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Abstract

We present a map-based visualization approach of anatomical landmarks and lymph node stations in the thorax. Moreover,

a method is presented to create color-codings for such maps.These color-codings are combinations of two categorical color

scales for said map elements, and an alternating, sequential color scale for multiple Region of Interest (ROI) segmentations.

In clinical practice, nuclear medicine physicians use ROI segmentations to compute Standardized Uptake Values (SUVs),

which are important clinical parameters to quantify and compare suspicious findings in PET images, e. g., to assess

treatment responses. Therefore, we additionally present a guide to compute reproducible SUVs from PET images and

DICOM tag values, since the majority of related work offers theoretical information only.
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1 Problem

In recent years, the (semi-)automatic generation of clinical reports, which can be assessed on screen and paper,
has gained increased importance [1, 13]. Two important items in such reports are patient-specific diagnoses
and therapy decisions. These are usually discussed and documented during interdisciplinary consultations of
clinical experts, such as radiologists, oncologists, surgeons, and nuclear medicine physicians. Such consultations
are intrinsically visual, since the aforementioned decisions are derived from assessing medical image data, e. g.,
PET/CT images. Moreover, using facilities that create documents with a standardized structure and layout
benefits the process of mental information retrieval.

However, such reports are usually documents that solely consist of text and tables. On the one hand, this
results in documents that reflect cases very objectively, e. g., by listing accurate measurements or by using
quasi-standardized phrasing to describe cancerous infiltration of tissue. On the other hand, visualizations can
enhance such documents. First, text-only documents do neither reflect the visual nature of the aforementioned
decision-making processes, nor are the capabilities of our visual apparatus adequately used, i. e., to conceive
images in seconds [15]. Secondly, since reporting is a combined effort of various authors, for each part, the
degrees of quality and detail can vary, which in turn may hinder reproducible interpretations of findings or
decisions [11]. Finally, although clinical experts are well-trained to extract crucial pieces of information out of
large texts, this process is prone to errors, because decision-altering details can remain occult to readers.
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Fig. 1: The proposed map visualizations of LNS staging diagnoses and anatomical landmarks (left) and their
default color-coding (right). The color wheel represents the HSV color model. The colors are plotted in clockwise
direction, with Malign at red (0/360 ◦ for H), Inconclusive at yellow (60 ◦), and Benign at green (120 ◦). The
asymmetrical map layout represents the unequal primary bronchi lengths between the Trachea and Parenchyma,
and to avoid visual clutter due to the Aorta and LNS 5. At the top, the Claviculae separate LNS 1 from 2R/L.
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A map-based visualization approach is presented to enhance reports by stylized depictions, which is inspired
by other map-based visualizations in clinical workflows, e. g., Bull’s Eye Plots to diagnose myocardial perfusion
defects [6, 7]. Here, maps depict anatomical landmarks and Lymph Node Stations (LNSs) in the thorax. These
landmarks are simplified frontal cross-sections of the aorta, trachea, clavicle bones and lung parenchyma, while
the LNSs are anatomical regions that group multiple nearby lymph nodes [9]. The two main contributions
of this work are two color-coding methods and a guide to compute SUVs from PET image values, e. g., from
Region Of Interest (ROI) segmentations. Selecting appropriate color-codings is an important aspect for map and
medical image visualizations [2]. Thus, methods are presented that generate color-codings for the aforementioned
map elements and ROIs using the HSV color model. Moreover, a guide is presented to compute reproducible
Standardized Uptake Values (SUVs). There exists related work that describes the computation of SUVs, but in
most cases this process is described in theory only [3]. If more practical descriptions are provided, the lack of
specific input and output values makes it challenging to reproduce results.

2 Material and Methods

In this section, the color-coding methods and SUV computation guide are presented. Both contributions are
extensions of a larger, semi-automatic processing pipeline for clinical reports (cf. Fig. 3), which is implemented
in MeVisLab 2.8.2 [8, 12].

2.1 Color-Coding – Lymph Node Stations and Anatomical Landmarks

The proposed approach requires a color-coding for three LNS staging diagnoses, namely benign, malign and
inconclusive, and four anatomical landmarks, namely the aorta, lung parenchyma, clavicle bones, and trachea.
These landmarks provide spatial references for the LNS [9]. For simplification, the same hue is assigned to the
trachea and parenchyma landmarks, since they belong to the same organ.

This results in six map elements that can be regarded as nominal data. Nominal data is usually color-coded
via categorical color scales, which introduce large hue differences to generate color palettes [2]. In Figure 1,
the default color-coding is depicted in the HSV color wheel, with the hue axis plotted in clockwise direction.
For example, Malign marks red (0/360◦) and Benign marks green (120◦). Since it is important to visually
distinguish the individual LNS staging diagnoses, they are placed in 60◦steps from each other. This guarantees
that they are placed in different, major color zones. In the default case, the three diagnostic categories are
placed on red, yellow and green, which results in the easy-to-understand traffic light color-coding. In contrast,
landmark hues are placed in 30◦steps from each other with the pivotal landmark hue (here: Claviculae) being
defined as the complementary color of the pivotal LNS staging hue (here: Inconclusive). On the one hand, this
makes resulting landmark colors more similar, but still easy to distinguish. On the other hand, for the default
version, this results in landmark colors having blue-like tones, which draw minimal visual attention. This hue
placement is an adaption of the harmonic Y-Type template by Itten [4], which creates two non-overlapping,
complementary color groups.
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# Name H S V

1 Green 120 1 1
2 Cyan 180 1 1
3 Magenta 300 1 1
4 Yellow 60 1 1
5 Dark Red 0 1 0.5
6 Brown 30 1 0.5
7 Dark Magenta 300 1 0.5
8 Orange 30 1 1
9 Pink 330 1 1
10 Purple 270 1 1
11 Light Magenta 300 0.5 1
12 Teal 180 0.5 0.5
13 Gray 240 0.2 0.75

Fig. 2: Left: An exported screenshot of the VG51C toolbox with a ROI around LNS 10R. Middle/Right: The
first thirteen ROI colors in the toolbox depicted in a HSV color wheel and listed in a table. For simplification
purposes, only the hues are depicted. While many colors are defined in some sections, e. g., around magenta
(300 ◦ for H), some areas are barely used, e. g., around green (120 ◦ for H). Given the irregular color placement,
it appears that the used color palette is hard-coded.
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Table 1: Solutions for Eq. 1 and resulting hues for N = 9 with respect to the default color hexagon from Figure 1.

Hue for i-th Color via (ROICi)H
BH RH 1 2 3 4 5 6 7 8 9

120 240 144 216 288 168 240 312 192 264 336

Assuming that the saturation and value components of all colors equal 1.0, from a geometrical point of view,
this results in an irregular, convex hexagon. Color changes can be geometrically interpreted as rotations (hue),
scaling (saturation), or vertical translations (value) of the hexagon inside the HSV color model cylinder. When
using the aforementioned report generation software, users can adapt the color-coding interactively by changing
the hue, saturation, or value parameters of one color and, consequently, all colors are updated.

2.2 Color-Coding – Adding Region of Interest Colors

In addition to color-coding LNSs and landmarks, ROI segmentation masks can also be color-coded. Existing
clinical software toolboxes, e. g., Siemens Syngo VG51C (Siemens Healthcare, Erlangen, Germany; VG51C),
offer ROI segmentation, SUV computation, and image-based export functionalities that can be combined and
used for reports. In clinical practice, ROI segmentation tools are used to mask suspicious image regions and after
ROI definition, medical images are superimposed by color-coded outlines or areas. For example, in 18F-FDG
PET scans, suspicious hotspots are encompassed and assessed, since they can point to cancerous tissue.

The first thirteen ROI colors of the VG51C toolbox are shown in Figure 2. While some hue sections are
barely used, e. g., around green, some areas are cluttered, e. g., around orange and magenta. The latter results in
a shortcoming, since the depicted color palette is used for ROIs that superimpose color-coded PET images. In
the VG51C software, a black-red-orange-yellow-white color scale is used for PET images, which, in combination
with the ROI color-coding, can result in ambiguous color information on screen and paper. Consequently,
this can hinder reproducibility of ROI segmentations via reports. To overcome this, the VG51C software of-
fers additional gray scale views of PET and CT slices that have a high contrast to ROI boundary colors (cf. Fig. 2).

In the following, a color-coding method for ROI segmentations is presented that overcomes the aforementioned
shortcoming. For simplification purposes, the default color-coding from Figure 1 will be assumed, e. g., with
the saturation and value of all ROI colors equal 1.0. However, when LNS and landmark colors are adapted,
ROIs color-codings are affected similarly, i. e., moving them through the HSV model cylinder. This is a useful
feature, since the aforementioned PET image color-coding is manufacturer-dependent, which makes the proposed
methods feasible for various clinical software toolboxes. The proposed method is expressed by two equations,
which require the number of ROIs (N), the type of N , t(N), and the hue range RH in which ROIs are defined.
RH is defined by RH := 360−min(BHMH), which is the minimum distance between the Malign and Benign
hues (cf. Fig. 1). The first equation is given by

(ROICi)H = BH +

(
RH

(N + 1)
× stept(N)(Ci)

)
, ∀i ∈ [1, N ] (1)

which defines a hue for the i-th ROI for N -many colors. The second equation, namely step(Ci), depends on t(N)
and assigns different hues to subsequently defined ROIs, e. g., between the 2nd and 3rd ROI color. N can be one
of four types and, consequently, a different step equation is used: t(N) can be even (stepe(Ci)), odd and not
prime (stepo(Ci)), or prime with an even (e. g., 5, steppe(Ci)) or odd (e. g., 7, steppo(Ci)) number of elements to
the left and right of the pivotal element, e. g., 4 for N = 7. In the following, the four step equations are listed:
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For each color Ci, the equations return a factor that donates the hue of ROICi relative to BH . The function
maxPF (N) in stepo(Ci) returns the maximum of the prime factorization of N , e. g., 5 for N = 15. In Table 1,
results using stepo(Ci) and N = 9 are listed, while the resulting color palette is depicted in Figure 3.
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2.3 SUV Computation

SUVs are computed by combining PET image and DICOM tag values, i. e., patient data and information about
the administered radiopharmaceutical and, subsequently, they are used for diagnoses and therapy decisions.
Generally, they describe how much of an administered radiopharmaceutical is absorbed by the patient’s anatomy.
This provides an indication of how metabolically active anatomical regions are, while suspiciously high uptakes
can point to cancerous or metastatic tissue. There exists related work that describes the computation of SUVs,
but in most cases the computation process is only described from a theoretical point of view [3]. Moreover,
if more descriptions are presented, no further information about specific input and output values is provided,
which makes it challenging to reproduce results [14]. Therefore, the method in Algorithm 1 below describes how
PET image values are converted into SUVBW values, which are SUVs normalized with the patient’s bodyweight.
In clinical toolboxes, SUVs are usually computed for the single hottest voxel value (SUVmax) or the average
of all ROI-masked PET image values (SUVµ). However, Algorithm 1 can be applied to any PET image value.
There exist various types of SUVs, but this work is focused on the computation of SUVBW values, since they
are used in the VG51C software and allow for an evaluation regarding computation accuracy.

3 Results

The results are depicted in Figure 3. On the left, an exemplary report is presented, which is divided into four
parts. At the top, information about the hospital and responsible physicians are compiled. In the second part,
patient-specific data, an N-staging suggestion, and a therapy decision is listed. Furthermore, a color-coding
legend is shown that can be used to interpret the 2D map on the right with LNS diagnoses (cf. Fig. 1). The
suggested N-staging is derived from the LNS diagnoses and represents the N-component of the Tumor, Node,
and Metastasis (TNM) staging system that describes suspicious findings in nearby lymph nodes [10]. In the third
part, a frontal PET Maximum Intensity Projection (MIP) image with color-coded ROIs is shown and the table
next to it lists additional information for each ROI, namely a user-defined name, its color, the corresponding PET
slice, and its volume. Moreover, the table also lists PET quantification data for all ROIs, namely their respective
Countmax, which is the highest PET image value, the resulting SUVmax;BW value, which was obtained with
Algorithm 1, and a SUVµ;BW value, which is the average SUVBW inside each ROI. The color wheels on the
right depict ROI color-codings for varying N using the respective step equation. Since nine ROIs were defined
for the depicted report, the upmost color wheel was used for color-coding. In the last part, acquisition- and SUV
computation-related data is listed, which is intended to create a strong connection between the underlying image
data, the ROI segmentations and SUV computations, and the diagnosis and therapy decisions derived thereof.

4 Discussion

When comparing the baseline color-coding from the VG51C toolbox with the proposed method (cf. Figs. 2 and
3), the proposed method does not define colors in the hue range of color-coded PET images, which minimizes the
risk of misinterpretations. However, this only applies if the default traffic light color-coding is used. Moreover,

# Load PET Data Set
PETdataSet = dicomRead ( f i leOnHardDrive )
# Get PET Image Value
PETimageValue = PETdataSet . getVoxelValue (x , y , z )
# Get DICOM Tags (expected units are shown in square brackets , e . g . [ s ] for seconds)
radioStartTime = PETdataSet . getTagValue ( [ 0 x0018 , 0x1072 ] ) # [hhmmss]
radioTotalDose = PETdataSet . getTagValue ( [ 0 x0018 , 0x1074 ] ) # [Bq]
r ad i oHa l f L i f e = PETdataSet . getTagValue ( [ 0 x0018 , 0x1075 ] ) # [ s ]
acqu i s i t i onDate = PETdataSet . getTagValue ( [ 0 x0008 , 0x0022 ] ) # [yyyymmdd]
acqu i s i t i onTime = PETdataSet . getTagValue ( [ 0 x0008 , 0x0032 ] ) # [hhmmss]
s e r i e sDa t e = PETdataSet . getTagValue ( [ 0 x0008 , 0x0021 ] ) # [yyyymmdd]
se r i e sTime = PETdataSet . getTagValue ( [ 0 x0008 , 0x0031 ] ) # [hhmmss]
patientWeight = PETdataSet . getTagValue ( [ 0 x0010 , 0x1030 ] ) # [Kg]
r e s c a l e I n t e r c e p t = PETdataSet . getTagValue ( [ 0 x0028 , 0x1052 ] ) # [ scalar ]
r e s c a l e S l o p e = PETdataSet . getTagValue ( [ 0 x0028 , 0x1053 ] ) # [ scalar ]
# Compute SUV
administrat ionDateTime = se r i e sDa t e + ” . ” + radioStartTime # [yyyymmdd.hhmmss]
ser iesDateTime = se r i e sDa t e + ” . ” + ser i e sTime # [yyyymmdd.hhmmss]
radioDecayTime = ser iesDateTime − administrat ionDateTime # [ s ]
radioDecayDose = radioTotalDose ∗ exp(−radioDecayTime ∗ ( l og (2)/ r ad i oHa l f L i f e ) ) # [Bq]
BWscaleFactor = ( patientWeight ∗ 1000) / decayedDose # [g/Bq]
SUVbw = (PETimageValue + r e s c a l e I n t e r c e p t ) ∗ r e s c a l e S l o p e ∗ BWscaleFactor

Alg. 1: SUVBW Computation via DICOM tag values.
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the proposed palettes are not hard-coded and depend on the number of defined ROIs. If implemented, the
current palette should not be updated with each new ROI, i. e., updating the color-coding repeatedly. Practically,
a fixed color palette size should be defined by default and adapted during report generation and export.

The proposed color-coding methods use the HSV color space. It can be argued that this color space represents
a fair tradeoff between usability for non-visualization domain experts and perceived color differences between
ROI colors. On the one hand, for subsequently defined ROIs, the step equations guarantee a large hue difference,
which makes the colors easy to distinguish, even if they are defined in the same image. Since the proposed
equations define ROI colors with respect to BH , the first ROI colors are defined near BH and the color palette will
slowly converge towards MH . When using software tools to define ROIs, clinical experts encompass suspicious
image regions, i. e., regions that will most likely be diagnosed to be inconclusive or malign. This lowers the risk
of mentally connecting ROI color-codings with image regions diagnosed as malign, which could alter diagnoses
and therapy decisions. On the other hand, equidistantly defined colors in HSV color space do not result in
equidistantly perceived color differences. Using perceptually uniform color spaces, e. g., CIELAB, could result in
better results, but using them as GUI widgets, e. g., the CIELAB shoe sole, would be less beneficial for clinical
toolkits than a simple color wheel. Furthermore, in contrast to the VG51C color palette, the proposed methods
only alter hue values and keep the saturation and value components constant (cf. Fig. 1 and 2). This limits
the proposed methods, since varying saturations and values could also offer better results, but it is challenging
to perceive ROIs colors with low saturation and value components due to grayscale MIPs of PET images.
Practically, the definition of color palettes should generally be done in the background and only brought to the
users’ attention if specifically queried, e. g., to define special color palettes in the case of color vision deficiencies.

Case Report � (Mrs.) Doe, Jane

Image

Date 1111.11.11
Referring Physician ABC
Diagnosis By XYZ
Institution Institute Name

Address

Patient Information

Name Doe, Jane
Day of Birth 11.11.1111
Age 078Y
Sex F

Diagnosis and Therapy

Staging Possible N2
Therapy Open

Visualization Legend

Benign
Inconclusive
Malign

Claviculae
Aorta
Parenchym
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ROI PET Quanti�cation

LNS Col. Sl. Vol. [cm3] Countmax SUVmax;BW SUVµ;BW

Liver Baseline 155 2.94 5778 3.79 3.01
10R-1 190 2.69 4303 2.82 1.35
10R-2 197 3.38 9559 6.26 2.48
11R 199 2.34 5101 3.34 2.42
10R-3 199 1.99 10224 6.7 3.17
10R-4 202 2.49 12269 8.04 4.25
10R-5 207 1.99 23225 15.22 3.36
10R-6 207 2.89 11618 7.61 2.94
2R 216 1.0 8449 5.54 2.25

Radiopharmaceutical Information

Radionuclide Fluorodeoxyglucose
Administration Time 10:23:00
Total Dose 224.41 MBq
Half Life 6586.2 s

Patient Information

Patient Weight 72.0 Kg

Acquisition Information

Acquisition Date 1111.11.11
Acquisition Time 11:18:02
Decay Time 00:55:02
Rescale Slope 1.443
Manufacturer SIEMENS

stepo(Ci)
N = 9

M

I

B

1
47

2

5

8

3

6
9

stepe(Ci)
N = 6

M

I

B

13

5

2

4

6

steppe(Ci)
N = 5

M

I

B

13

5

2

4

steppo(Ci)
N = 7

M

I

B

1
4

2

7

5

3

6

Fig. 3: On the left, an exemplary report with a color-coded 2D Map from Figure 1, color-coded ROIs, and
SUVBW values is depicted. The four color wheels on the right show ROI color-codings for varying Ns. For the
report, the upmost color wheel with N = 9 was employed and the respective values are listed in Table 1.
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To evaluate the accuracy of Algorithm 1, resulting SUVBW values were compared to SUVs that were obtained
using the VG51C software (cf. Fig. 2). This was done by manually reconstructing ROI segmentations from
exported screenshots. Regarding SUVmax;BW values, for each ROI, there were no differences and thus, the
presented algorithm produces reliable and reproducible results. However, this was not the case for SUVµ;BW

values, since even small differences between ROIs can result in significantly different SUVs, which can influence
diagnosis and therapy decisions [5].

Currently, the proposed map-based approach only depicts diagnoses with respect to the N-staging component
for thoracic lymph nodes [10]. However, the basic idea behind the presented approach can be extended to cover
the tumor and metastasis components of the TNM staging system, or to cover other organs, e. g., the liver or
prostate. One shortcoming of the visualization-supported reports is that color printers are required, which have
higher running costs compared to monochrome printers, but the enhanced reports have the potential to be
better understood by a broader clinical audience.

5 Conclusion

We presented how clinical reports can be supported via standardized map-based visualizations. Two color-coding
methods were presented. The first method can be used for map-based depictions of LNSs and anatomical
landmarks, and the second method can be applied to color-code an arbitrary number of ROI segmentations in
PET image data. The second method defines colors in a hue range that can be adjusted to not visually overlap
with PET image color-codings to decrease the risk of misinterpretations. Finally, a guide was presented to
compute reproducible SUVBW values. Where applicable, methods were compared to a clinical toolbox.
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