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ABSTRACT
Typically, volumetric medical image data is examined by assessing each slice of an image stack individually.
However, this enables observers to assess in-plane spatial relationships between anatomical structures only and
requires them to keep track of relationships along the third anatomical plane mentally. Therefore, visualization
techniques are researched to support this task by depicting spatial information along the third plane, but they can
introduce a high degree of abstraction. To overcome this, we present a novel approach that transforms image
stacks with labeled anatomical structures into maps with a three-dimensional layout, namely floor maps. Since
this approach increases the visual complexity under certain conditions, some clinical application scenarios, e. g.
diagnosis and therapy planning, probably will not benefit. Thus, the approach is mainly aimed to support student
training and the generation of clinical reports. We also discuss how to enhance the slice-based exploration of
medical image stacks via floor maps and present the results of an informal evaluation with three trained anatomists.
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1 INTRODUCTION & MOTIVATION
Over the last decades, much research was carried out to
improve medical image scanners, such as Computed To-
mography (CT) or Magnetic Resonance Imaging (MRI)
scanners, e. g. with respect to spatial resolution. Thus,
less anatomical information is compiled and mapped
into individual Volume Elements (voxels). On the one
hand, this improved the versatility and fidelity of the
image data. On the other hand, this results in more vi-
sual information that has to be assessed. Generally, this
is achieved by axial slicing, e. g. via computer mouse
scrolling. The main disadvantage is that users have to un-
derstand three-dimensional spatial relationships between
anatomical structures although only in-plane relation-
ships are depicted. Especially for medical students in
training this can become mentally exhausting, because
they are not yet accustomed to these tasks.

The main contribution of this work is a processing
pipeline that can transform labeled, medical image
stacks into interactively explorable floor maps. These
maps are a well-known concept to provide spatial in-
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formation in large, multi-story buildings, such as malls,
hospitals, or federal buildings [11]. These maps aim
to use the natural exploration-supporting properties of
maps while introducing only a moderate degree of ab-
straction. Many people are used to maps, e. g. from
various handheld devices. Additionally, maps support
our visuo-spatial working memory, which is a mental
resource that we require for orientation and navigation
tasks in spatial environments. Furthermore, since CT or
MRI scans are multiple, stacked images, their data lay-
out is three-dimensional and the visual layout of maps
can be three-dimensional, too. Finally, maps and medi-
cal image visualization techniques purposefully abstract
and simplify geometric details. This can be beneficial for
anatomical education and report generation, since, in the
beginning, understanding spatial relationships between
anatomical structures is more important than learning ge-
ometric details, and the generation of easy-to-understand
and interpret documentations of findings is an important
task in every clinical workflow. Therefore, we hypoth-
esize that floor maps are suitable to offer exploration
support for medical image data.

2 RELATED WORK
One downside of the slice-based exploration and assess-
ment of image stacks is that only the in-plane spatial re-
lationships between structures are depicted. Thus, physi-
cians have to keep track of spatial relationships along
the third anatomical plane mentally. To support this task,
2D and 3D visualization techniques were developed that,
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Figure 1: Floor map visualizations depicting three image data sets (cf. Tab. 1). Left (DS1): A standard floor map is
depicted. Middle (DS2): Various structures, such as the two cervical muscles (brown), the arteries (red), and veins
(blue), were re-merged. Right (DS3): The aorta and lateral ribs were re-merged while also preserving their shape.

in general, depict additional spatial information of the
explored and assessed image stack along the third plane.

Exploration Support. Tietjen et al. [17] presented a
2D technique called lift charts: While an image stack
is explored in a 2D view, the spatial extent of labeled
structures along the third plane is depicted in an addi-
tional 2D chart. The result is an adapted bar chart with
multiple vertical bars that can be interpreted as lifts that
make it possible to distinct vertical sections. Generally,

Figure 2: A lift chart to support the slice-based explo-
ration of medical volume data as introduced by Tietjen
et al. [17]. All labeled anatomical structures are repre-
sented via bars and their vertical positions and extents
are defined by the zmin and zmax coordinates of their re-
spective structure’s Axis-Aligned Bounding Box. The
respective data set is presented on the right.

lifts are defined along the z-axis, because tomographic
scans are acquired and assessed in axial slices. However,
lift charts can be applied for arbitrary projection planes.
Furthermore, a unique color-coding is assigned to each
structure type, such as bones and lymph nodes. The lift
chart in Figure 2 was generated using Data Set 1 (see
Tab. 1). The respective floor map can be seen in the
leftmost subfigure of Figure 1.

Later, Balabanian et al. [3] used lift charts for their hi-
erarchical graph network, which enabled them to use
lift charts for anatomical substructures, too. Thus, there
now exist multiple charts for one data set: Depending on
the currently observed hierarchy level, a chart presents
spatial relationships between structures and substruc-
tures at different scales. Diepenbrock et al. [7] extended
lift charts to present information from scans of different
modalities: Rather than using morphological scans only,
their lift charts also present information from functional
MRI (fMRI) scans like a graph plot.

Although lift charts are a straightforward visualization
technique to enhance the slice-based exploration of im-
age stacks, their overall degree of abstraction is very
high. Following the theory of Viola and Isenberg [19],
lift charts would rank high on the geometric and photo-
metric abstraction axes, because only two values and
one color are presented per structure. Estimations of
the individual degrees of abstraction for lift charts and
floor maps are depicted in Figure 3. When considering
real-world anatomy as the starting point and biochemi-
cal processes at the end point of the scale axis, lift charts
and floor maps are located at a very low point, because
they are used for high-level morphological information.
Moreover, since only one scan is used, there is no tem-
poral information; thus, both techniques introduce no
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temporal abstraction. Techniques with a low photomet-
ric abstraction use complex light propagation models,
whereas more photometrically abstract techniques use
simpler shading or stylizations, such as flat shading or
line drawings. When techniques introduce a low degree
of geometric abstraction, many shape details are pre-
served, whereas objects will get very simplified when
a high degree of geometric abstraction is used. The de-
grees of photometric and geometric abstraction are very
high for lift charts, since only their vertical extent is
preserved and presented in a simple color-coding. Thus,
we hypothesized that floor maps are more appropriate
to offer exploration support for medical volume data,
because they preserve more geometric details, such as
the axial shape of structures, and present them using
ambient and diffuse shading, which further emphasize
valleys between floors and rooms.
Mindek et al. [14] presented a different type of explo-
ration support by virtually altering the slicing speed
during 2D exploration via non-linear interaction. They
define representative slices if chosen structures undergo
large morphological changes between adjacent slices,
for example, if the cross-section areas of blood ves-
sels change or if they branch. During 2D exploration,
only these representative slices are presented to the user,
which results in a slower exploration in regions with
large changes, because there are more representative
slices. Similarly, in image regions with many morpho-
logical changes our method generates more floors and
rooms. Consequently, both methods generate only few
representative slices or large floors with few rooms in
image regions with only small or no changes.
Digital 3D Maps. Research for digital maps focuses on

• pathway planning in emergency situations [6],

• generation of 3D models from 2D drawings [20],

• level-of-detail techniques for indoor maps [13], or

• the ontological description of buildings [12].

Floor maps help users to familiarize with complex spa-
tial layouts, such as offices, high-rise buildings, and

Scale
Real-World
Anatomy

Biochemical
Processes

P

T
G

Lift

Chart

P

T
G

Floor

Map

Figure 3: Ranking the lift chart and floor map visualiza-
tion techniques using the theory of Viola and Isenberg
[19]. The radiant axes show the Photometric, Geometric,
and Temporal abstraction categories. Axes ticks show
the estimated degrees of abstraction in the respective
category. The T category is not applicable.

malls [11]. To exploit this potential and to prevent vi-
sual clutter, special care is necessary. For example, color
scales with only few colors that can be easily distin-
guished have to be defined and occlusion problems have
to be controlled, e. g. by generating good default views
on building models. Our approach enables users to inter-
actively adapt the color-coding and opacity of structures.

3 FLOOR MAP GENERATION
In this section the data sets and processing pipeline to
create interactive 3D floor map visualizations from med-
ical image volumes are described. Figure 4 depicts the
proposed pipeline to transform segmentation masks into
an interactively explorable floor map visualization. Af-
ter presenting the conceptual design, each step of the
pipeline is described in Section 3.3.

3.1 Image Data and Implementation
To develop the proposed method, three CT scans were
used (see Tab. 1). The processing pipeline, which trans-
forms label images into floors and rooms, was imple-
mented in MeVisLab 2.8.2 [15] (see Fig. and Sec. 4).
Subsequently, users can use a Graphical User Interface
(GUI) (see Fig. 9) to simultaneously explore the unal-
tered image stacks and floor maps.

3.2 Conceptual Design
When applying the floor map concept on medical vol-
ume data, we discussed how human anatomy can be
transformed into floors and rooms. Generally, larger
structures, such as organs, have a deformed, spherical
shape with soft edges. There are some exceptions, such
as extremity bones or intestines, which, while also hav-
ing a round, have a rather elongated shape. Smaller
structures, such as blood vessels, are tubular with circu-
lar or ellipsoid shaped cross-sections.

In contrast, buildings are man-made structures with con-
siderable regularity. For most buildings, the ground
plan is extruded vertically and divided horizontally into
equally high floors. Thus, they often have a cuboid sur-
face. However, especially for smaller buildings, such
as homes, the inner floor layout can be very individual
with varying room sizes, whereas for taller buildings,
the floor layout can be very repetitive. Additionally,
pathways, such as corridors, staircases and elevators, are
straight, horizontally or vertically oriented tubes.

In clinical practice, physicians typically assess image
stacks via axial slicing. Therefore, the proposed ap-
proach divides image stacks along the z-axis to create
floors, and to make them clearly visually distinguishable,
small gaps are inserted between adjacent floors. How-
ever, although the gap size is adjustable, each division
results in a geometric distortion. Therefore, the number
of divisions should be minimal.
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Figure 4: Pipeline to generate floor map visualizations from medical image stacks. LZ is a compiled list of unique
zmin and zmax coordinates of all segmentation masks. LCI is a list of cut intervals that are used to divide the
segmentation masks into floors.

To create building-like maps, rooms have to be created.
Anatomical structures can have complex spatial arrange-
ments, e. g. the heart is encompassed by the lungs, but
they are clearly separated. This feature is considered in
the processing pipeline by creating floors and rooms that
are free from overlaps (cf. Figures 6 and 7). However,
to enable an easy visual grouping of rooms that repre-
sent similar anatomical structures, they are color-coded
identically. For example, in Figure 4 the kidneys and
lungs are colored brown and pink, respectively.

3.3 Image Stack Processing
Z-Coordinate Extraction. In the first step of the pro-
cessing pipeline, the zmin and zmax coordinates of all
labeled structures’ axis-aligned bounding boxes are ex-
tracted and compiled into a list named LZ . Before the co-
ordinates are compiled, certain structures can be marked
as being too small for processing, if their spatial ex-
tent in z-direction (zmax− zmin) is below a user-defined
threshold. Thus, they will not be divided into floors and
their shape will be preserved. However, due to gaps
between floors, they have to be moved to their correct
vertical position for the final visualization. In Figure 5,
lymph nodes are depicted that were marked too small.
This protects very small structures from any geometric
abstraction and distortion, which would be larger for
them than for larger anatomical structures.

Cut Interval Computation. The compiled z-
coordinates are then used to compute cut intervals to
define floors. Similar to the approach of Mindek et
al. [14], floors are defined when the composition of

DS DS size (voxels) # S Site of Scan

DS 1 512 × 512 × 105 8 lower thorax to pelvis
DS 2 513 × 513 × 108 22 head and neck area
DS 3 512 × 512 × 99 9 lower thorax and upper abdomen

Table 1: Details of the used CT data sets (DS) with their
respective number of voxels, the labeled structure count
(# S), and the anatomical site of the scan (cf. Fig. 1).

segmentation masks between adjacent slices changes.
This results in unique floors and visually guides users to
regions with high anatomical variability. Therefore, first,
LZ is sorted in ascending order and double coordinates
are removed since the method only needs knowledge
about slices in which the composition changes, but not
about which segmentation masks are the reason. For
each remaining entry ek ∈ LZ only one of the following
statements (S1-S3) is correct:

S1 ek = zminSi
S2 ek = zmaxSi
S3 ek = zminSi

= zmaxS j

Figure 5: Lymph nodes that are flagged too small, which
protects them from geometric abstraction and distortion.
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For each ek ∈ LZ there exist structure segmentations S
that either start in slice ek (S1), end in ek (S2), or at least
one starts while at least another ends (S3). Subsequently,
all ek ∈ LZ have to be flagged accordingly. Using an
extended interval notation and LZ of Data Set 1, the
following line enables a quick understanding on how cut
intervals are defined using our approach:

[
0
... [

54
[

55
... [

69
[

70
... ]

77
]

78
... [

80
|

81
... |

91
... ]

104

For each entry ek, the color-coding and token show
which statement is true: A red left square bracket is
used for S1, a blue right square bracket is used for S2,
and a violet bar is used for S3.

Subsequently, all entries are processed pairwise. De-
pending on which statements are true for this and the
next entries ek, the respective cut interval will be defined
differently. There exist nine combinations, because, e. g.,
ek can fulfill S1 while ek+1 can fulfill S1, S2, or S3. For
example: For the slices 0 and 54 the composition of seg-
mentation masks does not change until slice 54. Thus,
the first floor will be defined from slice 0 to 53 and slice
54 will be processed in the next step. For 70 and 77,
slice 77 can be included in this processing step and has
to be skipped in the next step. Applying the method
shown in Algorithm 1 to Data Set 1, the resulting list of
cut intervals LCI will be:

LCI = {[0,53], [54,54], [55,68], [69,69],
[70,77], [78,78], [79,79], [80,80],
[81,81], [82,90], [91,91], [92,104]}

The algorithm produces the smallest number of floors
with no double slices in adjacent intervals. Thus, visual
distortion is minimal and the linking between original
images and floor map is unique for each slice, which
is important for the simultaneous exploration later. Fi-
nally, to create visual gaps between floors, empty slices
are created between LCI intervals before mesh creation.
We found that one or two slices are sufficient, because
larger gaps increase the need that users have to navigate
through the final visualization manually. This would
be unfavorable, because medical experts are not as well
used to 3D interactions as computer graphic experts.

Vertex Mesh Generation. To create meshes, the Neigh-
boring Cells Algorithm is used [2]. However, before
that, rooms have to be created inside the previously de-
fined floors: For each floor and all segmentation masks
therein, this is achieved via projection and extrusion (see
Fig. 6): First, all masks are projected along the z-axis.
Secondly, this shape is extruded along the floor’s height.
This results in rooms that are defined by the maximum
axial shape of their respective structures.

This approach preserves some geometric features of
the anatomical structures, which, in combination with

their vertical position, supports individual recognizabil-
ity. However, it also creates overlapping artifacts be-
tween rooms. This can be seen in Figure 6. Although
there exists no overlap between the segmentation masks
S1 and S2, extruding their maximum axial shape results
in the overlapping rooms R1 and R2.

Input : LZ

f o r a l l e ∈ LZ
i f LZ(e) == [
| i f LZ(e+1) − LZ(e) == 1
| | i f LZ(e+1) == [ or LZ(e+1) == |
| | | LCI(e) = [ LZ(e) , LZ(e) ]
| | e l i f LZ(e+1) == ]
| | | LCI(e) = [ LZ(e) , LZ(e+1) ]
| | e n d i f
| e l s e
| | i f LZ(e+1) == [ or LZ(e+1) == |
| | | LCI(e) = [ LZ(e) , LZ(e+1)−1 ]
| | e l i f LZ(e+1) == ]
| | | LCI(e) = [ LZ(e) , LZ(e+1) ]
| | e n d i f
| e n d i f
e n d i f

i f LZ(e) == |
| LCI(e) = [ LZ(e) , LZ(e) ]
| e = e+1
| i f LZ(e+1) − LZ(e) == 1
| | c o n t i nu e
| e l s e
| | i f LZ(e+1) == [ or LZ(e+1) == |
| | | LCI(e) = [ LZ(e)+1 , LZ(e+1)−1 ]
| | e l i f LZ(e+1) == ]
| | | LCI(e) = [ LZ(e)+1 , LZ(e+1) ]
| | e n d i f
| e n d i f
e n d i f

i f LZ(e) == ]
| i f LZ(e+1) − LZ(e) == 1
| and LZ(e) != LCI(e−1) [ 1 ]
| | LCI(e) = [ LZ(e) , LZ(e) ]
| | c o n t i nu e
| e l i f LZ(e) − LZ(e−1) == 1
| and LZ(e+1) − LZ(e) > 1
| | LCI(e) = [ LZ(e) , LZ(e) ]
| | e = e+1
| e n d i f
| i f LZ(e+1) == [ or LZ(e+1) == |
| | LCI(e) = [ LZ(e)+1 , LZ(e+1)−1 ]
| e l i f LZ(e+1) == ]
| | LCI(e) = [ LZ(e)+1 , LZ(e+1) ]
| e n d i f
e n d i f
endfor

Output : LCI

Algorithm 1: Cut Interval Generation.
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This issue is resolved by performing pairwise overlap-
ping tests between all rooms. If overlaps exist, the over-
lapping volume is assigned to the smaller room. This
decision was taken, because, if rooms overlap, smaller
rooms are already at a higher risk to be overlooked. Thus,
their visibility is increased. In Figure 6, this would be
R2 and the red-colored mediastinum, respectively.

After overlapping artifacts are resolved, processed rooms
are very close to each other. Therefore, to increase vi-
sual separability of adjacent rooms, surface meshes are
smoothed, e. g. via Laplace smoothing. The result is de-
picted in Figure 7: After overlap removal, with respect
to the used color-coding, the mediastinum and lungs can
be clearly distinguished. However, the visual transition

S1 S2 R1 R2 R1 R2 Floor

Figure 6: Top: To create rooms, the maximum axial
shape of each segmentation mask Si is extruded along a
floor. This can result in overlap artifacts between rooms
Ri. This problem is addressed by assigning overlapping
volume to the smaller room. Bottom: The mediastinum
(red) and the lungs (rose) overlap laterally. The bound-
aries of the overlapping volumes are emphasized for
better visibility. Since the mediastinum is smaller than
both lungs, the overlapping volumes are assigned to it.

R1 R2 R1 R2

Figure 7: After extrusion and overlap removal, adjacent
rooms are contiguous. Therefore, Laplacian smoothing
is applied, which results in volume shrinkage. This cre-
ates gaps between adjacent meshes and valleys around
the top and bottom edges. In combination with diffuse
shading, rooms become more visually separated.

is abrupt, which can become a problem if rooms with
similar colors are too close to each other. Applying mesh
smoothing creates valleys between adjacent rooms and
in combination with diffuse shading, the visual separa-
bility is further increased.

Before mesh generation, users have two options to alter
the transformation of individual segmentation masks
into floors and rooms. First, the shape of structures can
be preserved. This means that while the cut intervals
in LCI are still used to create individual floors, not their
maximum axial shape but the unaltered segmentation
mask is used to create rooms. Secondly, masks can be
protected from being divided into floors. To do this, a
morphological dilatation operator in z-direction is used
to re-merge vertical gaps that are a result of empty slices
that are created between adjacent cut intervals. Both
options can be combined, which is depicted in Figure 8:
Here, the musculi sternocleidomastoideus are protected
from divisions and geometric abstraction into rooms.

Another option that was included is that all structures in
the lowest or highest floor can have their shape preserved.
This can be seen in Figure 1: In the leftmost subfigure,
the lowest and highest floors were processed normally.
Due to their large vertical extent, they introduce a large

Figure 8: Users can preserve the shape of segmented
structures and re-merge gaps. Here, both options were
combined for the musculi sternocleidomastoideus.
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Figure 9: The GUI of the combined 2D view and floor map visualization. A tumor (green), and the left glandula
submandibularis (white), carotis (red), and jugular vein (blue) are highlighted in 2D and 3D. The orange-colored
frame corresponds with the currently displayed slice. On the right, the names, colors, and opacities are shown for all
structures. Users can interactively adjust these options to change the floor map visualization.

geometric distortion. In contrast, for the middle subfig-
ure, the shapes of the upper skull and collarbones were
preserved, which can increase the recognizability of the
depicted anatomical site considerably.

Interactive Floor Map Visualization. Figure 9 depicts
the GUI that enables an interactive and simultaneous
exploration of the original images and floor map. In the
2D view on the left, users can slice up and down through
the original image stack, e. g. via mouse wheel scrolling.
In the floor map, an orange-colored frame moves up and
down accordingly that shows which floor the currently
displayed slice belongs to. Note that this frame has to
jump over gaps in the floor map, because the original
image stack does not have empty slices that are virtually
inserted to create individual floors. Moreover, users can
select room meshes and the boundaries of the respective
segmentation masks are highlighted in the 2D images. In
Figure 9, various structures, such as a tumor (green), ar-
teries (red), and veins (blue) were selected. Additionally,
a geometry-based contour shading is used to highlight
the 3D contours of selected rooms. To control occlusion

Data Set (# S/ # F)
Category DS 1 (9/ 15) DS 2 (22/ 28) DS 3 (9/ 15)

Z-Coordinate Extraction 0.94 2.51 1.52

Cut Interval Computation 0.01 0.05 0.01

Vertex Mesh Generation
Room Extrusion 12.66 32.94 10.93

Overlap Removal 21.68 47.64 14.34
Mesh Generation 29.65 64.01 30.92
Mesh Smoothing 2.43 3.08 4.41

Total Processing Time 67.37 150.23 62.13

Table 2: Computation times in seconds for each process-
ing step from Figure 4. For each data set, the number of
structures and the number of floors are given with # S
and # F. No structure was marked too small, no shape
was preserved, and no rooms were re-merged.

problems, the opacities of all rooms can be adjusted on
the right using order-independent transparencies [4].

4 RESULTS
The main result of this work is a pipeline that trans-
forms labeled, medical image stacks into interactively
explorable floor maps (see Fig. 4). Algorithm 1 is the
core of the proposed method and it produces the smallest
possible number of floors. Because double coordinates
are removed during cut interval computation, there exist
no ambiguities when the original images and the floor
map are explored. In Table 2, the computation times
of all processing steps are shown. They were acquired
using an i5-2500 processor with 3.30 GHz.

4.1 Evaluation
To evaluate the proposed approach, three trained
anatomists were interviewed informally and each of
them filled out a questionnaire. Two interviewees are
physicians (I1 and I2) and one is a biologist (I3). Similar
to Figure 9, they were given a software prototype to
simultaneously explore CT image stacks of three data
sets (cf. Tab. 1 and Fig. 9) with either lift charts or
floor maps. The interviewees were given a five-point
Likert scale (−−, −, o, +, ++) to answer questions.
Their answers are compiled in Table 3 and are presented
using a diverging red-white-blue color-scale. The
questionnaires were divided into three parts, which
will be explained in the following paragraphs and a
discussion will be provided in the next section.

In the first part, the interviewees were asked to provide
information about their clinical and technical experience.
Their answers are shown in the upper part of Table 3:

Q 1 How do you rate your anatomical knowledge?
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Q 2 How familiar are you with medical visualization
techniques in general?

Q 3 How familiar are you with exploration-assisting
visualization techniques for medical images?

Q 4 How do you rate your spatial thinking capabilities?

For the second part, the interviewees were given in-
structions on how to interact with the elements of the
software prototype. First, they were asked to explore the
CT data sets with lift charts (cf. Fig. 2). The currently
depicted slice was represented as a horizontal line in the
lift chart. Subsequently, the interviewees explored the
data sets with floor maps. After each exploration, they
were asked to rate the exploration-assisting capabilities
of each visualization technique (VT):

Q 5 How easy is it for you to get a first overview of the
data set using VT?

Q 6 How easy is it for you to assess spatial relationships
between anatomical structures using VT?

Q 7 How much does VT support you to find anatomical
abnormalities, e. g. a tumor?

Q 8 How easy is it for you to use VT for orientation?

Q 9 How fast do you recognize segmented structures
using VT?

Q 10 Overall: How much do you like using VT?

For the last part, they were asked how feasible they think
each VT is for various clinical application areas.

5 DISCUSSION
Method Discussion. The presented pipeline requires
labeled images and does not include segmentation al-
gorithms. Depending on the data set (cf. Tab. 1), the
available structure segmentations were obtained using
different segmentation algorithms. For example, the
liver in DS 3 was segmented using HepaVision2 from
Bourquain et al. [5], which uses a semi-automatic live-
wire approach. This results in a binary mask that can
immediately be processed with our method. In contrast,
the lymph nodes and blood vessels in DS 2 were seg-
mented using the model-based methods of Dornheim
et al. [8, 9] to support the treatment planning for neck
dissection surgeries. These methods produce polygonal
representations of segmented structures, which requires
a conversion into binary masks. This is not ideal, since
this conversion degrades the quality of segmentation
results to some extent. However, this is not an issue,
because the presented method was not developed with
this use case in mind.

Although healthy anatomical structures are clearly sep-
arated from each other, obtaining segmentation masks
involves some degree of uncertainty. This uncertainty

is usually increased around neoplasias, e. g. tumors or
metastases and, thus, segmentations can overlap. This
can be seen in Figure 9, where the tumor (green) and
glandula (gray) segmentations overlap. Our approach ad-
dresses these cases by assigning overlapping volume to
the smaller structure. However, there exist cases where
structures are embedded in each other, e. g. tumors or
metastases in organs. As long as the neoplastic structures
are smaller in volume than the surrounding organ tissue,
overlapping volume will be assigned to the neoplasm.
Thus, tumors and metastases will not become occult in
the final floor map. In this scenario, the overlapping and
neoplasm room volumes are identical. However, if the
embedded, cancerous tissue is larger than the remaining
healthy tissue, the overlapping volume would be wrong-
fully labeled healthy and, thus, the cancerous tissue will
be completely omitted. Such problematic cases could
be addressed by enabling users to label embedded struc-
tures favored. As a result, overlapping volume would
always be assigned to the favored structure, although it
has the larger volume. Moreover, the proposed approach
does not distinguish between elongated and spherical
structures. Therefore, blood vessels can be heavily dis-
torted if their shape is not preserved (cf. Figure 8).

Result Performance Discussion. The room extrusion,
overlap removal, and mesh generation steps require the
most processing time. The performance of each step
could be improved via parallel processing of structures.

Interviewees
I 1 I 2 I 3

Gender m m m
Age 26 27 43

Experience with Human Anatomy 2.5 3 12
Clinical Experience 4.5 0 0

Active Anatomy Teaching 0 3 12
Q 1
Q 2
Q 3
Q 4

Lift Chart Floor Map
I 1 I 2 I 3 I 1 I 2 I 3

Q 5
Q 6
Q 7
Q 8
Q 9

Q 10

Diagnosis
Therapy Planing

Physician-Patient Consultation
Interdisciplinary Communication

Student Training
Communication of Findings

Legend −− − o + ++

Table 3: Evaluation results of the informal interview
and questionnaires. The upper part shows how the inter-
viewees rate their anatomical and technical knowledge.
Numbers mean in years. The lower parts show their
assessments about the exploration-supporting capability
and clinical versatility of each visualization technique.
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In case of the overlap removal step, a well-elaborated
and implemented process and resource management
would be required, because, using the presented ap-
proach, extruded structures are processed pairwise. Re-
garding the mesh generation, the measured times include
the transformation of all structures into meshes. Thus,
for example, the average processing time per structure
for Data Set 2 was 2.91 seconds. To increase the per-
formance of this step, the cell extent of the Neighbor-
ing Cells Algorithm can be increased [2], which can
decrease the mesh quality considerably. However, the
processing into surface meshes that are used for the floor
map visualization has only to be done once.
Evaluation Results Discussion. The interviewees were
encouraged to think aloud while exploring the original
images with lift charts and floor maps. This revealed two
limitations of our approach: First, although Algorithm 1
produces the smallest possible number of floors, the in-
terviewees still reported that the final presentation would
include too much visual clutter (Quote: "There is too
much going on."). This is depicted in Figure 9 that shows
a heavily dissected mandible. From a cognition perspec-
tive, this can be explained with the work of Alvarez and
Cavanagh [1]: For orientation and navigation tasks, we
process and store visuo-spatial stimuli and construct a
so-called mental map and they are our mental represen-
tation of our spatial environment. However, the required
resource to do so, namely the Visuo-Spatial Working
Memory, is limited and heavily depends on the visual
complexity and number of displayed objects. Whereas
an anatomical structure is represented by one bar in a lift
chart, it can be represented by multiple rooms in a floor
map. Therefore, although the geometric appearance of
rooms can be considered simple, displaying them all
appears to be overwhelming. This limitation could be
addressed by including knowledge about the in-plane
anatomical variability so that adjacent rooms in regions
with a low variability get merged.
Secondly, Algorithm 1 divides image stacks into floors
when the composition of segmentation masks changes
between adjacent slices. This was done to guide the at-
tention of users towards regions with a large anatomical
variability. Although this approach is used in other visu-
alization domains [14], the interviewees remarked that
they are not used to this type of orientation and that the
floor map "requires a lot of reading". They use certain
anatomical landmarks for orientation, e. g. the vertebrae
for the upper body. In regard of the lift charts of Data Set
1 and 3, the interviewees noted that horizontal divisions
in the bar that represents the spine and textual descrip-
tions, namely C1-C7 for cervical, T1-T12 for thoracic,
and L1-L5 for lumbar vertebrae, would be beneficial
to further increase exploration support. This is related
to the method of Balabanian et al. [3], who extended
lift charts to be applicable for hierarchical relationships
between anatomical structures. Therefore, the proposed

floor division approach should also be reviewed with
respect to anatomical landmarks.

In addition, the evaluation showed the clinical feasibility
of the proposed approach (cf. Tab. 3). For diagnosis
and therapy planning, e. g. in cases of cancer or to se-
lect positions for multiple radiation sources for radiation
therapies, distances between anatomical structures are
an important decision criterion. Although our approach
introduces less geometric abstraction than other meth-
ods, by using the maximum axial shape of anatomical
structures to create rooms in-plane distances become
heavily distorted. For communication tasks, i. e. with
patients, students, and colleagues, our approach was
rated just as good as lift charts. However, when the
aforementioned limitations are addressed, the overall
feasibility of the presented approach should improve.

6 CONCLUSION & FUTURE WORK
In this paper, a novel visualization approach was pre-
sented that transforms labeled medical image stacks
into a three-dimensional map layout, namely floor maps.
Furthermore, it was discussed how the resulting visual-
izations can be combined with the conventional slice-
based exploration of CT image stacks. The proposed
approach was evaluated by interviewing three anatomy
experts, which revealed two shortcomings: First, the
main goal was to offer exploration support for medi-
cal image stacks via maps. However, although the pre-
sented method guarantees to minimize the number of
produced floors and rooms, it was reported that anatom-
ical structures are still represented by too many visual
entities [1]. This shortcoming could be addressed by
generating good default views and limiting the number
of presented rooms, for example, by pulling out corre-
sponding floors like drawers during a slice-based ex-
ploration [11, 18]. The exploration-supporting facilities
of floor maps should not be hindered, because humans
are still able to construct mental maps from piecewise,
sequentially presented maps for orientation and naviga-
tion tasks [21]. Secondly, a landmark-based approach
to construct floors and rooms appears to be beneficial.
However, using vertebrae as landmarks only works for
the upper body. Therefore, the method has to be adjusted
with respect to the anatomical area that was scanned.

Currently, the approach is limited to visualize one data
set at a time. A potentially useful extension is the inte-
gration of multiple data sets of different modalities. In-
spired by Ropinski et al. [16], a combination of CT and
Positron Emission Tomography (PET) scans could be
interesting: While morphological information from CT
scans would still be used to create floors and rooms that
give a spatial context, physiological information from
PET scans could be used to emulate certain functionali-
ties inside rooms, for example light sources. Rooms that
represent segmented structures with an increased PET
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activity, e. g. tumors or metastases, could be presented
in a lights on mode, while all other rooms are presented
normally in a lights out mode. We argue that this fea-
ture would strongly guide the attention of users towards
interesting (malignant) structures.

Finally, we think about applying varying degrees of ge-
ometric abstraction to different types of anatomy, i. e.
organs and vessel trees [19]. For organs, instead of ex-
truding their maximum axial shape, their axis or object-
aligned bounding boxes could be used in floor map lay-
outs. Methods, such as the Douglas-Peucker algorithm
[10], could be used to simplify vessel trees, since they
are geometrically similar to rivers and estuaries.

ACKNOWLEDGMENTS
This work is partly funded by the Federal Ministry of
Education and Research within the Forschungscampus
STIMULATE (13GW0095A). We want to thank Wolf-
gang D’Hanis, Sven Schumann, and Leonardo Nardi for
being our interviewees and providing us with feedback.

REFERENCES
[1] G. Alvarez and P. Cavanagh. The Capacity of Vi-

sual Short-Term Memory is Set Both by Visual
Information Load and by Number of Objects. Psy-
chol Sci, 15(2):106–111, 2004.

[2] R. Bade, O. Konrad, and B. Preim. Reducing
Artifacts in Surface Meshes Extracted from Binary
Volumes. Journal of WCSG, 15:67–74, 2007.

[3] J.-P. Balabanian, I. Viola, and E. Gröller. Interac-
tive Illustrative Visualization of Hierarchical Vol-
ume Data. In Proc. of Graphics Interface, pages
137–144, 2010.

[4] P. Barta, B. Kovács, L. Szecsi, and L. Szirmay-
Kalos. Order Independent Transparency with Per-
Pixel Linked Lists. In Proc. of CESCG, pages
51–57, 2011.

[5] H. Bourquain, A. Schenk, F. Link, B. Preim,
G. Prause, and H.-O. Peitgen. HepaVision2 – A
Software Assistant for Preoperative Planning in
Living-Related Liver Transplantation and Onco-
logic Liver Surgery. In Proc. of CARS, pages 341–
346, 2002.

[6] L.-C. Chen, C.-H. Wu, T.-S. Shen, and C.-C. Chou.
The Application of Geometric Network Models
and Building Information Models in Geospatial
Environments for Fire-Fighting Simulations. Com-
put Environ Urban, 45:1–12, 2014.

[7] S. Diepenbrock, J.-S. Praßni, F. Lindemann, H.-W.
Bothe, and T. Ropinski. Interactive Visualization
Techniques for Neurosurgery Planning. In Proc. of.
Eurographics, pages 13–16, 2011.

[8] J. Dornheim, D. Lehmann, L. Dornheim, B. Preim,
and G. Strauss. Reconstruction of Blood Vessels
from Neck CT Datasets using Stable 3D Mass-
Spring Models. In Proc. of Eurographics Workshop
on VCBM, pages 77–82, 2008.

[9] J. Dornheim, H. Seim, B. Preim, I. Hertel, and
G. Strauss. Segmentation of Neck Lymph Nodes in
CT Datasets with Stable 3D Mass-Spring Models.
In Proc. of MICCAI, volume 4191 of LNCS, pages
904–911, 2006.

[10] D. H. Douglas and T. K. Peucker. Algorithms for
the Reduction of the Number of Points Required
to Represent a Digitized Line or its Caricature.
Cartographica, 10(2):112–122, 1973.

[11] M. Gai and G. Wang. Indoor3D: A WebGL Based
Open Source Framework for 3D Indoor Maps Vi-
sualization. In Proc. of Web3D, pages 181–187,
2015.

[12] M. Goetz and A. Zipf. Extending OpenStreetMap
to Indoor Environments: Bringing Volunteered Ge-
ographic Information to the Next Level. In Proc.
of UDMS, volume 2011, pages 47–58, 2011.

[13] B. Hagedorn, M. Trapp, T. Glander, and J. Döll-
ner. Towards an Indoor Level-of-Detail Model
for Route Visualization. In Proc. of MDM, pages
692–697, 2009.

[14] P. Mindek, G. Mistelbauer, M. E. Gröller, and
S. Bruckner. Data-Sensitive Visual Navigation.
Comput Graph, 67:77–85, 2017.

[15] F. Ritter, T. Boskamp, A. Homeyer, H. Laue,
M. Schwier, F. Link, and H.-O. Peitgen. Medical
Image Analysis. IEEE Pulse, 2(6):60–70, 2011.

[16] T. Ropinski, S. Hermann, R. Reich, M. Schäfers,
and K. Hinrichs. Multimodal Vessel Visualiza-
tion of Mouse Aorta PET/CT Scans. IEEE T Vis
Comput Gr, 15(6):1515–1522, 2009.

[17] C. Tietjen, B. Meyer, S. Schlechtweg, B. Preim,
I. Hertel, and G. Strauss. Enhancing Slice-based
Visuaizations of Medical Volume Data. In Proc. of
Eurographics/ IEEE-VGTC Symposium on Visual-
ization, pages 123–130, 2006.

[18] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Hei-
drich. Viewpoint Selection Using Viewpoint En-
tropy. In Proc. of VMV, pages 273–280, 2001.

[19] I. Viola and T. Isenberg. Pondering the Concept of
Abstraction in (Illustrative) Visualization. IEEE T
Vis Comput Gr, 24(9):2573–2588, 2018.

[20] X. Yin, P. Wonka, and A. Razdan. Generating 3D
Building Models from Architectural Drawings: A
Survey. IEEE Comput Graph, 29(1):20–30, 2009.

[21] H. D. Zimmer. The Construction of Mental Maps
Based on a Fragmentary View of Physical Maps. J
Educ Psychol, 96(3):603–610, 2004.

10


