of muscle

(c) Soft tissue situated near the
upper right boundary of muscle

Figure 2.12: Soft Tissue Movement Between Slices
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an orange border. Moving from the sternum and the clavicle towards the mastoid
process the soft tissue appears at the lower right boundary of the muscle (see figure
2.12a). As you move further towards the mastoid process, the soft tissue moves
upward reaching the middle of the muscle (see figure 2.12b). It moves still further
upwards terminating at the upper right boundary of the muscle (see figure 2.12c).
This movement of the soft tissue can create problem for the 3D SMSM. This soft
tissue too possesses higher intensity value than the muscle.

In some datasets the muscle is tumor affected as can be seen in figure 2.12c.
The tumor normally affects the upper left portion of the muscle and is not limited
to the muscle boundaries but spreads out into the neighboring structures, destroying
the distinct muscle boundary if any. So the segmentation task is also to bridge
these indistinct boundaries. As shall be explained in chapter 6 that these indistinct
boundaries have been bridged using shape knowledge that is incorporated into the
3D Elliptical SMSM.

As said earlier that the part of the muscle near the mastoid process is elliptical at
one end and thin, elongated and rectangular at the other end. The elliptical part of
the muscle is wider near the middle of the neck as shown in figure 2.13a, than it is
near the mastoid process as can be seen in figure 2.13b.

(a) Wider part of the muscle (b) Thinner part of the muscle

Figure 2.13: Variation in the width of the muscle near the mastoid process.
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2.4 Summary

This chapter is intended to provided background information related to the anatom-
ical structure Sternocleidomastoid muscle which needs to be segmented from the CT
dataset. At first the anatomical information about the muscle shape, its originating
and terminating locations and its size is provided so that the reader gets familiar with
the specific muscle that will be discussed in the rest of the thesis. It was also impor-
tant that the reader gets some basic information about the CT technology which is
the prime source of data from which the muscle will be segmented. Some artifacts
that could arise in the CT datasets are presented. These artifacts create problems
for the segmentation process and degrades the segmentation result. At the end the
appearance of the muscle in the CT datasets is given. The primary focus is on pre-
senting the difficulties that will be encountered during the segmentation process and
how these difficulties helped shaped the technique developed.
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Chapter 3

State of the Art

In this chapter an overview of the state of the art is put forward. A comparison of two
types of segmentation techniques namely image based segmentation techniques (see
section 3.1) and model based segmentation techniques (see section 3.2) have been
presented. Image based segmentation techniques are those that use only local image
information and do not have any knowledge about the shape and size of the target
structure [35]. On the other hand, model based segmentation techniques are those
that combine the shape and the size information of the target structure with the local
image information for segmenting the target structure [35]. The Stable Mass Spring
Model (SMSM) which belongs to the class of model based techniques is described
in section 3.2.4. The SMSM will be used for segmenting the sternocleidomastoid
muscle. Section 3.4 displays some areas where SMSM has been successfully used in
segmenting anatomical structures from medical imaging datasets.

3.1 Image Based Segmentation

Traditional image based segmentation techniques depend only upon the image data
and lack shape, size and location information that makes them vulnerable when ap-
plied to medical image dataset [35]. They use image features like intensity value,
edge and neighborhood information for segmenting objects. These techniques are
computationally more efficient than the model based techniques. Their drawback
is that they require substantial human guidance to accurately segment anatomical
structures from CT dataset. As medical image datasets suffer from aliasing artifacts
(see section 2.2.1), they can misguide the image based segmentation techniques.
Aliasing artifacts also pose problems for model based segmentation techniques but
they are better equipped to deal with them as compared to image based segmentation
techniques. Image based segmentation techniques like threshold based segmentation
and region growing will be briefly discussed in the following paragraphs as they will

17
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(a) Target object outlined in green (b) Result of applying Threshold

Figure 3.1: Threshold Based Segmentation

show that only local image information is not enough for segmenting the sternoclei-
domastoid muscle. It will also highlight why shape and size information of the muscle
is so important.

3.1.1 Threshold Based Segmentation

Threshold based segmentation is the easiest of image based segmentation techniques.
It is computationally efficient but not accurate especially when dealing with CT
datasets. A lower and an upper boundary relating to the intensity interval of the
target structure is defined. All voxels having intensity value between the interval are
marked as belonging to the target object [12],[38]. Since there is no shape, size and
location information, any other object possessing the same interval is also classified
as belonging to the object as can be seen in figure 3.1. Figure 3.1a shows the target
structure outlined in green. As can be seen from figure 3.1b, the target structure
has not been accurately segmented. All the white regions in figure 3.1b have been
classified as belonging to the object.

3.1.2 Region Growing

Region growing is similar to the threshold based segmentation technique. In addition
to the intensity interval, starting seed point is also defined. The neighborhood of the
starting seed point is considered. If the neighborhood point lies inside the interval,
its neighbors are considered and so on and so forth [12, 38]. Region growing has
the problem of leaking. With the medical image data, the anatomical structures are



3.2. MODEL BASED SEGMENTATION 19

(a) Target object outlined in green (b) Result of applying Region Growing

Figure 3.2: Region Growing Segmentation

adjacent to each other having similar intensity interval. It is more often than not
that the segmentation leaks into neighboring structures as can be seen in figure 3.2
in orange color. Figure 3.2a shows the target structure outlined in green. As can be
seen form figure 3.2b that the segmentation has leaked into neighboring structures.

3.2 Model Based Segmentation

The main disadvantage of the image based segmentation techniques was that they did
not have any shape and size information of the target structure and work only with
local information. This drawback renders them useless for segmenting soft tissues like
the sternocleidomastoid muscle or structures whose intensity interval overlaps with
other anatomical structures and are adjacent to those structures from medical images.
Model based segmentation techniques incorporating shape and the size information
of the target object with the local information are much more competitive in such
environments. Model based segmentation techniques can be divided into the following
classes as classified by Al-Zubi [1].

1. Structural Models They are formed by combining different components of
the shape which is then used for matching with a database.

2. Statistical Models They are formed by obtaining statistical variation of de-
sired shape from training data and then the allowed variation is used to match
a target object.
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3. Dynamic Deformable Models They are governed by dynamic physical laws
[5]. These laws are used to deform the model to fit it to the data.

3.2.1 Structural Models

The structural models are formed by joining together different components of the
shape, for example, a dog could be defined as having seven different components
namely head, central body, tail and four legs. These components could further be
subdivided into more simpler units. The structural models are better equipped to
represent objects that exhibits large variations in their shapes than the statistical
models as shown in figure 3.3. The dog can assume different postures while running
walking or even standing. The construction rules define how different components
are combined together.

Siddiqui et al. [45] introduced shock grammar. They have defined a robust
algorithm for computing shocks using subpixel local detectors and classifiers and
global interaction between shocks through shock grammar. The shocks were originally
presented by P. D. Lax [31]. The First to the fourth order shock define protrusion,
neck, bend and seed respectively. All the shocks together define the skeleton of the
shape. A directed acyclic graph called Shock Graph1 is constructed by combining
adjacent shocks of same order into a single node. A grammar describes the set of all
possible valid combination of shocks. The grammar and topology together also helps
in shape recognition.

Sebastian et al. [43] presents a new recognition technique using shock graphs.
They compute the similarity between two shapes by calculating the cost of least ac-
tion path that deforms one shape to another. First they partition the shape space
into equivalence classes of shapes and deformations thus effectively reducing its di-
mensionality. Then using graph edit distance algorithm, an optimal deformation path
between two shapes is searched in polynomial time.

Lei He et al. [27] used graphs for object recognition and recovery. A model
of an object is constructed using the object’s skeleton and contour. The skeleton
and contour are themselves obtained from the segmented object. Structural and
statistical methods are combined to perform skeleton matching. The use of structural
and statistical methods in sequential manner reduces the search space. The skeleton
provides information about the length, width and location of object’s parts. After a
skeleton match has been found, landmark segments on the contour are determined.
If the landmark segments on the segmented contour differ from those of the model
a fine tuning of these segments is done by maximizing a posteriori probability, given
the contour segments model and image features.

1A Shock Graph basically segments a shape into its constituent parts and defines relationship
between those parts.
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Figure 3.3: Structural Models. Image source is [43]

Flexible Object Recognition and Modelling System (FORMS) has been presented
by Zhu and Yuille [51], to illustrate objects or to identify them from their contours.
The shape of an object is constructed from two primitive shapes, worm and circles.
They describe two different approaches PCA and Finite Element Methods (FEM) to
deform the worms and circles to get a closer match to object contour. The worms and
circles depicting local contour structure are combined together to form a complete
object using grammar rules. While on the other hand, if the task is to identify
object, the object’s information in terms of worms and circles and how they are linked
together is extracted from the image. This information is then compared with the
information stored in the databases for object identification. The ability of FORMS
to illustrate objects is limited due to the use of only two primitives, worms and circles.

Sebastian and kimia [42] has given a comparison of curve matching and skeleton
matching in object recognition. They note that skeleton matching is computationally
more expensive as compared to curve matching but it is also more accurate than the
curve one, given that the object contains different parts that can assume different
arrangements. If the object does not contain parts or parts that can assume dif-
ferent arrangements then the curve matching is more suitable because of its lower
computational time and having almost equal accuracy to skeleton matching.

Prior to the work of Stephan Al-Zubi and Klaus Tönnies [2], the structural models
had no prior knowledge about the target object’s shape. The Active Shape Structural
Models (ASSM) defined by Al-Zubi et al. describes the shape both at the structural
and statistical level. These models combine the strong points of both the structural
and statistical models by empowering statistical models to address structural vari-
ability and structural models to possess a priori knowledge about object’s shape.
Shapes similar in structure are used for statistical measurements. The similarity of
the structure helps in reducing the statistical variation of different components of the
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shape. The statistical variations are also related to the structure of the shape with
specific variations occurring in specific structural context.

3.2.2 Statistical Models

Before statistical models , deformable models were allowed to deform to encompass
the different variations found in natural objects but there was no limit on how much
should the model deform and in what ways should it deform , opening the door for the
models to deform in ways that are not relevant for the class of objects they represent.
To overcome this inadequacy of the deformable models, Cootes et al. [8] presented
their Active Shape Models (ASM).

The main idea behind the technique is not just to capture the shape of the target
object but also the variations that are found in the class of the target object as
shown in figure 3.4. A sample set of the target object possessing different variations
found in the class is used for training. The shape of the object’s contour is defined
through a set of points that are defined on each training sample at landmark positions.
These points are then processed to remove any affine variations(translation, rotation,
scaling), so that the equivalent points on different samples could be compared. These
points define the Point Distribution Model (PDM). Mean shape is calculated from
the shape vectors of the training samples. The contour points of the training samples
define the shape vectors.

PCA is applied on the combined set of shape vectors to capture the variations
in the training samples. Most of the variations found in the training samples can
be captured by considering only the first few largest eigenvalues and corresponding
eigenvectors. Any shape in the training set can be obtained by adding a linear
combination of the first few selected eigenvectors to the mean shape.

To segment the object, a deformable model created by a rough estimate of the
target object’s shape is placed inside the image. A refinement in the model occurs
through an iterative process. The initial rough estimate need not be very close to the
target object [8]. At each iteration point’s new location under the global constraints
is calculated with respect to the image data. The global constraints ensure that
the model deformation is in accordance with the training set. The iterative process
terminates once the deformation falls under a certain threshold.

Cootes et al. in [7] suggests multi resolution searching process to improve the
efficiency and robustness of the model. The initial searching is carried out at coarser
level as it is fast and less prone to get stuck in local minima. Clues from the coarser
level are then used in finer resolutions.

Active Appearance Models (AAM) presented by Cootes et al. [10, 7] combine the
shape and the intensity information of the target object and then try to match the
model to image data. Just like the ASM [8] described above, AAM also learn the
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Figure 3.4: Active Shape Model. Image source is [8]
.

shape and intensity variations from a training set. A shape model containing shape
variations is constructed in a similar way as in ASM. The intensity information inside
the contour defined by the user is considered. This intensity information is normalized
and PCA is applied to extract the important modes of variations. A further PCA
is applied on the combined vector of shape and intensity information, to remove any
correlation between the shape and intensity variations. This results in linear models
for shape and intensity which can then be applied to shape fitting. A comparison of
ASM and AAM models has been given in [9].

3.2.3 Deformable Models

The name Deformable Model has been taken from elasticity theory. In elasticity
theory force under certain constraints is applied on elastic bodies which produce
deformation in them [35]. Deformable models are a combination of geometry, physics
and approximation theory. The target objects shape is defined using geometry. All
kinds of shapes could be defined using triangulation or splines. Physical laws are used
to define how the model’s shape changes in spatial and temporal dimensions. Since
the geometrically defined shape is allowed to change under physical laws, it helps in
encompassing shape and size variations that are normally found in natural objects
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and anatomical structures. The shape degeneration is also avoided by the constraints
imposed by the physical laws such as torsion force in the case of SMSM [15] and
inflation force in the case of snakes [6], which ensures that the model parts does not
evolve independently. The fit of the model to the data is defined by approximation
theory.

Deformable models are also called Dynamic Deformable Models as they are gov-
erned by real world dynamic behaviour. These models were introduced by Terzopoulos
and Fleischer [49] to image processing in 1988. The mass spring model used in this
research work fall in the category of dynamic deformable models.

Generally there are two types of forces, internal and external that govern the
deformation of dynamic deformable models in spatial and temporal dimensions. If
there are no external forces the body is in a state of equilibrium or rest position. The
internal forces keep the body stable. However, when external forces are applied the
body deforms. The more the body deforms, the more the internal forces increase.
These internal forces act as restoring force, trying to restore the body back to its
stable state. The difference between the internal and the external forces keeps the
body in motion. As the body deforms more and more, the internal forces increase
until they are equal to the external forces. At this point the deformation stops as the
internal and the external forces are in a state of equilibrium with respect to each other.
The internal forces could be the smoothness, symmetry or the elastic forces, while
the external forces could be defined in terms of image data, like the edge strength or
intensity levels.

Figure 3.5: An overview of the template matching techniques
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Kass et al. in 1988 [30] presented the first deformable model called The Active
Contours or Snakes. Figure 3.5 gives a classification of object matching techniques.
The classification has been done by A. K. Jain et al. [28]. Object matching tech-
niques are divided in to two types, Rigid Template Matching and Deformable Model
Matching. Only Deformable Model Matching techniques will be covered in this thesis.
Deformable model matching techniques can be sub-divided into Free Form and Para-
metric based techniques. Parametric techniques can themselves be sub-divided into
Analytical and Prototype Based techniques. All these Deformable Model Matching
techniques are discussed in the following paragraphs.

Free Form Deformable Models

They are also called Active Contour Models. Any arbitrary shape can be represented
by these free form models. They only have to satisfy the continuity and smoothness
constraints. These models were first introduced by Kass et al. [30].

A snake is defined as a spline function (see figure 3.6). This function represents
the energy of the contour. The minimum of this function in the image space represents
the shape of the object. The energy function Eq. 3.1 given by Kass et al. [30] is :

E∗
snake =

∫ 1

0

(Eint(v(s)) + Eimage(v(s)) + Econ(v(s))) ds (3.1)

where,
Eint = Internal Energy.
Eimage = Image Energy or Force.
Econ = External Constraint Forces defined by user. (optional).

There are three types of forces that act on the snake as given by Eq. 3.1.

1. Internal Forces These forces represent the stretchiness and the smoothness of
the contour.

2. Image Forces These forces are exerted on the snake by the image data. They
could either be exerted from the bright or the dark region in the image or from
the gradient information contained in the image.

3. External Constraints These forces are generated from the user defined points.
They are mainly used to guide the snake towards the correct object boundaries.
The points defined by the user could either generate attractive force that forces
the snake to move towards them as shown in the figure 3.6 by springs or they
could generate repulsive forces that force the snake to move away from them
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as shown in the figure 3.6 by a volcano. These points also help in pushing the
snake out of the local minima.

Figure 3.6: Active Contour Model. Image source is [30]
.

The snake when initialized in the image tries to minimize the energy between
the different forces. The external image forces deform the snake. As a result of
this deformation the internal forces increase, which try to restore the original shape.
The deformation stops when an equilibrium is reached between the different types of
forces. The snakes are sensitive to initialization point. A randomly initialized snake
will fail to converge to the true boundaries of the target object, a common drawback
of all deformable models. Also as the snakes are myopic, depending only on the local
image information, they are vulnerable to local minima in the image. Many different
variations of the snake have been proposed to avoid these problems which are briefly
discussed below.

Cohen [6] presented the idea of the inflated balloons to solve some of the problems
of snakes. He proposed that the snake be allowed to expand like a balloon, in which
air is being pumped. So if the snake is initialized inside the boundaries of the target
object, it does not matter if the target object boundaries are closed. The additional
force called inflation force, expands the snake like a balloon. If the snake encounters
a local minima or weak edge, then the the inflation force together with the internal
forces pushes the snake out of these weak edges. On the other hand, if the snake
encounters a true edge, the edge force (external force) is stronger than the combined
inflation and internal forces consequently the curve stops growing. Cohen [6] also
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proposed the reconstruction of the 3D object by applying the 2D snake model on a
series of successive slices and then merging together the extracted object contours
from each slice.

Neuenschwander et al. [37] proposed that the user should specify only two extreme
points of the target object’s contour instead of complete polygonal approximation.
The snake’s energy is minimized the same way as described earlier. Here the only
difference is that the target object’s edge information travels from the end points of
the snake towards its center instead of applying the complete edge information on
the whole snake in one go. This results in a better convergence towards the target
contour and also helps in reducing the chances of getting stuck in undesirable local
minima.

Fua and Berchbhler [21] proposed to apply hard constraints in the form of attrac-
tor and tangent constraints on the snake. Their results show a better convergence
towards the target contour, without increasing the computational cost. The attractor
points attracts the snake towards them or make them pass through them just like in
[30], while the tangent constraint forces the snake to be tangent between a certain
line segment on the contour of the object.

Ronfard [41] suggested a new snake optimizing technique instead of the tradi-
tional cost function optimization. He defines a region based approach which relies
on the statistical distribution of the object and background regions. A region which
if identified as belonging to the object, pushes the snake out using centrifugal force.
On the other hand, a snake is pulled inside through centripetal force if a region is
identified as belonging to the background.

Parametric Deformable Models

Parametric deformable models are used in situations when some information about
the shape of the target object is available and this information can be represented by
few parameters [28]. The shape information is used to define a global shape model
which helps in bridging gaps in the boundary. The parameterization of the model
gives a concise description of the target shape.

The parametric deformable models can be subdivided into two types depending
on how the shape information is represented. If the shape information is represented
by a parametric formula then such models are called as Analytical Deformable Tem-
plates and if the shape information is represented by a prototype shape then they are
called Prototype Based Deformable Templates. Figure 3.5 shows the classification
of the Parametric Deformable Models. Both these parametric deformable models are
discussed in the following sections.

In these parametric models, the template deforms dynamically by changing the
parameters when it interacts with the image forces. The template deforms as long as
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there is an imbalance between the internal and external forces. The internal forces
are those that help define the template while the image forces are external forces.

Analytical Deformable Templates

Shapes are defined through mathematical functions. Shape variations are obtained
by changing the parameters of the function within certain bounds. The drawback
with analytical deformable templates is that the shape should be defined through a
mathematical function. It puts a lot of constraints on the number of shapes that
could be defined through analytical deformable templates, as observed by A.K. Jain
et al. [28]. He also observes that they are not insensitive to random initialization. It
is also important for these models that a good estimate of the size and the orientation
of the target structure is available beforehand as they are used in the mathematical
description.

A.L. Yuille et al. [50] extracted facial features e.g eye using parameterized tem-
plates. A template of feature of interest(e.g. eye, mouth etc.) is created, incorporating
the priori knowledge about the shape and size through adjustable parameters. The
template of the eye contains a circle with radius r to represent the iris and the central
region of the eye and two parabolas representing the upper and lower boundaries of
the eye. In all there are 11 parameters attached to the circle and the parabolas. A
rough estimate of the initial parameters of the template is obtained by preprocessing.
The template is then initialized inside the image. Different kinds of forces represent-
ing different details and structures of the feature of interest, act on the template.
These forces could be generated from the salient image features e.g. peaks, valleys in
the image intensity, edges and intensity of the image. Under the influence of these
forces the template deforms and tries to fit to the data. A solution is found, when the
minimum of the energy function defined in terms of the forces is reached. Steepest
descent in the parameter space is used to update the parameters which is computa-
tionally fast and robust. The final value of the parameters give the shape and size of
the feature of interest. The method is robust with respect to scale, tilt, rotation of
head and lighting conditions.

One example of analytical deformable templates is of super quadric presented by
Bardinet et al. [3]. Here the 3D surface is defined through a parametric model.
Points are uniformly distributed over the surface of super quadric (super ellipsoid,
super hyperboloid etc.) using the implicit equation. An optimal fit of the points to
data is achieved through least square minimization. Since the shapes that could be
described by a parametric model is limited, they are unable to represent complex
anatomical structures, therefore, to define the anatomical shape intricacies a global
volumetric deformation called Free Form Deformation (FFD) is used. FFD models
deform solid objects in a free form manner using small number of parameters. Even
after the deformation, the target object can still be represented by the parametric
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model. The super quadric models has the advantage that they require only a small
number of parameters to describe a 3D surface and are robust with respect to sparse
data. On the other hand, the parametric nature of the model limits them to surfaces
that could be roughly estimated through mathematical definitions.

Prototype Based Deformable Templates

As the name implies, the model is defined through a standard or a prototype
shape which provides the most likely or average shape of the class of the target
structure. These prototype shapes then deform to describe a specific shape. The
amount of deformation is controlled through a set of parameters. In contrast to
analytical deformable template, prototype based models are not constrained by the
number of shapes they can represent.

Staib et al. [46] defines parametric models of the boundary of the object using
the boundary elliptic fourier descriptors. Fourier coefficients define the parameters of
the model. The model is biased towards a particular shape by defining a probability
distribution on the fourier coefficients. The deformation in the parametric model is
achieved by changing the fourier coefficients which obey the probability distribution.
To control the allowed shape variations, a priori knowledge about shape variability
is obtained through the training set. Using this priori knowledge, the spread of the
distribution is controlled thus limiting the shape variations to only valid shapes. A
correlation between the model and boundary information is used to create a likelihood
function. A bayesian decision based on the likelihood function is used to get an
estimate of the boundary.

3.2.4 Stable Mass Spring Model

This section is mainly a summary of the paper written by L. Dornheim [15] where he
presents his mass spring model. Here a brief overview of the SMSM and its dynam-
ics are presented. The Stable Mass Spring Model can be classified as belonging to
Prototype Based Deformable Templates in the above classification of the Deformable
Model Matching.

Stable dynamic 3D shape models defined in [15] are based on physical mass
spring models. They are dynamic models in which masses move under the influence
of external and internal forces. Masses are interconnected by elastic springs as shown
in figure 3.7. Spring and torque forces represent the internal forces. External forces
are exerted through sensors attached to the masses. Depending on the sensor type,
the sensor could either be sensitive to edge information or intensity information of
the image data. The simple mass spring model obeys hook’s Law given by Eq. 3.2.

Fs = −k ∗ x (3.2)
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Figure 3.7: Mass Spring Model. Image source is [13]
.

where,
Fs = Force exerted by the spring.
k = Spring Constant(force exerted per length difference)
(Large k for stiff springs, small k for soft springs).
x = Displacement from the equilibrium position.

The stable dynamic 3D shape models are theoretical models that are defined
by mass points having masses mi, rest lengths l0i,j and spring constants ki,j. The
topology, shape and size of the models play an important role in the model simulation
and adaptation to the data. Figure 3.12 shows three different 3D SMSMs having
different topology and shape, which is important for segmenting different structures.
The velocity of a mass point mi depends on the internal and external forces acting
on it. If only the spring forces Fi,j are present the velocity of the mass point mi is
given by the motion equation in Eq. 3.3.

vf = vi + a ∗ t (3.3)

Since
a = F/m (3.4)

where,

Fi,j = ki,j ∗ (||−→sj −−→si || − l0i,j) ∗
( −→sj −−→si

||−→sj −−→si ||

)
(3.5)

where,
−→si and −→sj represents the position vectors that are spatially associated with the mass
points i and j.

−→
Fi,j in Eq. 3.5 represents the spring forces of the elastically deformed springs acting

on the mass points mi. The magnitude of the force depends on the position of incident
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sensors i and j. The velocity of the mass point mi at time t + ∆t starting at time t
is given by Eq. 3.6.

−→v it+∆t
= −→v it +

(∑
j

−→
F i,j

mi

)
∗∆t (3.6)

The term
∑

j

−→
F i,j gives the sum of all spring forces j acting on mass point mi.

To reach equilibrium, a damping factor will be added to Eq. 3.6. Damping of the
speed only occurs when the masses are in motion. The spring forces represent the

size of the model. As mentioned earlier external forces
−→
F i represent the edge and

the intensity information contained in the image data. These forces act on the mass

point mi through sensors attached to them. External force component
−→
F i will also

be incorporated in Eq. 3.6.

The type of the sensor (intensity or gradient) attached to the mass point is im-
portant for a successful model adaptation. To create a balance or give importance to
spring or sensor forces respective weight coefficients will be added to Eq. 3.6. The
resulting equation is shown by Eq. 3.7.

−→v it+∆t
=

(
−→v it +

wf

∑
j

−→
F i,j + ws(i)

−→
F i

mi

∗∆t

)
∗ (1− d) (3.7)

where,
d = damping factor.
wf = weight of the spring force component.
ws(i) = weight of the sensor force component.

When a model simulating through Eq. 3.7 reaches equilibrium, signals the balance
between the shape information incorporated into the model and data information in
the image. This results in the segmentation of the data through a model based
technique.

3D shape models are more susceptible to shape collapse as compared to 2D shape
models. Figure 3.8 shows possible shape collapse scenarios for a 2D SMSM. The
vulnerability of the 3D shape models increases even more so due to the additional
degree of freedom. Some solutions have been proposed to solve the problem of shape
collapse in 3D.

First one mentioned by Bergner [5], describes the creation of the mass spring
model with a dense mesh of springs. The drawback of this approach is that due to the
high density of springs it requires large computational time. The high computational
cost renders them useless for real time applications. Second solution is mentioned
by Bardinet [3] with respect to implicit models. It uses super quadric that defines
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(a) (b) (c) (d)

Figure 3.8: SMS Model vulnerability scenarios. (a) A simple square mass spring model.
(b) SMS model is twisted without changing the spring lengths. (c) SMS model collapsed
without changing spring lengths. (d)Possible solution to avoid SMS model twist or collapse.
Image source is [15]

global constraints on the model. As a result they are difficult to control locally,
a common drawback of implicit models(see [28]). A third solution is presented by
Cohen [6], where additional force component allows the model to expand like an
inflated balloon. Their drawback is that there is a trade off between the stability of
the model and the loss of shape and size information of the target structure. Simplex
Meshes presented by Delingette [11] is a fourth solution. Simplex Meshes are defined
as a 3D mass spring surface mesh where masses are allowed to move freely toward the
closest data point. They also do not contain the exact shape and size information.

Torsion force has been added to the mass spring model to provide shape stability
and to solve the problem of contortion for 3D models [15]. Such models have been
successfully used in the segmentation of anatomical structures [19, 14, 13, 32, 26].
Torque also called as moment, measures the tendency of a force to rotate an object
about some axis as given by Eq. 3.8.

T = r ∗ F (3.8)

where,
r = The particles position vector relative to the fulcrum.
F = The force acting on the particle.

Torque was first defined by Bergner [5] as a solution for the instability of 2D
explicit dynamic models. The solution provided only consider angles between two
springs with a common mass point as shown in figure 3.9. The solution provided
is not applicable for 3D models where the extra dimension allows the angle plane to
turn. To solve the problem of the turning of the angle plane, additional angle forces
are required which then lead to problems similar to dense cross linking.

L. Dornheim [15] suggests the use of normalized rest directions ri,j of the springs
starting from mass point mi to all its adjacent masses mj along the lines of the spring
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(a) (b) (c)

Figure 3.9: Torque for 2D SMS Model. (a) Shows springs in their rest direction. (b)
Springs are twisted due to external force. (c) Torque acts in the direction of the rest
direction to counter the external force. Image source is [15]

(a) (b) (c)

Figure 3.10: Torque for 3D SMS Model. (a) Shows springs in their rest direction. (b)
Springs are twisted due to external force. (c) Mass rotates to counter the external force.
Image source is [15]

rest lengths . The twisting of the springs from their rest directions produces torque
which is then balanced by twisting the mass which results in model rotation as shown
in figure 3.10. The torsion force produce is given by Eq. 3.9.

−→
F i,j = ti ∗

(
< (−→r i,j,

−→r 0i,j
)

||−→r i,j||

)
∗
( −→n i,j

||−→n i,j||

)
(3.9)

where,
−→r i,j = −→s j −−→s i

ti = Torsion constant (Torsion Moment per torsion angle).

The direction of torsion forces −→n i,j is given by Eq. 3.10. Torsion forces act as
internal forces alongside the spring forces. Where spring forces define the size of the
model, torsion forces (direction of springs) define the shape of the modelled object.

Motion equation defined in Eq. 3.7 has been extended by torsion forces
−→
F j,i with a

corresponding weighting factor wt is given in Eq. 3.11. Because of the rest directions
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of all springs, the problem of mutually shifting angle planes does not arise.

−→n i,j = r0i,j
−
(

< −→r i,j,
−→r 0i,j

>

||−→r i,j||2

)
∗ −→r i,j (3.10)

−→v it+∆t
=

(
−→v it +

wf

∑
j

−→
F i,j + wt

∑
j

−→
F j,i + ws(i)

−→
F i

mi

∗∆t

)
∗ (1− d) (3.11)

where,
wt = weight of the torsion force component.

3.3 State of the Art for Muscle Segmentation

During the survey of the state of the art techniques, we did not find any literature
that tried to segment the sternocleidomastoid muscle. There was some literature
available that tried to segment the muscle fibers but it was not related to our work.

However, we found one paper where Gilles et al. tried to model and segment the
musculoskeletal system from MRI datasets [22]. They have used the scalable discrete
deformable surfaces, the simplex meshes on the hip joints and thigh MRI dataset.
They define a simplex mesh model. A vertex position in the mesh is uniquely defined
by three geometric parameters which are; two barycentric coordinates and curvature.
These three parameters are also used for smoothing and calculating shape constraint
forces to regularize the segmentation. The 1D registration of the intensity profile
with a standard profile obtained from a reference segmentation provides the external
force. They apply affine transformation for local smoothing and global regularization
which in turn is used to regularize the external force field.

Figure 3.11 shows the segmentation process. Multi-resolution scheme was used
to improve the computational speed, robustness and to avoid getting trapped in local
solutions. Since muscles and bones are segmented together, they apply topological
constraints to model the different parts. Radial constraints were applied to model
muscle contractions. To initialize the model, they manually define ten landmark po-
sitions. Their model also allows interaction during simulation to guide the simulation
toward towards the correct goal. Their results showed that their average distance
from the gold standard was 1.25mm for bones and 1.7mm for muscles. The total seg-
mentation process took around 15 min. on a standard modern PC. It can be observed
from figure 3.11 that the experimental segmentation environment is simple. There
is no other data to distract the model.
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Figure 3.11: Musculoskeletal segmentation process. Image source is [22]
.

3.4 Successful Applications of the SMSM

Mass Spring Models have been used successfully during the last few years, in segment-
ing anatomical structures from a human body especially from the neck. L. Dornheim
et al. [19] has used it successfully in the segmentation of left ventricle in the 3D
SPECT data. The shape knowledge is intrinsically defined through a mesh of masses
and springs. The shape is defined through internal forces exerted by springs. The
masses move under the influence of external forces generated by the image data.
Model deformation continues until an equilibrium is reached between internal and
external forces. Figure 3.12b shows a 3D SMSM of left ventricle.

The mass spring model depicting the left ventricle shape is constructed automat-
ically from a sample segmentation. L. Dornheim et al. [19] presents two ways to
correctly place and orient the model automatically inside the dataset without any
human intervention. The shape of the model is matched to find a similar pattern in
the dataset using correlation or pattern vector angle. After initializing the model,
shape adaptation is carried out by only using external forces from intensity sensors.
The estimated shape of the model tries to realign itself using clues provided by the
data. After the shape adaptation is completed the final step is to locate the bound-
aries of left ventricle by activating the edge sensors. The edge sensors should be close
enough to the edges to locate them.

J. Dornheim et al. [14] presents another application of stable 3D mass spring
model where it is used in the segmentation of lymph nodes in the neck. Here for
the first time intensity, gradient and shape information were combined into a single



36 CHAPTER 3. STATE OF THE ART

(a) 3D Blood Ves-
sel Model

(b) 3D Left Ventricle Model (c) 3D Thyroid Cartilage Model

Figure 3.12: Different 3D SMSM Models. Image source : figure 3.12a is taken form [32],
figure 3.12b is taken form [17], figure 3.12c is taken form [13]

.

model. The problems faced during the segmentation of lymph nodes were due to
the infiltration of lymph nodes into neighboring soft tissues, high contrast structures
in neighborhood, internal inhomogeneity due to necrosis and the variable size of the
lymph nodes. Considering that the shape of lymph nodes is spherical, a spherical
mass spring model is defined. Gradient sensors are attached to the outer layer of
the masses. An inner layer of masses parallel to the outer layer at some distance d
is defined and intensity sensors are attached to the masses. The springs connecting
masses of the two layers are assigned high spring constants to make them stiff. The
model was initialized inside the lymph node and then it grows out towards the true
contour of the lymph node. The gray value range was determined from the two seed
points defined by the user. These seed points are also used to provide an estimate of
the lymph node’s position and size. After this model adaptation is carried out.

J. Dornheim et al. [13] presents another application of SMSM in the segmentation
of thyroid cartilage. Just like in previous work [14], the thyroid cartilage model is
semi-automatically constructed from a given manual sample segmentation. An outer
surface of the model is defined, attaching directed gradient sensors to the masses.
Some mass points are fixed by the user at key landmark position and the model
is adapted to the individual patient’s anatomy using spring and torsion forces only.
After the shape adaptation is completed, gradient sensors are activated and precise
model adaptation according to the data is carried out. Figure 3.12c shows a 3D
SMSM model of thyroid cartilage.

L. Dornheim et al. [18] used SMSM model for the verification of the presence
and correctness of the mounted parts in industrial optical quality control system.
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The state of a part is compared to a reference state image and then used to locate
the part in the image. The SMSM created are specifically tailored to represent the
part’s shape characteristics. More masses are placed in areas where curvature changes
rapidly as compared to where it does not change rapidly. To every mass point two
sensors are attached that look for contour normal direction and curvature information
instead of intensity and gradient information. The total number of masses placed on
the contour of the object was 40 that was obtained empirically.

3.5 Summary

This chapter gives a survey of the state of the art. The chapter opens with a brief
description of the image based segmentation techniques and the reasons for their
not being suitable for segmenting anatomical structures from CT dataset. Then
broad overview of the model based segmentation techniques have been given. Three
different types of model based segmentation techniques; structural , statistical and
deformable models have been discussed. A short survey of different techniques falling
under each category has been given. Stable Mass Spring Models, a type of deformable
model used for segmenting the sternocleidomastoid muscle have been described in-
depth and important features of the model essential for segmenting 3D structures
have been identified. Then some applications where SMSM have been successfully
employed for segmenting 3D structures from medical imaging datasets are presented.
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Chapter 4

Concept

In this chapter the main technique will be presented. The section 4.1 will provide
details about three different types of SMSMs which were constructed and and the
reasons behind their creation. Details of the interpolation process and the procedure
of estimation of the muscle intensity interval are given in the section 4.2. The details
about the interpolation and the intensity estimation has been provided in detail only
for the Elliptical SMSM. The same procedure holds true for the other two types of
SMSMs, therefore explanation about their interpolation and intensity estimation have
been eschewed. The focus is only on presenting the minor differences that exist. Then
specifications concerning the three SMSMs have been provided in the sections 4.2,
4.3 and 4.4. Section 4.5 discusses the preprocessing details that are applied on the
CT datasets. In the end, section 4.6 gives details about the ideas taken from the other
applications of the SMSM and how they help shape the technique for segmenting the
sternocleidomastoid muscle.

4.1 Different Types of SMSM

In this thesis we have divided the complete muscle in three different parts. These
parts are shown in figure 4.1 which are:

1. Lower Part : This part starts from the sternum and the clavicle and ends
where the two strands of the muscle combine together.

2. Middle Part : The middle part of the muscle starts from where the two strands
of the muscle combine together and ends at where one end of the elliptical shape
starts to change into a thin, elongated and rectangular structure.

3. Upper Part : The upper part of the muscle starts from where the middle part
ends and terminates when the muscle terminates at the mastoid process.

39
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(a) Side view (b) Frontal view

Figure 4.1: Different parts of the muscle. Image Source : [40]. The images have been
edited.

We have only tried to segment the middle and the upper parts of the muscle. The
lower part of the muscle has been not been segmented as a completely different strat-
egy is required to segment the muscle. Sometimes the two muscle strands originating
form the sternum and the clavicle are disjoint and at other times they are combined.

The shape of the sternocleidomastoid muscle can be categorized with three dif-
ferent structures. The middle part of the muscle is elliptical as shown in figure 4.2a
or curved and rectangular as shown in figure 4.2b. The middle part of the muscle
then can be segmented using either the Elliptical SMSM if the shape of the muscle
is elliptical or Curved Rectangular SMSM could be used for segmenting this part of
the muscle if the muscle shape is curved and rectangular. Figure 2.9 shows some
of the possible elliptical shapes of the muscle which could be segmented using the
Elliptical SMSM. Figure 2.10 shows some of the possible curved rectangular shapes
of the muscle which could be segmented using the Curved Rectangular SMSM. The
upper part of the muscle which is near the mastoid process and the temporal bone is
also elliptical at one end and thin, elongated and rectangular at the other as shown in
figure 4.3. If the shape of the muscle is elliptical at one end and thin, elongated and
rectangular at the other then the muscle is segmented using the Elliptical Elongated
SMSM. Figure 2.11 shows some of the possible elliptical, thin, elongated and rectan-
gular shapes of the muscle which could be segmented using the Elliptical Elongated
SMSM.

The user is required to enter strokes after every 8 or 9 slices. These strokes should
try to approximate the medial axis of the shape of the muscle in a particular slice.
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(a) Elliptical shape of the muscle (b) Curved rectangular shape of the muscle

Figure 4.2: Shapes of the middle part of the muscle

Figure 4.3: Shape of the upper part of the muscle
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The position and the cues about the shape of the muscle are then obtained from
these user strokes. As explained in section 2.1 that the muscle slants across the side
of the neck, therefore, these strokes help in obtaining the position, length and the
orientation of the muscle in the intervening slices. The change in position, length and
orientation of the muscle could easily be estimated through linear interpolation (see
figure 4.5).

While entering the strokes the user specifically defines the starting slice number
of the upper part of the muscle (elliptical elongated part) by checking a check box.
If the middle part of the muscle is not elliptical but curved and rectangular then
the user checks a check box indicating that the middle part of the muscle should be
estimated through a curved rectangular model.

Figure 4.4 gives the work flow diagram of the segmentation process. The user
enters the strokes from which a skeleton of the muscle is created using interpolation.
After the skeleton has been created, it is used for estimation the intensity interval
of the muscle. Ray casting is done to get an estimate of the length of the minor
axis of the elliptical part of the muscle. Then the ellipse is generated. Points on the
ellipse are calculated which are used to generate the SMSM. For rectangular shape
of the muscle ray casting is not required to generate the SMSM. After generating
the elliptical or the curved rectangular SMSM, simulation is carried out and then the
simulated model is used to segment the muscle.

After segmenting the middle part of the muscle either through elliptical or curved
rectangular SMSM, the SMSM is destroyed and the process is repeated for the upper
part of the muscle. The SMSM for the upper part of the muscle is then used to
segment the remaining part of the muscle. The two segmentations are then combined
together to form the complete segmented muscle. These steps are discussed in detail
in the following sections.

It is not necessary to always use two SMSM models. During the segmentation of
the muscle in 14 test datasets some datasets were only segmented using the curved
rectangular model. The prototype allows using different combinations like;

1. Using Elliptical SMSM to segment middle part of the muscle and then using
Elliptical Elongated SMSM to segment upper part of the muscle. This combi-
nation has been used most often.

2. Using Curved Rectangular SMSM to segment middle part of the muscle and
then using Elliptical Elongated SMSM to segment upper part of the muscle.
This combination has not been used on any of the 14 test datasets.

3. Using only the Elliptical SMSM to segment the complete muscle. This also has
not been used on any of the 14 test datasets.
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4. Using only the Curved Rectangular SMSM to segment the complete muscle.
This has been used on few of the 14 test datasets.

5. Using only the Elliptical Elongated SMSM to segment the complete muscle.
This has not been used on any of the 14 test datasets.

Any one of the combination could be selected just by selecting two check boxes.
It is left up to the user’s discretion to select anyone of the combinations provided
as the developed prototype can not itself identify which model should be used for
muscle segmentation. These five combinations are the natural outcome of the three
different SMSMs that were constructed for segmenting different parts of the muscle.
Combination 1 and combination 4 are the only two combinations that were used on
the 14 test datasets, therefore, experience says that it is most likely that these are
the only two combinations that will be used for segmenting the muscle from unseen
datasets but then again situations might arise where other combinations could be
used.

4.2 Constructing Elliptical SMSM

This section discusses the construction of the Elliptical SMSM. Interpolation, Slice
Selection and Intensity Estimation are elaborated in depth with respect to the Ellip-
tical SMSM. The Interpolation, Slice Selection and Intensity Estimation concept also
holds true for the Curved Rectangular SMSM and Elliptical Elongated SMSM.

4.2.1 Interpolation

The strokes are used to create the skeleton of the elliptical part of the muscle. Let
N be the total number of strokes entered by the user and let M be the total number
of slices between the strokes. The starting point Pstarti and ending point Pendi

of
the first stroke is obtained. Similarly, the starting point Pstarti+1

and ending point
Pendi+1

of the second stroke is also obtained. Using these four points the starting and
the ending points of the intervening slices between the strokes are obtained through
linear interpolation using equation 4.1.

Figure 4.5 shows the linear interpolation. The top most and the bottom most
slices are the slices in whihc user has entered the strokes. The two slices between the
top most and the bottom most slices are the interpolated slices. Linear interpolation
is done between starting points of the two strokes and between the ending points of
the two strokes. The intersection of this linear interpolation with the two slices in
between gives the interpolated points in those slices.
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Figure 4.4: Work flow diagram of the segmentation process.
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Figure 4.5: Linear Interpolation

xj = (1− tj) ∗ xi + (tj) ∗ xi+1

yj = (1− tj) ∗ yi + (tj) ∗ yi+1

zj = (1− tj) ∗ zi + (tj) ∗ zi+1

(4.1)

where,
i = 1 · · ·N − 1
j = 1 · · ·M − 1

The zj coordinate value of the intervening slice is known and using zi = Pstarti → z
and zi+1 = Pstarti+1

→ z ; the value of tj is calculated using equation 4.2.

tj =
zj − zi

zi+1 − zi

(4.2)

where,
i = 1 · · ·N − 1
j = 1 · · ·M − 1

Using the value of tj the x and y coordinates of the start and the end points of
all the intervening slices are calculated.
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4.2.2 Slice Selection

Start point Pstarti and end point Pendi
of only selected slices between strokes are

calculated. An upper limit is defined on the total number of masses Masstotal in
one layer. There are two layers of masses namely inner layer and outer layer, so the
total number of masses for a complete model is 800. The figure 800 has been chosen
after experimentation. Having masses more than 800 slows down the simulation
process. Another variable Massperslice defines how many masses will be placed per
slice. Number of slices Slicetotal that encompasses the elliptical shape of the muscle are
calculated by subtracting the starting stroke from the ending stroke. The number of
slices required Slicerequired to construct the whole model is calculated using equation
4.3.

Slicerequired =
Masstotal

Massperslice

(4.3)

If the Slicetotal ≤ Slicerequired then all the slices are used in creating the elliptical
model, otherwise only selected slices are used. First of all, all the slices which were
used for the strokes Slicetotalstrokes are selected. The remaining slices Sliceremaining is
calculated from equation 4.4.

Sliceremaining = Slicerequired − Slicetotalstrokes (4.4)

These remaining slices Sliceremaining are then proportionally distributed between
the strokes. To calculate the proportion for the Sliceremaining between strokes, the
percentage of the slices between strokes Percentagebetweenstroke is calculated using
equation 4.5.

Percentagebetweenstroke =
Strokei+1 → z − Strokei → z

Stroken − Stroke1

(4.5)

where,
i = 1 · · ·N − 1

Slicesbetweenstrokes is calculated using equation 4.6

Slicesbetweenstrokesi
= Percentagebetweenstrokei

∗ Sliceremaining (4.6)

where,
i = 1 · · ·N − 1

Since a real number Slicesbetweenstrokesi
could not be used, therefore, if the decimal

part of the Slicesbetweenstrokesi
is less than 0.5 then the Slicesbetweenstrokesi

is rounded off
towards the lower side and the decimal part is added to the next Slicesbetweenstrokesi+1

.
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If the decimal part of the Slicesbetweenstrokesi
is greater than 0.5 then the Slicesbetweenstrokesi

is rounded off towards the upper side and (1 − decimalpart) is subtracted from the
next Slicesbetweenstrokesi+1

. This way the Sliceremaining gets proportionally distributed
between the strokes.

Once the slice count between strokes Slicesbetweenstrokes have been calculated, these
slices are equally distributed between the strokes. It is for these slices only that the
x and y coordinate of start Pstartj and end Pendj

points are calculated.

4.2.3 Estimating the Intensity Interval for the Elliptical Model

The start and end points of the stroke for a particular slice have already been cal-
culated. Using these points a rectangular region of width Widthintensityestimation = 4
is defined. The length of the rectangle corresponds to the length of the start and
end points. All points lying inside the rectangular region are used for the intensity
estimation. The procedure is repeated for all the selected slices.

Through observation and experimentation it has been noticed that the muscle
intensity interval width is around 120 units for datasets where the muscle intensity
is greater than 500. For datasets where the muscle intensity is less than 500 the
intensity interval width is around 70. Using this, the upper and the lower limit
around MeanIntensity are defined. For datasets where the muscle MeanIntensity
value is greater than 500, the upper and lower limits around mean is 60 and for
datasets where the muscle MeanIntensity is less than 500, the upper and lower limit
is 35. This is used to filter out the pixels extracted from rectangular regions, with
intensity outside the range.

During the first iteration all pixel values are used and a MeanIntensity is calcu-
lated using equation 4.7. Any intensity value lying outside the interval (MeanIntensity−
60 , MeanIntensity+60) are filtered out and a new MeanIntensity is calculated. The
process is repeated until the MeanIntensity value does not change anymore. Once
the MeanIntensity stabilizes, StandardDeviation of the intensity values is calculated
using equation 4.8 and the final intensity interval is defined (x− 3 ∗ σ, x + 3 ∗ σ). A
standard deviation of 3 has been used as it encompasses 99.6% of the values.

x =
x1 + x2 + · · ·+ xn

n
=

1

n

n∑
i=1

xi (4.7)

where,
n = total number of pixels extracted from the rectangular region lying within the
intensity interval
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σ =

√√√√ 1

n

n∑
i=1

(xi − x)2 (4.8)

where,
n = total number of pixels extracted from the rectangular region lying within the
intensity interval

4.2.4 Estimating the Ellipse

To create an elliptical 3D model, the length of major and minor axis and the orien-
tation of the ellipse needs to be estimated. To estimate these parameters ray casting
is used. For the elliptical model rays are casted from the midpoint of the start Pstart

and end Pend points of the stroke and for the intervening slices between strokes from
the mid-point of the interpolated start and end points as shown in figure 4.6. 360
rays are casted out from the mid point corresponding to each degree between 0 -
359. A ray terminates when it hits a pixel whose intensity lies outside the estimated
intensity interval. Figure 4.7 shows the result of ray casting in one of the slices. The
process is repeated for all the selected slices.

Figure 4.6: Schematic diagram for ray casting.

The orientation of the ellipse is obtained from the orientation of the line joining the
start Pstart and end Pend points . The length is also estimated from the start and the
end points. The length of the minor axis is mainly estimated from the data obtained
through ray casting. Principal Component Analysis1 (PCA) [29] is applied on the

1A good tutorial on PCA is available at



4.2. CONSTRUCTING ELLIPTICAL SMSM 49

Figure 4.7: Ray casting in a slice.

ray casted data and its eigen vectors are calculated. The eigen vector corresponding
to lower eigen value corresponds to the length of the minor axis of the ellipse. The
length of the minor axis Lengthminoraxis is given by equation 4.9. The σ is calculated
during PCA. The value 1.4 has been chosen through experimentation on different
dataset. It tends to give the best estimate of the size of the muscle’s width.

Lengthminoraxis = 1.4 ∗ σ (4.9)

The length of the minor axis for all the selected slices is averaged and this average
length is used as the length of the minor axis for all ellipses that are fitted to individual
slices. The length of major axis on the other hand is not averaged because it is best
calculated form the start Pstart and end Pend points of the strokes and interpolation.
Once the ellipse estimation is complete, points on the ellipse are calculated using the
standard equation 4.10 of ellipse. The standard equation of the ellipse represents
an ellipse whose major axis is along the x-axis and centered at origin. The points
calculated are then used to create the customized 3D Elliptical SMSM.

x2

a2
+

y2

b2
= 1 (4.10)

4.2.5 Construction of the Customized 3D Elliptical SMSM

After obtaining the ellipse equation, points on the ellipse are calculated (see fig-
ure 4.8). These points are used for placing the masses. As curvature changes rapidly

http://www.cs.otago.ac.nz/cosc453/student tutorials/principal components.pdf
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Figure 4.8: Schematic diagram of the calculated positions of an elliptical SMSM where
masses will be placed. The diagram shows the relative position of the masses with respect
to each other in a slice.

between points A and B and points C and D, therefore, more masses are placed be-
tween A and B and C and D and less number of masses between points O and B
and O and C. A mass is placed at positions A and D which are the end points of
the major axis and at positions Y and Z which are the end points of the minor axis.
Distance AB and CD are calculated using equations 4.11 and 4.12.

AB = 0.48 ∗OA (4.11)

CD = 0.48 ∗OD (4.12)

After calculating points B and C, points E, F, K, L are calculated and a mass is
placed at each of these positions. Points M and N are calculated using equation 4.13
and 4.14.

OM = 0.5 ∗OB (4.13)

ON = 0.5 ∗OC (4.14)

After calculating points M and N points G, H, I, J are calculated and a mass is
placed at each of these positions. The rest of the masses are distributed equidistantly
between A and B and C and D as shown in figure 4.8 by points M1, M2 ... M21,
M22.

The number of masses on the ellipse is 32. After experimentation with different
number of masses it was found that 32 masses are optimal. With less number of
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masses, the muscle structure could not be accurately estimated while on the other
hand increasing the number of masses gives too few slices to estimate the middle part
of the muscle.

After calculating all the mass points on the ellipse, the points are rotated around
the origin by an angle given by the orientation of the line joining the start Pstart

and end Pend points. The points are then translated by the vector(meanX,meanY)
which was calculated when PCA was applied. The same process is repeated for all
the selected slices to which an ellipse has been fit.

Figure 4.9 shows the 3D Elliptical SMSM. After the masses has been placed the
masses are connected to each other through springs. These masses are called Outer
Layer Masses. The springs connecting the masses of the same slice are assigned low
spring constant so that they can expand. These springs are shown in dark blue in
the figure 4.9. The masses are also connected through springs to the masses in
the adjacent slices through 1 to 1 correspondence. These springs are assigned high
spring constant so that if some masses in one slice get stuck in local minima, the
masses in the adjacent slices can pull them out of the local minima. These springs
are shown in yellow in the figure 4.9. Masses are also diagonally connected to the
masses in the adjacent layers through springs. These springs are assigned very low
spring constant so that they do not have any affect on model simulation. They are
present only because they are important for SMSM construction. These springs are
shown in light blue in figure 4.9. Directed edge sensors are attached to the masses
which are sensitive to the edge information contained in the image.

A parallel layer of masses called Inner Layer Masses to Outer Layer Masses at
a distance d is automatically constructed using MSML library. This layer of masses
is shown in green in figure 4.9. Intensity sensors are attached to the masses of the
parallel layer. These sensors are configured to work within the intensity interval that
was estimated earlier(see section 4.2.3). The two layer of masses are connected to
each other through springs in 1 to 1 correspondence. These springs are assigned very
high spring constant so that the intensity sensors could stop the directed edge sensors
from getting distracted by undesirable edges. These springs are shown in red in figure
4.9. All masses are programmed to moved only along x and y axis.

4.3 Constructing 3D Curved Rectangular SMSM

The curved rectangular model is created if the user checks a check box to indicate
that such a model should be created. The skeleton of the shape is created through
interpolation. Interpolation is carried out the same way as explained in the section
4.2.1 but instead of having just two points Pstart and Pend, interpolation here is done
for 15 points, as the shape is too complex to be estimated through just two points.
15 equidistant points each on the two adjacent strokes are obtained and interpolation
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Figure 4.9: 3D Elliptical SMSM
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is done between the these points. The result of the interpolation is 15 new points on
the slices between the strokes. These 15 points try to capture the shape intricacies
of the muscle as shown in figure 4.10 by points marked P1, P2 ... P14, P15.

The rest of the procedure for slice selection and intensity estimation is same as ex-
plained in section 4.2. The width of the curved rectangular model WidthCurvedRectangular

is predefined which is 6 voxels. No ray casting is required to construct this model,
since there is no ellipse to be estimated. Figure 4.4 shows the work flow diagram for
creating a curved rectangular SMSM.

4.3.1 Construction of the Customized 3D Curved Rectangu-
lar SMSM

Figure 4.10: Schematic diagram of the calculated positions of curved rectangular SMSM
where masses will be placed. The diagram shows the relative position of the masses with
respect to each other in a slice.

Figure 4.10 shows the schematic diagram of the curved rectangular model. The
total number of masses per slice Massperslice is 32. Two masses are placed at positions
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P1 and P15 which are the starting and the ending points of the stroke. Two masses
are placed at positions M2 and M32 with respect to the slope of the line joining P1
and P2. The line joining masses M2 and M32 is perpendicular to the line joining
P1 and P2. The length of the line joining M2 and M32 is 6 voxels. 6 voxels have
been selected because empirical testing showed that 6 voxels gave optimal estimation
of the width of the muscle in the re-sampled datasets. Similarly the same process is
repeated for the rest of the points P2, P3 .... P15 on the stroke.

Figure 4.11 shows the 3D Curved Rectangular SMSM. Directed edge sensors are
attached to the masses of the Outer Layer. The Outer Layer and its masses are shown
in dark blue in the figure 4.11. The masses in the same slice are connected to each
other through springs. These springs are assigned low spring constants for reasons
explained earlier in section 4.2.5. The masses are also connected to the masses in the
adjacent slices through springs. These springs are shown in yellow in figure 4.11. A
parallel layer of masses is created at a distance d voxel. The parallel layer, its masses
and springs are shown in green in figure 4.11. Intensity sensors are attached to the
masses of the parallel layer. These sensors are configured to work within the intensity
interval calculated during intensity estimation process. All masses are programmed
to moved only along x and y axis.

Figure 4.11: 3D Curved Rectangular SMSM

4.4 Constructing Elliptical Elongated SMSM

As said at the beginning of the chapter that user specifically marks the slice number
from where the upper part of the muscle starts, by checking a check box. The user
then goes on to enter the strokes that will be used for interpolation. The interpolation
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is done in the same way as explained in section 4.2.1. Here five points are used for
interpolation between strokes, as the shape is again too complex to be estimated
through just two points. As can be seen form figure 4.12 that one end of the model is
elliptical while the other end consists of rectangular regions. These points are shown
in the figure 4.12 as A, B, C, D, E.

The procedure for selecting the number of slices Slicerequired also depends on the
number of masses per slice Massperslice and calculated in the same way as explained
earlier in section 4.2.2. The intensity estimation procedure is also the same as
explained in section 4.2.3. The only difference is that here smaller rectangular regions
are defined using points A-B, B-C, C-D and D-E. The elliptical part of the model
is estimated the same way as explained in section 4.2.4. Here the rays are casted
from point B. The average length of the minor axis Avg−Lenminorj

is estimated the
same way as explained the section 4.2.4. As explained in section 2.3 that the point
from where the upper part of the muscle starts, its elliptical part is broader than the
elliptical at the points where the upper part of the muscle terminates at the mastoid
process. Figure 2.13 shows the difference in the width of the elliptical part of the
upper part of the muscle. To compensate the difference in the width of the elliptical
parts, the width in the starting slice of the upper part of the muscle is calculated
using the equation 4.15. The value of the factor starts from 0.3 when j = 1 and it
decreases linearly to 0 when j = (M −1)/2. It linearly decreases further to -0.3 when
j = M . This results in broader elliptical part of the SMSM at the starting point of
the upper part of the muscle and thinner elliptical part of the SMSM at the ending
point of the upper part of the muscle. The length of major axis and the orientation
of the ellipse is estimated using points A and C.

Avg − Lenminorj
= Avg − Lenminorj

+ Avg − Lenminorj
∗ factor (4.15)

where,
factor = 0.3 .... 0 .... -0.3
j = 1 ... M

4.4.1 Construction of the Customized 3D Elliptical Elon-
gated SMSM

There are two parts of the model, the elliptical part and the thin elongated rectangular
part. 6 masses are placed at locations G, H, I, J, K and L which are calculated using
points C, D and E. A mid point X between C and D is obtained. Depending upon
the slope of the line CD, points G and H are calculated. If the slope of the line CD
is greater than 1, then X → y is decremented and incremented by WidthRectangular
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Figure 4.12: Schematic diagram of the calculated positions of elliptical elongated SMSM
where masses will be placed. The diagram shows the relative position of the masses with
respect to each other in a slice.

to calculate G → y and H → y respectively, as given by equation 4.16. The x-
coordinate of G and H is equal to the x-coordinate of X. If the slope of the line CD
is less than 1 then X → x is decremented and incremented by WidthRectangular to
calculate points G → x and F → x respectively, as given by equation 4.17. The
y-coordinate of G and H is equal to the y-coordinate of A. The same process is used
for calculating points I and J using point D and K and L using point E. The rest of
the masses are placed on the elliptical part.

G → y = X → y −WidthRectangular

G → x = X → x
H → y = X → y + WidthRectangular

H → x = X → x

(4.16)

G → y = X → y
G → x = X → x−WidthRectangular

H → y = X → y
H → x = X → x + WidthRectangular

(4.17)

The procedure for placing the masses on the ellipse is almost the same as described
earlier in section 4.2.5. There are some differences regarding the position of the
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masses. A mass each is placed at Y and Z which are the end points of the minor axis.
Distances AM and CN are calculated using equations 4.18, 4.19.

AM = 0.4 ∗ AB (4.18)

CN = 0.4 ∗BC (4.19)

where
AB = BC = 1/2 * Length of Major Axis

After calculating points M and N, points Q, R, S, T are calculated and a mass
is placed at each of these positions. The rest of the masses are placed equidistantly
between A and M and C and N. No masses are placed between M and B and B and
N. The total number of masses in one slice is 32. The number of masses placed on
the ellipse is 26 while 6 masses are placed on the rectangular part. All masses are
programmed to moved only along x and y axis. After calculating all the mass points
on the ellipse, the points are rotated and translated just the way as explained in
section 4.2.5. The steps for the SMSM model creation are also the same as explained
earlier in section 4.2.5. Figure 4.13 shows the 3D Elliptical Elongated SMSM.

Figure 4.13: 3D Elliptical Elongated SMSM
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4.5 Preprocessing

This section will present details about the two preprocessing steps done on the
datasets. This includes re-sampling of the datasets and the cutting of the gray values.
These steps helped make the results better.

4.5.1 Re-Sampling Datasets

The re-sampling of the datasets was necessary for two important reasons. First it
allows to minimize the effect of the local minima. Second it is desirable to have
isotropic voxels from SMSM simulation perspective.

It was noted during the initial testing that local minima were a major problem.
The SMSM when placed inside the muscle was distracted by these local minima and
failed to converge towards the true muscle boundaries as can be seen in figure 4.14.
The remedy was to down sample the data. Down sampling was mainly done on the
x and y axis. x and y axis spacing in original test datasets varied from 0.254 mm to
0.805 mm. It was down sampled to 1 mm. On the other hand z axis spacing varied
from 1 mm to 5 mm. Here the datasets were up sampled to 1 mm. This provided
isotropic voxels of size 1 mm, which was also desirable from the SMSM simulation
perspective. Isotropic voxel size also made it easy to automate the parameters of
simulation and the SMSM apart from decreasing the dataset size.

4.5.2 Cutting Gray Values

As mentioned in section 2.3 that if the muscle is close to the skin, the gradient force
generated in this region is very high. This high gradient force is instrumental in
making the SMSM unstable as shown in figure 4.15.

The remedy suggested by P. Hahn [26] is cutting the gray value. As will be
explained in the following sections that the muscle intensity range is estimated by
(MeanIntensity − 3 ∗ σ, MeanIntensity + 3 ∗ σ). Anything outside the (MeanIntensity
- 6 * σ , MeanIntensity + 6 * σ) is cut off by a threshold value of (MeanIntensity − 6 ∗ σ).
This way the generated gradient force is not high and does not make the SMSM un-
stable. The value of 6∗σ has been chosen to ensure that it is well outside the intensity
interval of the muscle and yet not very far away from the muscle intensity interval.

4.6 Ideas Taken From The Previous Work

The model for segmenting sternocleidomastoid muscle has many similarities to the
lymph node model presented by J. Dornheim et al. [14]. The sternocleidomastoid
model also combines intensity, gradient and shape information. Gradient sensors are
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Figure 4.14: SMSM distracted by local
minima when the dataset has not been re-
sampled.

Figure 4.15: SMSM distracted by high gra-
dient force before the cutting of intensity val-
ues of the dataset.

attached to the outer layer of masses to look for muscle boundaries, while intensity
sensors were attached to inner layer of masses to keep the model within the intensity
interval specific to the muscle. The springs connecting the outer and the inner layer
masses were assigned high spring constant to make them stiff. Many of the prob-
lems faced during the lymph node segmentation were also faced during the muscle
segmentation. The muscle is adjacent to another muscle. Both muscles have a sim-
ilar intensity interval, due to which there are no distinct edges to separate the two
muscles. The target muscle is also surrounded by high density soft tissues like blood
vessels and the muscle interior is inhomogeneous. Not only the muscle size varies but
also its shape to further complicate the segmentation task. Due to the shape and the
size variations in the muscle, strokes are used instead of just seed points.

For sternocleidomastoid muscle segmentation, the model can not be created from
sample segmentation as was done by J. Dornheim et al. [13] for segmenting the
thyroid cartilage because of the large variations found in the muscle shape. Fig-
ures 2.9, 2.10, 2.11, 2.12 and appendix A shows many of the variations found in the
muscle shape. It was also observed that it was imperative to have a regular structure
which could not be created using the automatic mass placement method provided by
the MSML and MLMSML libraries. The structure and the steps required in creating
specific SMSM models have been described in detail earlier in this chapter.

The way masses are placed on the sternocleidomastoid model is inspired from
the work of L. Dornheim et al. [18]. Masses on the sternocleidomastoid model are
placed according to the curvature but it differs in the curvature estimation method.
For elliptical SMSMs, more masses have been placed near the end points of the major
axis of the ellipse as curvature changes rapidly in that region as compared to the
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change in curvature near the end of the minor axis. For the curved rectangular
SMSMs, equidistant points corresponding to the number of mases to be placed, on
the stroke are obtained and masses are placed according to the slope of the stroke in
that region.

4.7 Summary

This chapter starts by giving details of the preprocessing stage. Down sampling and
cutting of gray values were the two steps carried out in this stage. Then the main
technique is presented. Three different SMSM could be created for segmenting the
complete muscle. Details about the Interpolation, Slice Selection, Intensity Estima-
tion and optionally Ellipse Estimation are given. These steps are necessary to create
any of the three different SMSM. Then details about constructing Elliptical, Curved
Rectangular and Elliptical Elongated SMSM are presented.



Chapter 5

Implementation

5.1 Software

Microsoft Visual C++ 2003 .Net Standard Development Kit (SDK) was used for
programming. Following is a list of the other libraries and softwares used during the
development.

1. MeVisLab 1.6 MeVisLab was used for visualization and building of the graph-
ical user interface (GUI) of the application through Module Definition Lan-
guage (MDL). It is a graphical, module based programming environment which
allows for quick integration and testing of the new algorithms or application
prototypes. MeVisLab provides, image processing, visualization and interac-
tion modules that are combined together in a network to solve clinical problems
related to image processing and visualization. MeVisLab uses QT application
framework, the OpenInventor 3D visualization toolkit and OpenGL. A detailed
information about MeVisLab can be found at [23], [25].

2. OpenGL OpenGL1 is a graphics library used for creating 2D and 3D computer
graphics. MeVisLab internally uses OpenGL for visualization.

3. Open Inventor Open Inventor2 is an object oriented 3D toolkit used for cre-
ating interactive graphical applications. It is built on top of OpenGL. It is also
integrated in MeVisLab.

4. VTK The Visualisation ToolKit3 is a software system for 3D computer graphics,
image processing and visualization. It is also integrated in MeVisLab. MSML
library makes use of the VTK integrated in the MeVisLab.

1Available at : http://www.opengl.org/
2Available at : http://oss.sgi.com/projects/inventor/
3Available at : http://www.vtk.org/
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5. CGAL The Computational Geometry Algorithms Library4 provides efficient
and reliable geometric algorithms. CGAL provides algorithms in the areas of
computer graphics, scientific visualization, computer aided design and modeling,
geographic information systems, molecular biology, medical imaging, robotics
and motion planning, mesh generation, numerical methods etc. The MSML
library makes use of the CGAL.

6. MSML Magdeburg Shape Model Library is developed by L. Dornheim. The
library provides functions for the creation, simulation and evaluation of the
Stable Mass Spring Model.

7. MLMSML MLMSML provides a bridge between the MSML and the MeVis-
Lab. It provides inventor modules for the MeVisLab through which MSML
library can be used.

5.2 Prototype For Segmenting The Sternocleido-

mastoid Muscle

An inventor module SternocleidomastoidMuscleSegmentation was developed
which encompasses the muscle segmentation process. SternocleidomastoidMus-
cleSegmentation module together with ML and inventor modules from MeVisLab
and MLMSML modules developed by L. Dornheim creates the complete prototype.
Figure 5.1 shows the MeVisLab network diagram where the interconnection between
the different types of modules can be seen. A short description about the functionality
of SternocleidomastoidMuscleSegmentation module, ML and inventor modules
from MeVisLab and MLMSLM modules is given below. Figure 5.2 shows few ad-
ditional modules used for the comparison of the segmentation obtained from SMSM
with the gold standard.

5.2.1 MeVisLab Modules

Following are the MeVisLab modules used to create the MeVisLab network5.

1. SoExaminerViewer SoExaminerViewer renders the 3D scene and provides
event handling functionality. It is used to view the SMSM.

2. View3D View3D module provides Volume Rendering for the 3D dataset.

4Available at : http://www.cgal.org/
5Complete list of the MeVisLab modules can be found at

http://www.mevislab.de/fileadmin/docs/MLabModules/std/help/html/private/index.html
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Figure 5.1: MeVisLab network diagram for muscle segmentation

3. View2D View2D is a macro module and is used to view 2D objects. It is used
to view the CT dataset as it provides the functionality to scroll through the
slices of the CT datasets, showing a single slice in 2D at a time. The View2D
is also used to obtain the user strokes.

5.2.2 MLMSML Modules

Following are some of the MLMSML modules used to create the MeVisLab network.

1. LoadMSMLDataset LoadMSMLDataset module loads the MSML dataset
from a file. The MSML library defines its own format for the images and CT
datasets.

2. SaveMSMLDataset SaveMSMLDataset module is used to save the MSML
dataset to a file.

3. MSMLToMLDataset MSMLToMLDataset is used to convert the MSML dataset
to ML dataset. ML dataset is the format used by the MeVisLab modules.
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Figure 5.2: MeVisLab network diagram for comparing model segmentation with manual
segmentation

4. DataCollectionConstructor DataCollectionConstructor is used to create the
processed data. There are many options in which data can be processed, the
important ones regarding the muscle segmentation are; threshold data and in-
terval plateau data. DataCollectionConstructor module has been incorporated
into the SternocleidomastoidMuscleSegmentation module.

5. SaveDataCollection SaveDataCollection module is used to save the DataCol-
lection to a file.

6. SMSMSimulator SMSMSimulator module is used to simulate the SMSM
model. It provides many features like setting the SMSM parameter values,
repositioning, scaling, rotating the SMSM etc in addition to starting and stop-
ping the SMSM simulation. The functionality of this module has also been
incorporated into the SternocleidomastoidMuscleSegmentation module.

7. SaveSMSM SaveSMSM module is used to save the SMSM to a file.

8. SMSMView2D SMSMView2D helps in viewing the SMSM in View2D module.
It also provides different features like changing the colour of springs and masses
or enabling different parts of the SMSM.

9. SMSMView3D SMSMView2D helps in viewing the SMSM in SoExamin-
erViewer module. It also provides almost all features that the SMSMView2D
provides.
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10. SMSMVoxelizer SMSMVoxelizer module converts the volume data encom-
passed by the SMSM in to a segmented dataset. This functionality of this mod-
ule has been incorporated into the SternocleidomastoidMuscleSegmenta-
tion module.

11. CompareSegmentation CompareSegmentation module is used to compare
the segmentation result obtained from the SMSM and the one obtained manu-
ally. This module provides comparisons like hausdorff distance, average boder
distance, tanimoto coefficient, dice coefficient etc. Figure 5.2 shows the network
digram for comparing the result obtained from the SMSM model segmentation
with that obtained from manual segmentation. A detailed description about
the comparison criteria is given in chapter 6.

5.3 SternocleidomastoidMuscleSegmentation Mod-

ule

An inventor module SternocleidomastoidMuscleSegmentation was created that
provides all the functionality for creating SMSM specific to the muscle. Sternoclei-
domastoidMuscleSegmentation module can be seen in figure 5.1.

The inputs to the module are two MSML datasets. One dataset is the resampled
dataset. This dataset is used to adapt the SMSM according to the data. Other
dataset is the original dataset. This dataset is used for segmenting the muscle from
it using the adapted SMSM.

The outputs from this inventor module are MSML segmented dataset, SMSMs
for the upper and the lower half of the muscle, SMSM created by combining together
upper and lower half SMSMs and a MSML data collection.

The module encompasses all the functionality discussed in chapter 4 from ac-
cepting strokes from the user, performing interpolation, estimating intensity, and
constructing SMSM. The module also incorporates the functionality of MLMSML
module SMSMSimulator therefore, it is possible to simulate the model from the
module. The SternocleidomastoidMuscleSegmentation module also incorpo-
rates the functionality of the MLMSML module SMSMVoxelizer. The next section
gives a detailed description of the purpose and the functionality of the different sec-
tions of the GUI.

5.3.1 Graphical User Interface

GUI was created using the MeVisLab scripting language Module Definition Languag
(MDL). The GUI of the application is shown in figures 5.3. The different panels of
the GUI are described below.
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The Data panel gives detail about the estimated minimum and the maximum
intensity value of the muscle, the distance between the inner and the outer layers of
the SMSM in voxels, the number of masses in one layer in a single slice and the total
muscle segmentation time starting from the point of the user strokes.

The Simulation Process Information panel gives detail about the SMSM. The
important one is the Remaining Simulation Steps count. The maximum simulation
step count is 500 after which the simulation stops. The simulation could also stop if
the model reaches equilibrium shown by the Balanced Status.

The Select / Create Model panel allows to select from different types of SMSMs
by checking the check boxes. The buttons Create Upper SMSM and Create Lower
SMSM creates the corresponding SMSM and places it within the dataset.

If the user needs to create the Elliptical SMSM then he should just start entering
the strokes. If he reaches a point from where he wants to estimate the SMSM by
Elliptical Elongated SMSM then he should check the check box Check when entering
Upper Strokes and then go on entering the strokes. After entering the stokes and
pressing the button Create Lower SMSM will first create Elliptical SMSM. The sim-
ulation could be started by pressing the Initialize Simulation and Start Simulation
buttons. At the end of the simulation the Elliptical Elongated SMSM will be created
and placed inside the dataset. The simulation for this model could then be started
by again pressing the Initialize Simulation and Start Simulation buttons. At the end
of the simulation the complete muscle is segmented from the dataset using the two
SMSMs and outputted.

If instead of creating an Elliptical SMSM the user wants to create a Curved Rectan-
gular SMSM then he should check the check box Check to create Rectangular SMSM
before entering the strokes. After entering the stokes and pressing the button Create
Lower SMSM will create Curved Rectangular SMSM.

Selecting the check box Check when entering Upper Strokes and then entering
strokes and selecting nothing else will create only the Elliptical Elongated SMSM when
the button Create Upper SMSM is pressed. These models could also be simulated by
pressing the Initialize Simulation and Start Simulation buttons.

Similarly if only the check box Check to create Rectangular SMSM is selected will
create only the Curved Rectangular SMSM when the button Check Lower SMSM is
pressed. If non of the check boxes are selected and the strokes are entered, pressing
the Create Lower SMSM will create only the Elliptical SMSM.

The Simulation Parameters and the Force Factors panel allows to changes
the SMSM simulation parameters. The SMSM simulation parameters have already
been adjusted but they can be varied within a certain range for smooth simulation.
The adjusted parameter values and the variation interval is given in table 6.1.

The Simulation Control panel provides buttons for Initializing Starting and
Stopping the SMSM simulation. The Reset Completely button resets the SMSM
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to its learned state. After the SMSM has been created and placed inside the dataset,
it has to be initialized before starting the simulation.

The Clear Data button deletes all the data and allows to create a new SMSM
from the beginning. The strokes entered by the user are also deleted, therefore, the
user will have to insert new strokes.

Figure 5.3: GUI
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Chapter 6

Evaluation

6.1 Test Environment

The developed prototype was used on a standard PC (Intel Pentium 4 - 3.2 GHz
Processor , 3.2 GB RAM) with a modern 3D Graphics Card (ATI RADEON 9600
Series AGP, 256 RAM).

The prototype was tested on 14 3D-CT datasets of human neck from 14 different
patients. There is a pair of muscle in every dataset. The prototype developed was
tested only on muscles of one side, therefore, there were in all 14 different muscles.
As described earlier all datasets were down sampled to isotropic voxels of size 1 mm.
The original dataset spacing varies from 0.254 mm to 0.805 mm in x and y direction,
1 mm to 5 mm in z direction.

Some problems arose due to different artifacts present in the datasets; 5 datasets
were affected by tumor, 8 datasets were affected by motion artifacts, 1 dataset was
affected by beam hardening artifact, 3 datasets were affected by noise and 2 datasets
suffered from low contrast. Through the use of down sampled datasets the effect of
motion and beam hardening artifacts was reduced. The SMSM was able to bridge
the absent boundary in tumor affected regions mainly through the shape knowledge
encoded in the SMSM.

10 manual segmentations done by other students were used as gold standard.
Though the segmentation was time consuming but it was not difficult for the other
students to easily demarcate the muscle boundaries. Only in places where the muscle
is adjacent to another muscle the muscle boundary is not visible but it could be
easily identified by traversing through the slices before and after the slice of interest.
The same holds true for the part of the muscle boundary that has been destroyed
by tumor infiltration. The gold standard segmentations were used for a quantitative
assessment whose results are presented below. 6 different similarity measures between
the gold standard and the segmentation obtained from the SMSM were calculated.
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These different similarity measure are briefly described below, after which the results
are presented.

The SMSM model was automatically generated for every dataset. The parameters
for SMSM were adjusted using 3 datasets and then the adjusted parameters were used
on all datasets for segmentation. The complete SMSM model consisted of 768 masses,
2618 springs and 1468 contour faces. The average spring degree on a mass was 3.41.
The SMSM model is a little complex but possesses a simple and a vivid structure as
explained in chapter 4.

6.2 Parameter Estimation

Down sampling made it easier to automate the parameters as the spacing in all dimen-
sions was equal. The parameters were adjusted using 3 datasets and then the same
parameters were used on all datasets. The following table 6.1 shows the parameters
for the SMSM and simulation. There are three fields in the table, Parameter giving
the name of the parameter, Value giving the parameter value and Tolerance giving
the tolerance for the parameter. The tolerance has not been used for the test dataset.
The tolerance value has been given for those who wants to modify the parameters on
their own.

The table shows that the individual mass weights wo, wi, torsion weights to, ti,
spring weights spo, spi and sensor seo, sei are all kept 1. The inner and the outer
mass layers ld have a distance of 1.0 voxel. The springs connecting the inner and
the outer mass layers blexp have been assigned high spring constant 75 so that the
inner masses could stop the outer masses from tracking false edges. Similarly the
springs connecting the outer masses in one slice with the masses in the adjacent slice
bsexp have been assigned high spring constant 75 so that if masses in one slice get
stuck in local minima the masses in the adjacent slices can pull them out of the local
minima because of stiff springs. The global sensor ws(i, spring wf and torsion wt

force constant have been set to 1.2, 2.0 and 4.0 respectively.

The simulation parameters time step ts have been adjusted to 0.095 and the
damping factor tsd to 0.78. The two simulation stopping criteria use were balance
movement tolerance bm and simulation step count sc. Through experimentation bm
have been found to be 0.05 and sc to be 500. The simulation stops if either the model
reaches the balanced state or the simulation step count reaches 500. For a detailed
review of all the parameter see [16].
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Parameter Symbol Value Tolerance

outerMassWeight wo 1.0 ± 0.0
innerMassWeight wi 1.0 ± 0.0
outerTorsion to 1.0 ± 0.0
innerTorsion ti 1.0 ± 0.0
outerSensor seo 1.0 ± 0.0
innerSensor sei 1.0 ± 0.0
outerExpansion spo 1.0 ± 0.0
innerExpansion spi 1.0 ± 0.0
modelTorsionForceFactor wt 4.0 ± 0.5
modelSpringForceFactor wf 2.0 ± 0.2
modelSensorForceFactor ws(i) 1.2 ± 0.3

betweenLayerExpansion blexp 75 ± 5.00
betweenSliceExpansion bsexp 75 ± 5.00
layerDistance (Voxel) ld 1.0 ± 0.00

modelTimeStepDuration ts 0.095 ± 0.005
modelTimeStepDampingFactor tsd 0.780 ± 0.030
modelBalanceMovementTolerance bm 0.050 ± 0.000
SimulationStepCount sc 500.0 ± 0.000

ModelEstimationWidth mw 2.0 + 1.0
IntensityEstimationWidth iw 2.0 + 1.0

Table 6.1: Parameter values for SMSM

6.3 Comparison Coefficients

1. Tanimoto Coefficient Tanimoto Coefficient measures the similarity between
two sets. It is calculated by dividing the intersection of two set with the union
of the two sets as given by equation 6.1). It is also known as Jaccard coefficient
[44].

TanimotoCoefficient =

(
|A
⋂

B|
|A
⋃

B|

)
(6.1)

2. Dice Coefficient Dice Coefficient is measured as twice the intersection of two
sets A and B divided by the sum of the two sets as given by equation 6.2) [34].

DiceCoefficient =

(
2 ∗ |A

⋂
B|

|A|+ |B|

)
(6.2)

3. Relative Over Segmentation Relative Over Segmentation is defined as the
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pixels not part of the manual segmentation but are segmented by the SMSM
model. It can be calculated using equation 6.3 [33]1

ROS =

(
Op

Up + Dp

)
(6.3)

where
Op = the number of pixels that should not be included in the segmentation
result.
Up = the number of pixels that should be included in the segmentation result.
Dp = the number of pixels that are included in manual segmentation as well as
the SMSM segmentation.

4. Relative Under Segmentation Relative Under Segmentation is defined as the
pixels part of the manual segmentation but are not segmented by the SMSM
model. It can be calculated using equation 6.4 [33]2

RUS =

(
Up

Up + Dp

)
(6.4)

where
Op = the number of pixels that should not be included in the segmentation
result.
Up = the number of pixels that should be included in the segmentation result.
Dp = the number of pixels that are included in manual segmentation as well as
the SMSM segmentation.

5. Hausdorff Distance Hausdorff Distance is a technique to compare two dif-
ferent sets. It is generally used in pattern recognition to find how closely two
patterns resembles. For every point in set A a minimum distance to the points
in set B is calculated and vice versa. The maximum of the two minimum dis-
tances is the Hausdorff distance as give by equation 6.5. Hausdorff distance
gives a good measure of the bilateral closeness of the two sets [48].

1The notion used in the paper is opposite to what has been used here. In the paper [33] they
define over-segmentation as being pixels that were not segmented by the model but are part of the
manual segmentation and under segmentation being the pixels that were segmented by the model
but are not part of the manual segmentation.

2The notion used in the paper is opposite to what has been used here. In the paper [33] they
define over-segmentation as being pixels that were not segmented by the model but are part of the
manual segmentation and under segmentation being the pixels that were segmented by the model
but are not part of the manual segmentation.
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H(A, B) = max (h (A, B) , h (B, A)) (6.5)

where,
h (A, B) = maxa∈Aminb∈B ||a− b|| (6.6)

h (B, A) = maxb∈Bmina∈A ||b− a|| (6.7)

h (A, B) is called the directed Hausdorff Distance from set A to B and h (B, A)
is called the reverse Hausdorff Distance from set A to B.

6. Average Border Distance Average border distance is the same as the haus-
dorff distance except that it calculates the average distance between points A
and B instead of taking the maximum distance.

6.4 Qualitative Assessment

The quality of the segmentation is generally good as shown in figure 6.1. The SMSM
was able to find the true muscle boundaries most of the time as can be seen in figure
6.1a. It was also able to bridge the indistinct and invisible boundaries in regions
where muscle is adjacent to another muscle as shown in figure 6.1b. In some regions
the infiltration of tumor had destroyed the muscle boundaries. This situation occured
in 5 out of 14 test datasets. Using the shape and size knowledge of the muscle, the
SMSM was able to bridge the destroyed boundaries in all 5 cases as shown in figure
6.1c.

There were four aspects of the developed prototype that were important in ob-
taining good segmentation. They are discussed in the following sections.

6.4.1 Cutting Gray Values

Cutting of gray values helped in automating the SMSM and simulation parameters.
If the muscle boundary is adjacent to the skin, the high gradient in this region was
instrumental in making the SMSM unstable as can be seen in figure 6.2b. It became
difficult to get a set of parameters that worked on all datasets. The idea of cutting of
gray values is inspired from the work of Peter Hahn [26] helped solved this problem.
The cutting of gray values outside a certain range (see section 4.5.2 for details) helped
to get a strong gradient but not strong enough to make the SMSM unstable as can
be seen in figure 6.2d. Figure 6.2d shows the same slice as in figure 6.2b
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(a) Adapted SMSM (b) SMSM adaptation in invisible boundary re-
gion. The region has been marked with a red rect-
angle.

(c) SMSM adaptation in tumor affected region.
The region has been marked with a red rectangle.

Figure 6.1: SMSM adaptation in different regions
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(a) Deformed 3D SMSM of the lower half of
the muscle

(b) Deformed SMSM in a slice

(c) Undeformed 3D SMSM of the lower half of
the muscle.

(d) SMSM does not deform after the gray val-
ues have been cut.

Figure 6.2: SMSM deforms because of strong gradient.
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6.4.2 Re-Sampling

Down sampling was very critical in obtaining good segmentation. If the datasets were
not down sampled in x and y dimensions, the local minima distracted the SMSM and
it was not able to find the true muscle boundaries as shown in figure 6.3. Figure
6.3a shows the deformed 3D SMSM, while figure 6.3b shows the deformed SMSM in
a single slice. Down sampling helped completely eliminate the effect of local minima
and the SMSM was able to converge towards the true muscle boundary as shown in
figure 6.3d. Down sampling also helped in parameter automation by allowing to have
a standard spacing in x and y dimensions. It then became easier to adjust the SMSM
and simulation parameters.

(a) Deformed 3D SMSM of the lower half of the
muscle.

(b) Deformed SMSM in a slice

(c) Undeformed 3D SMSM of the lower half
of the muscle.

(d) Local minima problem solved by using down
sampled dataset.

Figure 6.3: SMSM deforms because of local minima and its solution. Figure (a) and figure
(b) shows the same slice.
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6.4.3 Structure Of SMSM

The automatic mass placement facility provided by the msml library did not work
here because it placed many more masses than required. The mass decimation facility
provided by the msml library decimates masses according to its own algorithm as a
result of which the desired structure could not be obtained as shown in figure 6.4a.
The stair-case artifact visible in figure 6.4a was also undesirable.

Having a structured SMSM was important. The muscle’s shape, size and position
changes slowly between slices, therefore, it is easier to interpolate between the slices.
The masses were placed in some of the slices and the muscle’s shape, size and posi-
tion between the selected slices was interpolated. If the number of masses increase
800 then the model simulation slows down, therefore, it was imperative that not all
slices be used for placing the masses. This constraint also forced to select the slices
carefully and to have a structured SMSM carefully constructed so as to minimize the
constraint’s effects as shown in figure 6.4b(see sections 4.2.4, 4.3.1, 4.4.1 for details
on SMSM structure).

(a) 3D SMSM created using MSML library (b) 3D SMSM specifically created for the muscle

Figure 6.4: SMSM structure

6.4.4 Inner and Outer Layer of Masses

Directed edge sensors are attached to the masses of the outer layer while intensity
sensors are attached to the masses of the inner layer. The inner and the outer layers
are connected to each other through stiff (high spring constant) springs BLexp. This
combination is important even after cutting the gray values. The intensity interval
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which is used to cut the gray values has been deliberately kept loose so as not to cut
the parts of the muscle. On the other hand the intensity sensor are configured to
work within a tighter intensity interval. Therefore, the main purpose of the intensity
sensors then is to stop the directed edge sensors from following wrong edges. Figure
6.5a shows SMSM fails to adapt to the true boundaries of the muscle in the absence
of the inner layer. Figure 6.5b shows SMSM with both inner and outer layers adapts
to the true boundaries of the muscle.

(a) SMSM with only outer layer (b) SMSM with inner and outer layers

Figure 6.5: Effect of inner layer on SMSM adaptation.

6.5 Quantitative Assessment

Table 6.2 give the quantitative evaluation of the results. Results of 10 datasets have
been presented here. The comparisons are with respect to the gold standard. There
are some interesting trends that can be observed.

The values in the Tanimoto coefficients represents the similarity score between the
gold standard and the SMSM segmentation. A value of 1 says that the two segmen-
tations are exactly similar while a value of 0 says that they are completely dissimilar.
The average value for the similarity between the gold standard segmentation and the
SMSM segmentation is 0.750. On the face of it, an average similarity score of 0.750
looks not very good but the qualitative results are much better than what the score
portrays.

The actual results are much better because the humans tend to over segment
the target object while the model is more biased towards under segmentation. It is
because we have used the resampled the datasets which blurs the boundaries of the
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Tanimoto

Coeff.

Dice

Coef.

Over

Seg.

Under

Seg.

Hausdorff

Dist.(mm)

Average

Dist.(mm)

Dataset 1 0.876 0.934 0.042 0.087 4.123 0.489
Dataset 2 0.715 0.833 0.009 0.279 5.000 0.759
Dataset 3 0.817 0.899 0.017 0.169 6.107 0.811
Dataset 4 0.731 0.845 0.011 0.260 4.690 0.931
Dataset 5 0.621 0.766 0.004 0.377 6.403 0.947
Dataset 6 0.767 0.868 0.087 0.166 6.083 1.025
Dataset 7 0.691 0.817 0.021 0.294 6.403 0.996
Dataset 8 0.758 0.863 0.010 0.234 5.099 0.914
Dataset 9 0.752 0.858 0.028 0.227 7.483 1.099
Dataset 10 0.773 0.872 0.017 0.213 7.550 0.904
Average 0.750 0.856 0.025 0.231 - 0.888

Table 6.2: Results

muscle. Though this blurring is good from the SMSM simulation point of view but
it has its disadvantages too. The blurring destroys the sharp edges. Since the model
is placed inside the muscle and then it grows out towards the muscle boundaries
due to the blurred edges the model stops just short of the real muscle boundary.
This makes the model biased towards under segmentation. For human the observable
distance between the actual muscle boundary and the boundary found by he model
is ignorable. The model’s tendency to under segment and the humans tendency to
over segment the target object adds up to numbers that does not look very good.
Therefore an average similarity score of 0.75 is much better than what it actually
portrays. The SMSM is always placed inside the muscle for reasons explained in
section 2.3.

The Dice coefficient is similar to the Tanimoto coefficient. As said earlier that
the model is biased toward under segmentation, this fact could be ascertained by
looking at the columns Over Segmentation andUnder Segmentation. A value of 0
says that there is no over segmentation while a value of 1 says that there is 100% over
segmentation. An average over segmentation value of 0.025 and the rest of the values
in the Over Segmentation column shows that there is almost no over segmentation. On
the other hand we can see a strong under segmentation trend for reasons explainded
earlier.

The last two columns provides the Hausdorff Distance and the Average Distance.
The Hausdorff distance is generally larger than the Average distance. Looking at
the Hausdorff distance which is between 4.1mm and 7.5 mm says that there is a big
difference between gold standard segmentation and the model segmentation but it is
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only 1 mass point which is that far away. If we look at the Average distance which
is between 0.49mm and 1.1mm we can see that there is not much difference between
the gold standard segmentation and model segmentation. The average error between
the gold standard segmentation and the model segmentation for all datasets is 0.888
which is very much acceptable. Appendix B shows some of the segmented muscles
while appendix C shows some of the 3D SMSM meshes.

Tabel 6.3 shows the time required to segment each dataset. The first column
Stroke + Simulation Time(min) shows the combined time taken for entering strokes
and simulating the SMSM model. The second column Voxelization Time(min) shows
the time taken for segmenting the muscle from the dataset. The third column Total
Segmentation Time(min) shows the total time taken from entering the strokes till
the obtaining the segmentation. The fourth column No. of Models tells about the
number of models used for segmenting the muscle. If the muscle is segmented using
two different types of SMSMs then the total time for segmenting such muscles is
higher than the muscle which is segmented using only one type of SMSM model.
The two different SMSMs are simulated one after the other which is the main factor
in increasing the total segmentation time. There is another factor the simulation
stopping criteria which affects the total segmentation time. If the model reaches the
balanced state before the simulation step count reaches 500 then the model stops
simulating thus decreasing the total segmentation. On the other hand, if the model
simulates for 500 iterations then it results in increasing the total segmentation time.
These are the main reasons for the variations in the total segmentation time.

Datasets Stroke +

Simulation

Time(min)

Voxelization

Time(min)

Total

Segmentation

Time(min)

No. of

Models

Dataset 1 5.4 2.0 7.4 2
Dataset 2 2.5 2.5 5.0 1
Dataset 3 4.5 1.6 6.1 2
Dataset 4 3.5 0.5 4.0 2
Dataset 5 3.9 1.1 5.0 1
Dataset 6 6.0 2.9 8.9 2
Dataset 7 4.2 2.7 6.9 2
Dataset 8 3.6 2.0 5.6 1
Dataset 9 5.6 1.5 7.1 2
Dataset 10 6.5 1.4 7.9 2

Table 6.3: Time required to segment muscle from datasets
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6.6 Unsuccessful Segmentation

This section sheds some light on the problems faced during the segmentation of the
muscle. The two problems arose because of weak edges and artifact presence.

6.6.1 Weak Edges

SMSM was able to segment the muscle in all of the datasets. As mentioned earlier
that the segmentation was generally good but in few datasets, however, there were
few slices in which the SMSM was not able to find the true muscle contour. In these
cases there was a very weak edge between the muscle boundary and the neighboring
structure. The segmentation overall in these datasets was satisfactory but its only in
these particular regions that the segmentation was not good. Figure 6.6 shows two
slices of one dataset where the SMSM went over the true muscle boundaries. Possible
reasons could be the low contrast of the dataset and high sensor force and low spring
and torsion forces. Figure 6.7 shows another dataset where the SMSM went over the
weak edges. Contrast in this case is better but it is strong sensor force that pushed
the SMSM over the weak edge.

(a) (b)

Figure 6.6: Failed segmentation in a dataset. The SMSM went over the weak edges that
marks the true muscle boundary.
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(a) (b)

Figure 6.7: Failed segmentation in another dataset. The SMSM went over the weak edges
that marks the true muscle boundary.

6.6.2 Problems due to Artifact

A very small portion of the starting point of the middle part of the muscle in a couple
of datasets is affected by motion artifact. The effect of the artifact is that it darkens
the muscle interior in comparison to muscle appearance in other slices. This darkened
muscle interior has been marked by a red rectangle in figure 6.8a. Since only a small
portion of the dataset suffers this artifact, therefore, the estimated muscle intensity
interval fails to capture this variation. Since the intensity sensors are configured with
respect to the estimated intensity interval therefore they fail to grow out towards the
true muscle boundaries. This effect can be seen in figure 6.8b where SMSM aligns
itself with respect to false edges. The red contour in figure 6.8b demarcates the true
muscle contour while the dark blue and green contour represents the outer and the
inner layers of the SMSM. Even the re-sampling of the dataset and the push from the
masses in the adjacent slices fails to minimize the effect of this artifact.

One solution to avoid such problem is to enlarge the SMSM from its estimated
size, learn the shape and the size of the enlarged SMSM and then shrink the enlarged
SMSM to its original size. Decrease the weight of the sensor forces in comparison to
spring and torsion forces and simulate. The effect of the decreased sensor forces will
be that they will fail to align with false edges and the strong spring and torsion forces
will push the SMSM out of this local solution as they try to attain their learned shape
and size.
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(a) Dataset affected by motion artifact (b) Problem due to motion artifact

Figure 6.8: Problem due to the presence of an artifact in the slice.

6.7 Summary

In this chapter, the technique developed to segment the sternocleidomastoid muscle
has been evaluated. The chapter starts by providing details about the test envi-
ronment. Then a brief discussion about the parameters have been given and their
importance and purpose have been highlighted. A brief overview of the comparison
coefficients that are used for comparing our results with the gold standard have been
given. A qualitative assessment of the our results tries to identify the important fea-
tures of technique like cutting of gray values, re-sampling the dataset, the structure
of the SMSM and the two layers of the model. Quantitative assessment follows where
the results of the actual comparison with the gold standard have been provided. It
has been justified why an average similarity score of 0.75 is much better than it actu-
ally looks. In the end a discussion about the problems faced during the segmentation
is presented and the reasons creating the problem have been identified.
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Chapter 7

Conclusion

The last chapter presented and discussed the results. This chapter tries to conclude
and discuss the overall work. Some guidelines for extending this work has been
presented in the section 7.2.

7.1 Discussion

The purpose of this thesis was to segment the sternocleidomastoid muscle from the
CT dataset using the Stable Mass Spring Model (SMSM). This segmentation was to
help orthopaedists, biomechanicians and kinesiologists in visualizing and navigating
the muscle. Image based segmentation techniques were found to be inadequate for
segmenting these soft tissues especially the sternocleidomastoid muscle. Segmenting
this particular muscle was a challenging task and due to some inherent deficiencies of
the image based techniques, they can not live up to the expectations. In regions where
the muscle is adjacent to another muscle there is no visible edge or in tumor affected
regions the true muscle boundary is destroyed thus forcing all edge based techniques
into oblivion. The intensity interval of anatomical structures overlap rendering all
threshold based techniques useless.

The dexterity of the SMSM to combine shape and size information together with
the local image information was thought to be ideal for segmenting soft tissues from
the CT datasets. The SMSM uses edge and intensity information to locate the visible
edges and using the shape and size information, it tries to bridge the invisible or
destroyed edges. The SMSM deforms to encompass the muscle shape but the defor-
mation is kept in check by the encoded shape and size information. This constrains
the SMSM from aberrant deformations.

Three different SMSMs were used to encode the specific shape and size information
since there is no one model general enough to encompass all shape variations. The
user decides for himself which type of SMSM is best suited to segment the muscle.
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The shape cues are provided by user’s strokes. The stroke corresponds to the medial
axis of the muscle shape. The strokes are also used for estimating the intensity
interval of the muscle. The user does not have to adjust the SMSM and simulation
parameters as they were adjusted during the SMSM creation. However, the user has
the freedom of varying the parameters within a certain interval if he wishes to speed
up the simulation. The interval values have also been provided.

It has been identified that there are four aspects of the developed technique that
are crucial for the successful segmentation of the muscle. A very high gradient out-
side the muscle boundary was responsible in destabilizing the SMSM. It was solved
by cutting all the gray values outside the muscle intensity interval. Resampling of
the dataset was important, primarily to minimize the effects of local minima and
secondarily for the better simulation of the SMSM. Since there was an upper limit
constraint specifically self applied on the total number of masses for segmenting the
muscle, therefore, it was critical to have a well defined structure making use of the
masses intelligently. Lastly, the two layers namely the inner and the outer layers were
important were important. These layers complement each other and no single layer
is resourceful enough to segment the muscle by itself correctly.

However there were some problems too. In a couple of datasets the SMSM was
not able to find the true muscle boundary and went over the weak edges. It is either
because of the low contrast or because of high sensor force and low spring forces. An
artifact found in a small region of the muscle between the lower and the middle part
created problems in obtaining a good segmentation.

7.2 Future Work

The prototype shows that the muscle can be successfully segmented from CT datasets
using the Stable Mass Spring Model. However, since it was a prototype, therefore,
few enhancements could still be done which are presented below.

1. Automate SMSM Template Selection. There a three different SMSM
templates and the choice of the selecting the correct SMSM template has been
left upon the user’s discretion. The model selection process could be automated.

2. Better Estimate of the Junction. In the upper part of the muscle the
elliptical part of the muscle is connected to the rectangular part of the muscle.
This junction point right now is only roughly estimated. Currently the rough
estimate of the junction does not create any problems and the SMSM adapts
nicely to the muscle shape but it is desirable to have a better estimate of this
junction. It will give a more accurate estimate of the junction position between
the ellipse and the rectangular part.
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3. Re-Adaptation on Higher Resolution. It would also be nice to see how the
model behaves on the original dataset after it has been initially adapted/simulated
on the re-sampled dataset. After simulating on the re-sampled dataset the
SMSM adapted shape needs to be marked as in a state of equilibrium (shape
learned) and then simulate the SMSM on the original dataset. This might in-
crease the segmentation accuracy. On the other hand care should be taken that
the during the model adaptation we should not learn a model whose shape does
not comply with the general shape of the muscle. If we were to learn a shape
that does not comply with the general shape of the muscle then this will cre-
ate an intrinsic shape defect which will then degrade the results in contrast to
improving them.

4. Eliminating Inner Layer. Right now the there are two layers of masses,
the inner and the outer layer. It would be interesting to note how the model
behaves if both the directed edge sensors and the intensity sensors are attached
to the outer layer, eliminating the inner layer completely. With two layers of
masses the outer layer can consists of only 400 masses. If the inner layer could
be eliminated, then the extra number of masses could be used in the outer layer.
This will increase the number of slices containing the masses. It is better to
have more slices containing the masses.

5. Parameter Estimation. The set of parameters works only on specific reso-
lution of the dataset. They are not generalized and therefore are not suitable
for other resolutions. Estimating parameters automatically for any resolution
is a big task. There are many factors to be considered like the resolution of the
dataset, the intensity profile of the image and the gradient map of the image
to name few. Mathematical relations need to be found which will harmonize
different aspects of the SMSM like the time step, the sensor, spring and torsion
forces and balance tolerance movement. Any one factor, out of proportion will
make the SMSM unstable.

6. Segmenting Lower Part of Muscle. The lower part of the muscle has not
been segmented in this work. The segmentation of the lower part of the muscle
still needs to be done.



88 CHAPTER 7. CONCLUSION



Appendix A

Muscle Variations

Following figures shows many of the shape variations of the seternocleidomastoid
muscle found in the CT datasets. These images are manually segmented from the
CT Datasets.
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Appendix B

3D Segmented Datasets

Following are the 3D Segmented Datasets.
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Appendix C

3D SMSM

Following are the 3D SMSM.
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