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Abstract

To reduce the patient's radiation exposure from computed tomography scans (CT), low-dose CT
scans can be recorded. Several image processing methods exist to segment or enhance the lung blood
vessels from contrast-enhanced or high resolution CT scans, but the reduced contrast in low-dose CT
scans leads to over- or under-segmentation. Our LANCELOT method combines maximum response
and stick �lters to enhance lung blood vessels in native, low-dose CT scans. We compare our method
with the vessel segmentation and enhancing methods from Frangi and Sato et al. Our method has two
advantages that were con�rmed in an evaluation with two clinical experts: First, our method enhances
small vessels and vessel branches more clearly and second, it connects vessels anatomically correct,
while the others create discontinuities.

1 Introduction

For a long time, the most important imaging methods for the detection of lung nodes were
chest radiographs (CXRs). Compared to computed tomography scans (CTs), CXRs su�er from
occlusion problems and are not able to reproduce as much contrast as CT scans are able to
[National Lung Screening Trial Research Team, 2011]. On the other hand, the radiation exposure dur-
ing CT examinations is signi�cantly higher. One way of reducing the patient's exposure to radiation is to
take low-dose CT scans instead of diagnostic CTs, which leads to lower image contrast. Another possibility
is the administration of contrast agent to emphasize blood vessels.

Several image processing methods are available for segmentation or enhancement of blood vessels
from CT angiography (CTAs) diagnostic CT scans. Sato and Frangi et al. combine an evaluation of
the Hessian matrix eigenvalues and a priori knowledge about the vessel and background brightness to
enhance vessel-like structures in angiography scans [Sato, Y and Nakajima, S and Atsumi, H et al., 1997,
Frangi, A F and Niessen, W J and Vincken, K et al., 1998]. Alternatively, if high resolu-
tion CT scans are available, 3D region growing allows the extraction of blood vessels
[Kuhnigk, J-M and Hahn, H and Hindennach, M et al., 2003]. We refer to the VESSEL12 Study by
Rudyanto et al. [Rudyanto, R D and Kerkstra, S and Van Rikxoort, E M et al., 2014] for a detailed
comparison of automated lung vessel segmentations in CT scans.

The aforementioned approaches produce convincing results for the image scans they were applied to,
but we were not able to reproduce comparable results when applying them to low-dose CT scans. Using
thresholding or region growing leads either to over- or under-segmentation and evaluating the Hessian
Matrix is also not su�cient. While larger vessels are enhanced, many medium and small vessels are not.
Furthermore, although visibly connected in the original scan, some vessels are separated since the contrast
between them and parenchyma is too low in low-dose CT recordings. For that reason, we present our lung
vessel enhancement method for low-dose CT scans, LANCELOT in short.

2 Materials and Methods

In the following we abbreviate image coordinates, e. g. I(x, y, z), by I(x). Sato and
Frangi et al. use multi-scale line enhancement �lters to segment blood vessels in
contrast-enhanced and native CT scans [Sato, Y and Nakajima, S and Atsumi, H et al., 1997,
Frangi, A F and Niessen, W J and Vincken, K et al., 1998]. First, a Gaussian convolution G(x;σ)
is applied to reduce image noise. Then, the Hessian matrix H(x) is set up for I(x) and its eigenvalues λ1,
λ2, and λ3 are evaluated. This yields

H(x;σ) = H(I(x) ∗G(x;σ)) (1)

To �nd the brighter blood vessels in the dark parenchyma, the conditions

(λ1 ≈ 0) ∧ (λ2 ≈ λ3 � 0) (2)
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must hold. To separate lines from sheet-like and blob-like shapes such as skin and noise components,
respectively, a vesselness function evaluates how good these conditions are ful�lled. This function is called
λ123(x;σ).

These conditions are combined with 3D multi-scale �lters. When multi-scale �lters are applied, indi-
vidual �lter responses are �rst normalized and then the maximum response is added to I(x). The result
image I ′(x) is given by

I ′(x) = I(x) + max
1≤i≤n

(σ2i · λ123(x;σi)) (3)

where n donates the number of multi-scale �lters. For each multi-scale �lter the vesselness measure is
normalized with σ2i from the Gaussian convolution.

We combine this maximum response approach with the Stick kernels from Czerwinski et al.
[Czerwinski, R N and Jones, D L and O'brien, W D, 1998]. To create �lter kernels of varying sizes, we
use the Bresenham algorithm [Bresenham, J E, 1965]. This results in filterRadius × 4 individual �lter
kernels. As presented in Figure 1, for filterRadius = 2 this results in 8 individual kernels. In the following
we abbreviate filterRadius × 2 + 1 = m. For every image pixel I(x) and kernel (Ki)m, δi is computed
with

max δi = max
Ki

|µ((I(x)m ∗ (Ki)m))− µ(I(x)m)|. (4)

Each δi is the absolute distance between an averaged image region I(x)m and the averaged response of
kernel (Ki)m. The enhanced image values Ienh are computed with

I(x)enh =

{
I(x) + max δi if I(x) ≥ µ(I(x)m)

I(x)−max δi else.
(5)

This increases the contrast, because the di�erence of image values and their neighborhood's average is
further increased or decreased. We de�ned σ = m to adjust the Gaussian convolution to the stick kernel's
width.

In summary, to enhance lung blood vessels in native, low-dose CT scans, the slices are �rst smoothed
with a Gaussian convolution and then the aforementioned maximum response approach is combined with
stick �lter kernels. Formally, this yields

I(x)enh = I(x)±max δi(I(x) ∗G(x;σ)). (6)

We implemented our method in MATLAB and used the Vesselness (Sato et al.) and HessianFilter

(Frangi et al.) modules in MeVisLab 2.8.2 [Ritter, F and Boskamp, T and Homeyer, A et al., 2011].

Figure 1: The image processing pipeline of our method. First, the image is blurred with a Gaussian
convolution G(x, σ) and then the Stick kernels (Ki)m are applied with σ = m = 5. Finally, the enhanced
vessels are added to the input image. We inverted the enhanced vessels' visualization for presentation
purposes.
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Table 1: The processing times of the aforementioned methods for each data set. Each slice has the
dimensions of 512× 512 pixels. The times were averaged for �ve executions.

Execution Time (s)
Dataset Slices Sato et al. Frangi et al. Our method

No. 1 117 6.45 3.25 34.49
No. 2 117 6.84 3.24 34.10
No. 3 108 5.83 2.98 31.25
No. 4 107 5.81 2.97 31.89
No. 5 63 3.44 1.75 18.65

Time per Slice (s) 0.05 0.03 0.29

3 Results

Figure 2 shows two image series. This overview depicts the original image, the results of Sato and Frangi
et al.'s methods, and the results of our method. The orange-framed image regions are magni�ed to show
the results of all methods in more detail. Additionally, Figure 3 shows two enhanced vessel branchings
from the second series in more detail. All our results were obtained with m = 7.

All methods were tested on �ve datasets and the respective processing times are listed in Table 1. We
measured them with an i5-2500 processor with 3.70 GHz. Although our method can only be applied on
single slices, the methods of Sato and Frangi et al. can be used on image stacks, too. Therefore, all results
were acquired using implementations that process single images. We did not use parallel programming
methods for any method.

We applied all methods on �ve datasets. They all have a kilovoltage Peak of 120 kVp
and an X-ray tube current between 40 and 80 mA. The acquisition parameters from the low-
dose CT scans that were used in the National Lung Screening Trial lie in the same range
[National Lung Screening Trial Research Team, 2011].

4 Discussion

We evaluated our method by interviewing two clinical experts. The �rst interviewee is a Medical Technical
Assistant (MTA) with 21 years of working experience in multiple clinical and technical environments. Eight
years of that time she worked with CT scans and two years of that time she speci�cally worked with lung
CT scans. When asked, she assessed her anatomical knowledge about the human lung to be fair. Our
second interviewee is an assistant doctor with four years of clinical experience. Three and a half years of
that time with CT scans and three years of that time speci�cally with lung CT scans. He reported his
anatomical knowledge about the lung to be very good.

They were asked to compare all methods' results and to assess our method's clinical feasibility and
possible application areas. We developed a software tool to enable them to explore the original scan and
all result images. To support the comparison of multiple image data sets, the zooming, translation, and
slicing features and the cursor position were synchronized for multiple views. We did not synchronize the
transfer function, because, in general, the value ranges of the original and result images are di�erent.

They stated that the enhancement of large vessels, vessel branches, and lesions is comparable, but
our method enhanced mid-size and small vessels more clearly (Fig. 3). Furthermore, they assessed that
although small and very thin vessels are visible in the original images, Sato and Frangi et al.'s methods
split them while our method connects and enhances them anatomically correct. In summary, they assessed
our method to be more suitable to separate blood vessels from surrounding parenchyma. Because of the
di�erent processing times (Tab. 1), we prepared our method's results beforehand. We asked them to
evaluate the execution times and both stated that they are su�cient.
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Both experts stated that our method improves the diagnostic and therapy planning value for low-dose
CT scans. Finally, the MTA reported that our method would be bene�cial for manual segmentations of
lung vessels.

4.1 Limitations and Future Work

We introduced the LANCELOT method that can enhance smaller vessels than Sato and Frangi et al.'s
methods, but if σ and m is small, it also enhances image noise (Fig. 2). Our method also enhances the
edges of nodules, but they can be distorted (Fig. 3). This could be a problem for nodule detection and
segmentation algorithms [Kuhnigk, J-M and Dicken, V and Bornemann, L et al., 2006]. Therefore, they
should be applied to the original images rather than our result images to prevent artifacts.

In the future we want to work on three extensions. First, the stick �lter kernels should be extended to
3D to include spatial information about blood vessels and second, the processing times can be improved
via parallel programming, e. g. on the GPU. Finally, our method computes the max δi for multiple stick
kernels of the same size m and it would be interesting to see which results can be achieved when a multi-
scale approach is used, where kernels of di�erent sizes are included, too.
Acknowledgments: This work is partly funded by the Federal Ministry of Education and Research
within the Forschungscampus STIMULATE (13GW0095A). We thank Cindy Lübeck and Sylvia Saalfeld
for fruitful discussions and for providing us with valuable feedback for our method and results.
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Figure 2: These series show the original images and the results of the aforementioned methods. The framed
image regions were magni�ed for presentation purposes. We used 7× 7 �lter kernels for our results.

Figure 3: This �gure shows the (a) original input image and the interim results after (b) Gaussian convo-
lution, (c) computation of max δi, and (d) when the enhanced vessels were merged with the original image.
The last two images show emphasized image regions after the methods from (e) Sato and (f) Frangi et al.
were applied.
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