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Abstract
We present an Aortic Vortex Classification (AVOCLA) that allows to classify vortices in the human aorta semi-automatically.
Current medical studies assume a strong relation between cardiovascular diseases and blood flow patterns such as vortices.
Such vortices are extracted and manually classified according to specific, unstandardized properties. We employ an agglomera-
tive hierarchical clustering to group vortex-representing pathlines as basis for the subsequent classification. Classes are based
on the vortex’ size, orientation and shape, its temporal occurrence relative to the cardiac cycle as well as its spatial position
relative to the vessel course. The classification results are presented by a 2D and 3D visualization technique. To confirm the
usefulness of both approaches, we report on the results of a user study. Moreover, AVOCLA was applied to 15 datasets of
healthy volunteers and patients with different cardiovascular diseases. The results of the semi-automatic classification were
qualitatively compared to a manually generated ground truth of two domain experts considering the vortex number and five
specific properties.

Categories and Subject Descriptors (according to ACM CCS): I.4.9 [Computer Graphics]: Image Processing and Computer
Vision—Applications

1. Introduction

Cardiovascular diseases (CVDs) represent the world’s leading
cause of death. Medical researchers are interested in better under-
standing the causes of their initiation and evolution that depends
strongly on the blood flow characteristics. Therefore, information
about the patient-specific hemodynamics are used that can be non-
invasively acquired by four-dimensional phase-contrast magnetic
resonance imaging (4D PC-MRI) [DBB∗15].

A qualitative data analysis enables the visualization of vor-
tices that are considered as an indicator of pathologies [HHM∗10,
HWS∗12, MBS∗15]. To investigate the influence of vortices on
CVDs, medical studies with homogeneous patient groups are per-
formed. The vortex occurrences are counted and classified accord-
ing to specific characteristics in a binary manner. Such a vortex
analysis is manually performed with common flow visualization
techniques such as particle animations. This is a time-consuming,
subjective and error-prone process with a high inter-observer vari-
ability. Moreover, the binary classifications are often not sufficient
to describe the vortex behavior, but a more detailed visual assess-
ment is challenging. However, to uncover correlations between vor-
tex flow and certain CVDs, the classification results of different
datasets should be comparable. This requires an objective classifi-
cation according to clearly defined criteria.

In this work, we present a method for a semi-automatic classi-

fication of aortic vortices. Vortex-representing pathlines were ex-
tracted from 4D PC-MRI data using the line predicates technique
by Köhler et al. [KGP∗13]. An agglomerative hierarchical cluster-
ing is applied to determine vortex entities. The vortex properties
are calculated semi-automatically, which leads to an objective vor-
tex description and decreasing inter-observer variability. We intro-
duce a 2D and 3D visualization to analyze the classification results,
see Fig. 1. In a qualitative evaluation, we compared the results of
our approach with manually classified vortices of two domain ex-
perts. For this, we used two healthy and 13 pathological 4D PC-
MRI datasets. Moreover, we performed a user study to evaluate if
the 2D and 3D visualization are able to convey the classification
results. In summary, we make the following contributions:

• A list of classification criteria from medical studies that deal with
the classification of aortic vortices.

• A semi-automatic vortex classification, which is qualitatively
compared to a ground truth of two domain experts.

• The classification results extend the binary classifications.

• A 2D and 3D visualization of the classification results is pre-
sented that are evaluated in a user study.
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Figure 1: AVOCLA is applied to a patient dataset with an aortic
dilation. Starting from the pathlines, two clusters are generated that
are visualized by a 2D plot and a 3D glyph.

2. Related Work

Visualization and Exploration of Blood Flow. 4D PC-MRI are
highly complex flow data whose visualization is often affected by
visual clutter and occlusions. Van Pelt et al. [vPBB∗10] presented
illustrative renderings to depict time-dependent blood flow dynam-
ics. Gasteiger et al. [GNKP10] presented a ghosted view approach,
which allows a simultaneous depiction of the vessel morphology
and blood flow. Lawonn et al. [LGP14] provided a vessel visual-
ization technique such that the vessel morphology can be better
perceived and the flow information is always visible.

These methods cannot assist the user to interpret the blood
flow concerning specific flow patterns such as vortices or high-
velocity jets. To simplify the vector field analysis and to answer
specific questions, several methods for extraction and visualization
of such features are presented. Born et al. [BPM∗13] used the line
predicate approach introduced by Salzbrunn et al. [SS06] to ex-
tract interesting flow characteristics including inflow jets and blood
with high residence times in the aorta. Gasteiger et al. [GLvP∗12]
applied line predicates to simulated blood flow data of cerebral
aneurysms to determine inflow jets and impingement zones. Köh-
ler et al. [KGP∗13] determined the λ2-criterion as most suitable to
filter pathlines that represent vortex regions. Furthermore, Köhler
et al. [KMP∗15] projected the vortex-representing pathlines to a
2D plot that shows present vortex flow in the aorta at one glance.
Oeltze et al. [OLK∗14] compared different state-of-the-art cluster-
ing techniques to cluster 3D streamlines in cerebral aneurysms and
determined cluster representatives that display major flow direc-
tions. Van Pelt et al. [vPJtHRV12] applied a hierarchical clustering
method to the phase images of aortic 4D PC-MRI data to achieve a
more abstract flow depiction. Each cluster is visualized by a repre-
sentative path arrow. Born et al. [BMGS13] used illustrative visual-
izations to depict steady flow features extracted from 4D PC-MRI
data based on line predicates. An overview of the visualization of
simulated and measured flow data can be found in the summaries
by Preim and Botha [PB13], Vilanova et al. [VPvP∗14] and Köhler
et al. [KBV∗16].

Classification of Aortic Vortices. Recent medical stud-
ies [HHM∗10, HWS∗12, FMH∗11] evaluate the number of
occurring vortices in patient datasets and classify them manually
according to the following characteristics:

• The shape refers to the extent of a vortex. Rather compressed
vortices are called vortex, elongated structures on the other hand
are called helix.

• The time of occurrence in the cardiac cycle is differentiated ac-
cording to systole and/or diastole.

• The vessel section locates a flow pattern to belong to the ascend-
ing aorta, aortic arch and descending aorta.

• The size is divided into minor and pronounced, depending on the
occupation of the vessel diameter by the vortex.

• The rotation direction (RD) is divided into right- and left-handed
with the centerline as a reference.

To facilitate the vortex analysis, computer-based classification
methods were introduced. Von Spiczak et al. [vSCG∗15] intro-
duced a vortex classification using the vorticity and a vortex core
detection method. However, the approach is sensitive to noise,
which reduces the result quality. Other works identify and classify
vortex flow based on pattern matching [HEWK03, vPFCV14]. A
major disadvantage of these methods is that the number of distin-
guishable patterns depends on the number of used template flow
patterns. Therefore, we calculate the vortex characteristics based
on geometrical properties and relations of the representing path-
lines and the vessel surface.

3. Medical Background

Blood is being pumped in a complex cycle of vessels by the heart
contraction, with the aorta as the largest artery. Their caliber dimen-
sions of about 2-3 cm allow the acquisition of an easily measurable
signal for a meaningful blood flow analysis. During systole, oxy-
genated blood from the left ventricle passes the aortic valve (AV)
into the ascending aorta and is then supplied to the body, see Fig.
2. Deoxygenated blood is pumped from the right ventricle through
the pulmonary valve into the pulmonary artery. During diastole, the
AV is closed to prevent blood back flow.

Left ventricle

Left atrium

Right ventricle

Right atrium

Pulmonary arteryAorta

Figure 2: Structure of the human heart.
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Figure 3: The pipeline of AVOCLA. The imported data contains the surface mesh, the centerline and the vortex-representing pathlines. The
pathlines and the centerline are sampled equidistantly and a dissimilarity matrix is calculated as input for the clustering. Each clustered
vortex is classified and depicted by a 2D and 3D visualization.

3.1. Selected Pathologies and Related Flow Behavior

Healthy persons exhibit only a slight systolic helix in the aor-
tic arch, which is considered as physiological [KYM∗93]. CVDs
lead to altered vessel geometries that increase the probability of
emerging vortex flow patterns. In aortic aneurysms large helical
vortices are detected and additional helices and vortices in the as-
cending aorta that are not occurring in healthy subjects [HMW∗07,
FHJ∗07]. Frydrychowicz et al. [FMH∗11] investigated blood flow
in healthy persons and patients with an aortic coarctation that show
additional helix or vortex formations. François et al. [FSS∗12] ex-
amined flow patterns in patients with a tetralogy of Fallot and found
increased helical or vortical flow in the right ventricle as well as the
pulmonary artery compared to healthy volunteers. Patients with a
bicuspid AV show strong correlations to helical flow in the ascend-
ing aorta during systole [HHM∗10, MBS∗15]. The vortex RD was
depending on which of the three leaflets are fused [MBS∗15]. Pa-
tients with Marfan Syndrome showed increased helical and vortical
flow in the ascending and descending aorta compared to healthy
subjects [MGH∗11, GMH∗12]. Moreover, an increased suscepti-
bility to ectasia development was observed in such patients, which
probably results from the complex flow patterns.

3.2. Data Acquisition and Preprocessing

A 4D PC-MRI dataset contains each three (x-, y- and z-direction)
time-resolved phase and magnitude images that describe the flow
direction and strength, respectively. All temporal positions together
represent one full heart beat. A 3 T Siemens Magnetom Verio MR
scanner was used with a maximum expected velocity (VENC) of 1.5
m/s per dimension. The spatio-temporal resolution is 1.77 × 1.77
× 3.5 mm3 \ 50 ms with a 132 × 192 grid for each of the 15 to
23 slices and 14 to 21 time steps. Phase wraps and velocity offsets
are corrected and a temporal maximum intensity projection (TMIP)
is generated from the magnitude images as basis for a binary seg-
mentation [KGP∗13]. The vessel surface is extracted via March-
ing Cubes and then used to extract the centerline [PVS∗09] that
is presented as a sequence of equidistant (0.5 mm) points. Vortex-
representing pathlines are extracted using the line predicates tech-
nique [KGP∗13].

4. Requirement Analysis

Our approach is based on the discussion with two domain experts:
a radiologist specialized in cardiac imaging with four years of work

experience and an expert specialized in the visualization of 4D PC-
MRI data with three years of work experience. Both are co-authors
of this paper. The classification of vortices requires a reliable path-
line clustering that does not need a priori selection of the cluster
number, because the number of vortices is unknown. Moreover,
the clustering should be able to group spatio-temporally adjacent
vortices even if laminar flow and noise is existent. Both cluster-
ing and classification are required to be performed automatically.
However, due to the enormous anatomic diversity, the automati-
cally calculated results will not always be correct. Thus, the ex-
perts should be able to manually correct the results. The calculated
vortex properties should reflect and extend the binary expert classi-
fications according to minor and pronounced flow or helix and vor-
tex. Besides a tabular representation, the experts want an adequate
visualization of the classification results in order to verify and in-
terpret them better. They commented that an occlusion-free depic-
tion of the spatio-temporal vortex behavior would be very helpful.
Therefore, we need a visualization that improves the exploration of
the vortex properties. We summarize the main requirements for the
semi-automatic vortex classification:

Req. 1. Clustering. The clustering should be robust towards
noise and able to separate spatio-temporal vortices without the need
of a cluster number as input.

Req. 2. Contribution of Expert Knowledge. Although the clus-
tering and classification of vortices is performed automatically, the
experts should be able to correct the results.

Req. 3. Classification criteria. The classification results repre-
sent the most binary vortex classification by the physicians and
should be extendable.

Req. 4. Vortex visualization. A vortex visualization is needed
that depicts the vortex characteristics helpfully.

5. Semi-automatic Vortex Classification

In this section, we describe our pipeline to classify aortic vortices
semi-automatically (see Fig. 3). The imported data contains the sur-
face mesh, the vortex pathlines, and the centerline. Here, the path-
lines and the centerline are equally sampled. Then, pairwise path-
line dissimilarity values are calculated and stored in a matrix. Based
on this dissimilarity matrix, the clustering generates a grouping of
the pathlines. Each clustered vortex is classified according to pre-
defined properties. Finally, the classification results are visualized
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Figure 4: Vortex classification criteria. The shape is divided into helix (a) and vortex (b). The flow curve (c) is used to determine the temporal
behavior. For the spatial classification, four aortic sections (d) are distinguished. The size is divided into minor (e) and pronounced (f) flow
and the RD is distinguished into right- (g) and left-handed (h).

using a 2D plot depiction and a 3D glyph-based representation. In
the following, we explain the pipeline in detail.

5.1. Clustering of Aortic Vortex Flow

The vortex classification requires a precise definition of spatio-
temporal vortex entities. Therefore, we used an automatic method
for vortex clustering represented by pathlines introduced by
Meuschke et al. [MLK∗16]. They combined a reliable dissimilar-
ity measure with three clustering methods that do not need a priori
selection of the cluster number. The clustering results were qual-
itatively compared to a manually generated ground truth of two
domain experts. Their measure calculates pairwise pathline dissim-
ilarities using Euclidean and temporal distances. Moreover, they
consider the difference between two lines according to the aver-
aged centerline distance. This enables a reliable grouping of spatio-
temporally adjacent vortices. The resulting distance values between
two given pathlines are accumulated and stored in a squared sym-
metric dissimilarity matrix M as basis for the clustering. The entry
Mi j corresponds to the dissimilarity between pathlines i and j with
Mii = 0. They compare a agglomerative hierarchical, a density-
based and a spectral clustering technique. The first approach has
been determined to produce the most reliable results, wherefore
we used it for the vortex clustering. For further details we refer
to Meuschke et al. [MLK∗16].

5.2. Classification of Clustered Vortices

We developed a semi-automatic vortex classification according to
five properties introduced in Sec. 2. In this section, we describe the
implementation of the classification in detail.

Vortex Shape. In manual classifications, the vortex shape is di-
vided into helix (Fig. 4(a)) and vortex (Fig. 4(b)) depending on
which shape is more present in the vortex. This binary classification
is not always appropriate because in most cases vortices take on an
intermediate shape of both. Therefore, we make the assessment of
intermediate shapes more objective, as we calculate the percent-
age of helical and vortical flow (related to Req. 3). Depending on
the strength of the line predicate-based filtering, laminar flow may
occur that we distinguish as third shape.

We determine for each pathline the covariance matrix of the spa-
tial pathline point positions and the corresponding eigenvalues. De-
pending on the eigenvalues, one of the three shapes is assigned to
each pathline. We assume that a perfect vortical, helical or laminar
line is represented by a circle (λ1=λ2, λ3=0), a helix (λ1 is dom-
inant, λ2=λ3) and a line (λ1 6= 0, λ2=λ3=0), respectively, where
λ1,λ2,λ3 are the ordered eigenvalue absolutes. Usually, pathlines
take on a shape between perfect circle and helix or between helix
and a line. These intermediate shapes can be described by a com-
pression or stretching of a perfect helix that is represented by the
following formulation:

~v(t) =

r · cos(2πt)
r · sin(2πt)

h · t

 (1)

The parameter t represents the number of helix turns, r is the ra-
dius, and h describes the helix stretching. Fig. 5 shows seven he-
lices with varying h. In the following, we assume that the height
stays constant. By increasing h (red to blue helix), the turns of the
helix are reduced until almost a straight line is produced. Changing
h causes a modification in the corresponding eigenvalues, see the
graph in Fig. 5. A parabolic curve represents the behavior of the
eigenvalues depending on h. The eigenvalues of the color dots cor-
relate to the colored helices. Based on the parabola, we are able to
determine a shape for each pathline. Therefore, we divide the curve
into three sections separating the points into vortical flow (first red
point to third beige point), helical flow (third beige point to last
cyan point) and laminar flow (behind last cyan point). Depending
on the eigenvalues of a pathline, AVOCLA identifies the nearest
point on the parabola, which gives us the corresponding section of
the curve. The separation points (third beige and last cyan point)
were determined empirically so that AVOCLA correctly identifies
vortices that are clearly classified as helix or vortex in the ground
truth.

Based on the mere eigenvalue analysis, lines that run initially
vortically and then laminar may be classified as helical, whereas
from a medical perspective the vortical behavior is far more inter-
esting. To correct possible wrong classifications, we determine the
torsion for all points of helical lines, which is high for helical lines
that are sharply twisting out of a plane. Lines that are incorrectly
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classified as helical are corrected according to their low torsion.
This requires the introduction of a torsion threshold τv, with the
torsion τ of Eq. 1 given by τ = h

(r2+h2)
,r = 1. For h≤ 1 the torsion

increases, which corresponds to the transition from a circle in the
plane (vortex: τ=0 ) into a helix in space with maximum torsion (τ
= τmax = 1/(2 · r)). For h > 1 the torsion decreases, which corre-
sponds to the extension of a helix to a straight line. The threshold τv
is described as τmax ·c with r being set to the average vessel radius.
Often, helical and vortical lines have a greater torsion than τmax
because of the strongly varying vessel radius in patient datasets.
Therefore, τmax is multiplied by an empirically determined con-
stant c, whose value is chosen by c(r) = 1

2 (r−13)+3.

Temporal Occurrence. During the cardiac cycle, vortices occur
in the systole and/or the diastole. To determine the temporal oc-
currence, AVOCLA analyses the flow rate. The flow rate indicates
how much milliliters of blood per second flow at a particular time
in the cardiac cycle. Between systole and diastole there are signif-
icant changes in the flow rate that distinguishes between the two
phases.

The diagram in Fig. 4(c) shows the flow rate of a proband for one
heartbeat including the subsequent systole that is called flow curve.
At the beginning of the systole, the flow rate increases due to the
contraction of the heart, reaches its maximum after about 100 ms
and drops thereafter. After about 246 ms a local minimum occurs
(left, red point) that represents the systolic end and the diastolic be-
ginning, respectively. During diastole, the flow rate is permanently
low. With the renewed tightening of the heart muscle, the flow rate
rises again (right, red point) and a new systole begins. AVOCLA
identifies the phase end points to derive the percentage of systolic
and diastolic pathline points per vortex.

To determine the systolic end point, two basic flow curves are
distinguished. If no negative flow rates are existent, the first local
minimum is taken. However, flow curves of patients with valvular
defects show often negative flow rates during diastole due to the
defective closing of the AV. In such cases, the first local minimum
belongs to the diastole, but the first zero crossing provides a reliable
determination of the systolic end. For the diastolic end, the last oc-
curring minimum is assumed, because afterwards the new systole
starts and the flow rate increases again. To meet Req. 2, both points
can be corrected by clicking into the diagram.

Vessel Section. The aorta is divided into four sections: the as-
cending aorta, aortic arch (ascending, descending), and descending
aorta, see Fig. 4(d). For this, the centerline cusp point is determined
that is approximately centrally located in the aortic arch and sepa-
rates the ascending arch from the descending arch. Therefore, the
discrete point representation of the centerline is used. In the un-
derlying coordinate system the cusp point usually corresponds to
the point with the smallest y-coordinate. Afterwards, the distance
between the cusp point and the AV (first centerline point) is calcu-
lated. One third of this distance before and after the cusp point is
declared as aortic arch. Sections previously and thereafter are de-
fined as ascending and descending aorta.

Due to the large variation in occurring vessel shapes, the cal-
culated cusp point or selected arch length may not correspond to

Figure 5: The curve shows the eigenvalues of a helix depending on
the turn number to determine the vortex shape. The colored helices
correspond to the colored curve points.

the anatomical conditions. Thus, the user is able to correct the sub-
division by changing the cusp point and/or the arch length (Req.
2). To derive the vortex associated aortic sections, we compute for
each pathline point the nearest centerline point using the Euclidean
distance. In consultation with our experts, at least one third of the
vortex pathline points must be in a section so that this is taken into
account.

Vortex Size. From a clinical perspective, it is relevant if a vor-
tex occupies on average less (minor) or more (pronounced) than
50 % of the vessel diameter, see Fig. 4(e) and 4(f), regardless of
its temporal behavior. To determine the size, we calculate a 3D
curve C(u) per vortex that serves as a vortex centerline. For this,
we use a Least-Squares spline approximation based on the path-
line points belonging to the vortex. The result of this approach is
a piecewise polynomial function f of degree k, which consists of
l polynomial sections. For our datasets, we observed that setting
l = 4 is sufficient to capture the vortex centerline well. We also set
k = 4, as higher values lead to higher amplitudes, because more out-
liers are considered and lower values could not capture the curved
characteristics of the vortex well. For each dimension (x,y,z) of
C(u) = ( f1(u), f2(u), f3(u))

T , a spline fi is calculated. To identify
f , we need function arguments and function values. Thus, we need
an ordered set of points. For this, we use the largest extent of the
vortex to sort the points along this axis. Therefore, we use an eigen-
value analysis to determine the largest eigenvalue λ1 with its cor-
responding unit eigenvector e1. Afterwards, every point pi is pro-
jected along e1: di = 〈pi,e1〉. The ascending sorted distance values
di serve as function arguments of f for all three dimensions (x,y,z).
The amount of the function values forms the x, y and z-position of
pi belonging to di, respectively.

The resulting curve C(u) is sampled at equidistant points C(ui) =
ci such that ‖ci − ci+1‖ = 2mm holds. At each point ci a lo-
cal coordinate system is formed using the approach by Köhler et
al. [KPG∗16]. ci is the center of this system and the local z-axis
corresponds to the tangent at ci. For each ci, the nearest points pi
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Figure 6: 3D glyph-based vortex visualization. The vortex-representing pathlines (a) are clustered (b). For each cluster, a cubic spline (red)
is calculated, and at each spline point an ellipse approximates the local vortex expansion (c). The ellipses are triangulated to a surface (d)
on which the percentage size and RD are depicted using a color-coding and arrow glyphs (e).

are determined based on the Euclidean distance that are projected
in the xy-plane of ci. Based on the projected points that are assumed
to be normally distributed, a confidence ellipse is calculated with a
confidence interval of 95 %. The remaining 5 % are declared as out-
liers and are not considered for the determination of the vortex size.
However, the number of projected points can vary greatly. There-
fore, an ellipse is only calculated if the number of projected points
exceeds a threshold that is set to the 5 % quantile of the projected
points at every ci. Afterwards, the area of the confidence ellipse at
ci is compared to the area of the vessel cross-section at the center-
line point closest to ci. The area of the vessel cross-section can be
derived from the known vessel radius at the centerline point. In this
way, it can be determined how much of the vessel cross-section the
vortex percentage takes up at ci. Finally, the average size is calcu-
lated for all ci, which basically allows a more detailed size division
than the binary expert classification (Req. 3).

Rotation Direction. The RD is divided into right- and left-handed,
see Fig. 4(g) and 4(h). If the vortex rotates in flow direction clock-
wise around the centerline, it is classified as right-handed, other-
wise as left-handed. The RD is determined for each pathline seg-
ment that consists of two successive points pi and pi+1. Both points
are projected in the xy-plane of the point c(pi) that is the nearest
centerline point of pi. The calculation of c(pi) and its local coor-
dinate system was explained in the previous section. For the pro-
jected points p′i and p′i+1, we identify the angle to the x-axis of
the plane using the arc tangent function with two arguments. The
signed angle sizes indicate in which quadrant of the plane p′i and
p′i+1 are located. For example, if p′i and p′i+1 are located in the first
and second quadrant, they present a right-handed segment. If p′i is
arranged in the fourth and p′i+1 in the third quadrant, a left-handed
segment exists. If they are located in diagonal quadrants, the inter-
section between the connecting line and the y-axis is used to define
a RD. Depending on whether a pathline has more right or left rotat-
ing segments, it is classified as right- or left-handed. Similarly, the
vortex RD depends on the amount of right- and left-handed path-
lines. This enables a percentage of right- and left-handed flow per
vortex, which extends the binary division (Req. 3).

5.3. Vortex Visualization

To facilitate the examination and interpretation of the classification
results, we developed a 2D and 3D representation that convey the
calculated vortex characteristics (Req. 4). In the following, both
visualizations are explained in detail.

5.3.1. 2D Vortex Plot

For an occlusion-free depiction of the complex spatio-temporal
vortex behavior we extended the 2D plot by Köhler et
al. [KMP∗15], see Fig. 1. The temporal component of each path-
line point is mapped to the angle. Therefore, the plot area is divided
into T equal large sectors, where T is the number of measured time
steps. Thus, a clock metaphor is used, where the first time step is
located at 12 o’clock; the direction is clockwise. Red time points
represent the systolic phase and blue time points show the diastole.
Moreover, each sector of the plot is subdivided into four segments
along the radius r that represent the four aortic sections. The spa-
tial position starts at r =

√
0.1, which represents the AV location.

For each pathline point, the nearest centerline point is calculated.
Depending on the corresponding vessel section, the radius is lin-
early interpolated from the known radii of the centerline points that
separate the individual aortic sections. Thus, increasing r encodes
positions in the aortic arch and descending aorta. The square root
is used to ensure that inner and outer parts of the plot are repre-
sented with equally large areas. Finally, each plot segment is col-
ored according to the cluster portions. However, the segments are
only colored if at least one third of the vortex pathline points lie
in the associated aortic sections. Furthermore, diastolic pathlines,
which account for less than 10 % of the total flow, were not con-
sidered as diastolic vortex flow by our medical expert. Thus, the
associated plot segments are not colored.

5.3.2. 3D Glyph-based Visualization

We developed a 3D vortex visualization to convey the radial ex-
pansion and RD of vortices. Therefore, we determined the surface
that envelops the vortex, whereupon both properties are mapped.
For the determination of the enveloping surface, the confidence el-
lipses at the spline points of Cu are used. Each ellipse is sampled
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at equidistant points and the positions are transformed back in the
3D coordinate system of Cu. Fig. 6(c) shows the calculated splines
and associated ellipses for three clusters. The 3D points of two ad-
jacent ellipses are triangulated, see Fig. 6(d). It may happen that
no ellipse was calculated for a spline point. In such cases, miss-
ing ellipses were linearly interpolated from adjacent ellipses. The
radial expansion is visualized using a linear color scale, see Fig.
6(e). Areas that occupy less than 50 % of the vessel cross-section
are mapped on the blue gradient and otherwise on the red gradient.
The RD is depicted by arrows on a quadstrip around the surface,
using the approach by Lawonn et al. [LGV∗15]. For a right-handed
vortex, the arrows point in flow direction to the upper right, other-
wise to the top left. Furthermore, the arrows receive the associated
cluster color to generate a correlation between the 2D and 3D de-
piction.

6. Evaluation

We performed a qualitative evaluation of AVOCLA’s results against
a manually generated ground truth of our collaborating experts. We
used 15 datasets: 2 healthy volunteers with a slight physiologic he-
lix in the aortic arch during systole and 13 patients with different
CVDs. Each patient has prominent vortex flow in different parts of
the aorta. The clustering differentiates at most ten clusters via color.
More is not necessary because no more than four vortices occur in
our datasets. The remaining six clusters are used to depict laminar
flow or noise that can be excluded from the subsequent classifica-
tion. Moreover, the experts can merge clusters or change the cluster
number if the automatically calculated number is not appropriate.
For the classification, the experts can manually correct the aortic
subdivision by shifting the cusp point or changing the arc length.
In addition, systolic and diastolic end points can be adapted manu-
ally by clicking into the flow rate diagram, see Fig. 4(c).

6.1. Ground Truth

The ground truth, which comprises the number of vortex clusters
and their characteristics, was manually generated by our experts
using standard flow visualization techniques, such as illumination
and animation. The vessel surface is depicted using the ghosted
view approach [GNKP10]. Processing the 15 datasets took 3h. Es-
pecially the determination of the vortex size has been described as
very difficult. The experts have to view the vortices from many per-
spectives.

6.2. User Study

We conducted a user study with 12 probands, one physician and 11
researchers with background in medical visualization, where our
vortex visualizations were compared to a standard 3D pathline de-
piction embedded in the vessel surface. Thereby, the vessel sections
are color-coded on the centerline similar to Fig. 4(d). The goal was
to assess the capabilities of our 2D and 3D visualization for ex-
pressing AVOCLA’s results. The subjects are asked to perform four
tasks:

1. Assessment of the vortex belonging vessel sections.
2. Determination of the vortex belonging cardiac phase.

RD

SI

V
T

SH

D1 D4 D5 D6D3D2

Figure 7: Classification results for six datasets according to: shape
(SH), temporal occurrence (T), vessel section (V), size (SI) and ro-
tation direction (RD). Each colored column represents a vortex.
The marks show matches and mismatches between the ground truth
and AVOCLA’s results.

3. Identification of the vortex rotation direction.
4. Estimation of the minor or pronounced vortex size.

For each task, we chose four datasets. Two are visualized by our
approach (2D plot: task 1 and 2, 3D glyph: task 3 and 4) and
two with the standard pathline view (PV). The subjects were di-
vided into two groups, and both groups received the same datasets.
However, group A started each task using the PV and group B al-
ways begun with our technique. Moreover, cases that were shown
to group A in the PV, were processed by group B using the respec-
tive own approach and vice versa. Changing the techniques should
reduce the influence of learning effects. The exchange of datasets
between groups ensures that each vortex was evaluated using both
techniques. The results are compared to the ground truth. During
the evaluation, we noted the subjects’ spoken comments and they
had to answer a short questionnaire using a five-point Likert scale
(−−, −, o, +, ++):

1. How difficult was it to solve the task based on the particular
visualization method?

2. How certain are you with your assessment?

7. Results and Discussion

This section presents the results of AVOCLA compared to the
ground truth and the user study. Moreover, we discuss current lim-
itations of AVOCLA. Our approach is implemented on an Intel
Core i7 CPU with 2 GHz, 12 GB RAM and an NVidia GeForce
GT540M. The computation time per case is between 12 and 20 s,
depending on the amount of pathlines. This includes all steps of
the pipeline shown in Fig. 3. The used agglomerative hierarchical
clustering [MLK∗16] could cluster all datasets correctly according
to the manual expert clustering (Req. 1 fulfilled).

7.1. Classification Results

The 15 used datasets contain a total of 30 vortices. Fig. 7 presents
exemplarily AVOCLA’s results for six datasets and the correspond-
ing clustering as well as the 2D and 3D depiction in Fig. 8. In the
following, the colored vortices from these images are referenced.

Vortex Shape: AVOCLA determined the shape correctly for all
vortices. Five vortices were manually classified as vortex, e.g., the
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Figure 8: Clustering and visualization of the classification results for the six datasets from Fig. 7.

blue vortex of D1. These vortices contain at least 62 % vortical and
at most 38 % helical flow. Four vortices were manually classified as
helix, e.g., the purple vortex of D6. AVOCLA computed for these a
minimum helical component of 64.6 % and at most 35.4 % vortical
flow. The remaining vortices were manually classified as interme-
diate shapes, e.g., the purple vortex of D2. The calculations show
very similar flow components with at least 41.8 % helical and 54.6
% vortical flow.

Temporal Occurrence: For the classification of the temporal oc-
currence, AVOCLA initially identifies the systolic and diastolic
endpoint. These points could be automatically calculated correctly
for all datasets. Based on this, AVOCLA determined the correct
phase for all vortices. Systolic vortices contain at least 90.7 % sys-
tolic and maximum 9.3 % diastolic flow. Vortices in both phases
exhibit more similar flow components with a maximum of 68 %
systolic and a minimum of 32 % diastolic flow.

Vessel Section: AVOCLA divides the aorta automatically into four
sections. This partition correlated in 10 datasets with the manual
subdivision, whereas five cases had to be manually corrected, e.g.,
D3. The coarctation of the aortic arch led to a strong vessel defor-
mation, so that the automatic division failed. The subsequent deter-
mination of the vascular sections conformed with the ground truth
for all vortices.

Vortex Size: Eight vortices are manually classified as minor and
the calculated sizes are in the range of 16.8 % - 37.1 %, which
reflects the ground truth. However, for one vortex with a size of
37.1 % the experts expected a smaller size. In this case, the assumed
normal distribution of the pathline points is not satisfied, whereby
AVOCLA overestimates the size. This can also cause that the glyph
drops out of the vessel surface (D2: brown). For six vortices, the ex-
perts were uncertain in their size classification. They supposed that

their expansion is close to the 50 % limit. Three of them were clas-
sified as slightly smaller (rather minor) and three as slightly larger
(rather pronounced). The rather minor vortices have a calculated
size of 46.9 % - 48.3 %, whereas the size of the rather pronounced
vortices is between 50.9 % and 53.6 %. All remaining vortices are
manually classified as pronounced, that is correctly determined by
AVOCLA with a calculated size greater than 50 %. But for three
vortices AVOCLA underestimated the vortex size (D2: brown and
D3: blue and brown). In these cases, the 95 % quantile caused that
too many pathline points are excluded from the ellipse calculations,
because compared to other datasets far fewer outliers are existent.

Rotation Direction: Concerning the RD, AVOCLA calculated a
correct result for 28 vortices. Two vortices (D3: brown and D4:
blue) run neither right- nor left-handed after manual assessment.
Instead, the pathlines run orthogonal to the centerline. We called
this rotation roll over rotation, which cannot be detected by AVO-
CLA until now.

7.2. Results of the User Study

For the interpretation of our predefined Likert score categories, we
provide the number P of participants who chose the individual cat-
egories.

Task 1 Vessel Sections: Each subject had to assess the vessel sec-
tions for eight vortices, four with the 2D plot and four with the PV.
Thereby, the first vortex (V1) is located in one section and the other
three (V2-V4) are located in more sections. For both techniques,
all probands determined the correct section for V1. For V2-V4,
a total of 36 (12 probands·3 vortices) assessments per technique
are given. Using the PV, the correct sections are given 28 times,
whereas in eight cases additional sections are determined. For the
2D plot the correct sections were identified in all cases. Moreover,
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all subjects perceived the plot as very simple (P(++) = 12) and
certain (P(++)= 9; P(+) = 3). The simplicity of the PV was rated
with (P(++) = 3; P(+) = 7; P(o) = 2), whereas its certainty was
rated with (P(++) = 8; P(+) = 3; P(o) = 1). To see the aortic
sections on the centerline, the participants had to deselect clusters,
which complicates the task. Furthermore, they describe the estima-
tion of the percentage of each section to be difficult, which leads to
a reduced certainty.

Task 2 Cardiac Phase: Each proband had to assess the cardiac
phase for six vortices, three per technique. The first vortex (V1)
occurs in the systole, whereas the other two (V2-V3) are extended
to both phases. For both techniques, all participants classified V1
correctly as a systolic vortex. V2 and V3 were also correctly clas-
sified by all probands using the 2D plot, whereas 2 participants
described V2 as a systolic vortex based on the PV. Similar to the
first task, the simplicity of the plot was rated with P(++) = 11 and
P(+) = 1, because the vessel sections and phases can be read out
without any interaction. Its certainty was stated with P(++) = 7,
P(+) = 3 and P(o) = 2, and the subjects pointed out that the plot
opposite the PV required a higher confidence by the user as to the
accuracy of the colored cells. The simplicity of the PV was rated
with P(++) = 3, P(+) = 7, P(o) = 1 and P(−) = 1 because of
the necessary cluster deselection to observe spatio-temporal vor-
tices individually. Uncertainties based on the PV formed when in-
dividual lines were present in the diastole (P(++) = 4; P(+) = 7;
P(o) = 1).

Task 3 Rotation Direction: To determine the RD, six vortices
were selected, three per technique (V1-V3). V1 was located in the
ascending branch and more than 90 % of the lines had the same
RD. V2 had a more difficult distribution of the RD from about
70 % to 30 % and V3 was located in the poorly visible descend-
ing aorta. For both techniques, all subjects determined the correct
RD for V1. Using the 3D glyph, the RD was also correctly deter-
mined for V2 and V3 by all probands. Based on the PV, 11 of the 18
given assessments for V2 and V3 were correct, and 7 times a wrong
RD was specified. The reliable results using the 3D glyph are also
reflected in the perceived simplicity (P(++) = 9; P(+) = 3) and
certainty (P(++) = 11; P(+) = 1). In comparison, the simplic-
ity of the PV is rated with P(+) = 1, P(o) = 4, P(−) = 5 and
P(−−) = 2. The certainty is also reduced (P(+) = 4; P(o) = 4;
P(−) = 4). The glyph abstracts the partially complex flow data and
is therefore more appropriate to depict the RD, especially for the
difficult V2 and V3. Using the PV, the detection of the correct RD
is highly dependent on the complexity and location of the vortex.

Task 4 Vortex Size: The vortex size has to be determined for three
vortices per technique, V1 was considerably minor or pronounced
(< 40 % or > 60 %) and V2 and V3 are classified as rather minor or
pronounced (> 40 % and < 60 %) by the experts. By using the 3D
glyph, all probands could correctly classify considerably minor or
pronounced vortices. Based on the PV, 3 of 18 given assessments
for V1 were wrong. One rather pronounced vortex was wrongly
classified by one proband using the 3D glyph, whereas for the PV
7 of the 18 given assessments for V2 and V3 were not correct. The
subjects describe the size estimation based on the PV as difficult
(P(+) = 1; P(o) = 3; P(−) = 6; P(−−) = 2), because a high in-

teraction effort was needed to see the vortex of all sides. Further-
more, they were unsure with the estimation of the distance between
the vortex and the vessel wall, which is why the certainty was rated
with P(o) = 5, P(−) = 6 and P(−−) = 1. The color-coded 3D
glyph facilitates the estimation of the vortex size, which is reflected
in the improved simplicity (P(++) = 3; P(+) = 7; P(o) = 2). In
addition, the certainty of the volunteers has risen in terms of their
estimates (P(++) = 2; P(+) = 4; P(o) = 5; P(−) = 1).

8. Conclusion and Future Work

In this paper, we presented the method AVOCLA for a semi-
automatic classification of aortic vortex flow extracted from 4D
PC-MRI data. Each vortex is classified according to specific char-
acteristics that are calculated based on geometrical properties and
relations of the pathlines and the vessel surface. This assures a com-
parability of the results. In contrast, manual classifications are time-
consuming and not standardized. The vortex classification requires
a reliable clustering of the incoming pathlines. We choose the ap-
proach by Meuschke et al. [MLK∗16] that is robust against noise
and able to separate spatio-temporally adjacent vortices. Based on
the requirements derived from consultations with our medical ex-
pert and a literature analysis, we identify five important vortex
properties for the classification: shape, temporal occurrence, vessel
section, size, and RD. A common advantage of the clustering and
classification is the possibility to incorporate expert knowledge.
The cluster number can be changed and clusters can be merged
or deselected from the following classification. Moreover, AVO-
CLA’s results, such as the determination of the vessel sections, can
be manually corrected. By manually editing, the expert is allowed
to deal with various aortic shapes caused by different CVDs. Fur-
thermore, our results are able to extend the binary expert classifica-
tions such as the vortex shape. A 2D and 3D visualization present
the calculated vortex properties. The 2D depiction in form of a cir-
cular plot shows the spatio-temporal vortex behavior without any
occlusions. The 3D representation displays the size as well as the
RD by using a color-coding and arrow glyphs. The vortex form is
currently only indirectly depicted by the extent of the 3D glyph.
But a reliable examination of intermediate shapes is not guaran-
teed, which should be improved in the future by adapting the slope
of the used quad strip around the glyph surface to the percentage
helical flow. Moreover, the calculation of the vortex size should be
further enhanced. Possible under- or overestimations could be re-
duced by using optimization methods for the ellipse calculations.
A better ellipse approximation would also avoid that the glyph sur-
face drops out of the vessel surface. In addition, the wall motion
should be considered, since the vortex size is changing relative to
the expansion or contraction of the vessel wall. Furthermore, other
experts should be included in the evaluation of AVOCLA’s results
and we have to check the extent to which a more detailed subdi-
vision of the size or RD improves the binary classification from a
medical point of view.
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