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Abstract. This paper presents an automatic selection of viewpoints,
forming a camera path, to support the exploration of cerebral aneurysms.
Aneurysms bear the risk of rupture with fatal consequences for the pa-
tient. For the rupture risk evaluation, a combined investigation of mor-
phological and hemodynamic data is necessary. However, the extensive
nature of the time-dependent data complicates the analysis. During ex-
ploration, domain experts have to manually determine appropriate views,
which can be a tedious and time-consuming process. Our method deter-
mines optimal viewpoints automatically based on input data such as wall
thickness or pressure. The viewpoint selection is modeled as an optimiza-
tion problem. Our technique is applied to five data sets and we evaluate
the results with two domain experts by conducting informal interviews.

1 Introduction

Cerebral aneurysms are abnormal dilatations of intracranial arteries, resulting
from a pathological weakness in the vessel wall. Their rupture leads to a sub-
arachnoid hemorrhage and is associated with a high mortality and morbidity
rate. The aneurysm’s initiation and outcome depends on different morphological
and hemodynamic factors, whose impact on the individual rupture risk is not
yet well understood. Computational Fluid Dynamic (CFD) simulations enable
the investigation of the patient-specific internal wall mechanics and blood flow
during the cardiac cycle. Experts are interested in correlations between hemo-
dynamic factors that are associated with an increased risk of rupture. Therefore,
hemodynamic and morphological parameters are visualized on the aneurysm
surface simultaneously [1]. The problem of analyzing aneurysm data is twofold:
first, the obtained flow data are very complex, and secondly, adjacent vessels
could lead to occlusions. Domain experts have to manually search for suspicious
regions by selecting views that enable an occlusion-free exploration. This can be
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a tedious and time-consuming process. Therefore, a camera control including an
adequate viewpoint selection is crucial for an efficient analysis.

There are several methods to determine good views for polygonal [2,3], vol-
ume data [4] and vector fields [5,6]. They mainly based on entropy [2], which
is a measure to assess the quality of a view with the aim of maximizing its in-
formation content. For polygonal meshes, the relation between visible polygons
and visible area [2] or surface parameters [3] were maximized. For volume data,
voxel-based entropy functions were optimized and for vector fields, the visibility
as well as flow parameters of streamlines were used. The suitability of a view also
depends on application-specific characteristics, e.g., familiar and preferred views
in surgery. Mühler et al. [7] integrated geometric aspects with such preferences.

In this work, we present an automatic calculation of a camera path to support
the exploration of simulated aneurysm data. The camera path is composed of
optimal viewpoints that present the most interesting regions during the cardiac
cycle based on user-selected morphological and hemodynamic parameters. With
our method, we enable the detection of suspicious surface regions without a time-
consuming manual search. Our collaborating domain experts confirmed that our
method supports the analysis of the time-dependent data.

2 Material and Methods

In this section, we describe the acquisition of simulated aneurysm data as well
as our selection of appropriate viewpoints for the camera path.

2.1 Data Acquisition and Preprocessing

First, contrast-enhanced CT image data of the vessel morphology are acquired.
Based on this, the vessel surface is reconstructed using the pipeline by Mönch
et al. [8]. The 3D aneurysm surface and its parent vessel were extracted by us-
ing a threshold-based segmentation followed by a connected component analysis
and Marching Cubes. The results are evaluated by medical experts to ensure
anatomical plausibility. From the surface mesh, an unstructured volumetric grid
is generated, on which a CFD simulation with a temporal resolution of 93 time
steps is performed, using the STAR-CCM+ (CD-adapco, USA) solver.

2.2 Best Viewpoint Selection

This section explains our viewpoint selection. We describe the formulation of the
target function, the start point sampling and the generation of the camera path.

Target Function: To select viewpoints, a target function f : V → R has to
be formulated that covers the criteria of an optimal viewpoint x ∈ V . Selected
viewpoints are local maxima of the target function that consists of two parts.
The first one is the size of the visible aneurysm surface area, because mostly,
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domain experts are interested in regions on the aneurysm. The second part is
the significance of a surface area according to a user-selected parameter combi-
nation. For the first criteria, we separate the aneurysm from the parent vessel
by segmenting it. This is done by an approach that determines the geodesic
distance on the surface. For this, we place a start point on the aneurysm dome
and compute the geodesic distance based on the heat equation [9]. Afterwards,
we specify the distance that restricts the region of the aneurysm, including the
ostium. For the second criteria, the user has to select two scalar parameters s1
and s2 that she wants to explore. Moreover, the user has to define if lower or
higher values of the respective parameter should be weighted stronger. Based on
the aneurysm segmentation, we implement a GPU-based approach to determine
the target function’s value for a specific viewpoint.

In the following, we explain how the target function f(x) is defined for a
viewpoint x. Every fragment p(x) in the current viewpoint x is assigned a value
t(p(x)). The sum of the fragment’s values yields the target function f(x) =∑

i t(pi(x)). If the fragment p does neither belong to the segmentation nor to the
front faces, we assign t(p) = 0. If t(p) is not equal to zero, the two scalar values
per fragment s1, s2 ∈ [0, 1] are multiplied by 10 and truncated to the nearest
integer values, yielding si1, si2 ∈ {0, . . . , 10}. Moreover, si1 and si2 are squared
to stronger weight interesting values. Additionally, we divide the framebuffer in
n×n subimages and assign a constant factor Bij =

(
n−1
i

)
·
(
n−1
j

)
to each subimage

(i, j) in the design of a binomial filter. We used n = 5. Then, Bij is added to
si1 and si2, depending on the subimage the current fragment belongs to, which
yields the updated values s′i1 and s′i2. This leads to a stronger weighting of si1
and si2, if they occur in the center of the camera view. Lower values of n result in
a too strong weighting of uninteresting surface regions, while higher values lead
to an excessive weighting of small areas. We set t(p) = s′i1+s′i2, which represents
the scalar value for a fragment p. Finally, we determine the target function f(x)
and store the value on an image, which allows a later CPU-based access.

After we used f to find appropriate starting points. The gradient ascent
method is applied to each of them. The goal is to further optimize the two
camera angles and the view direction (x, y, z), which results in five Degrees Of
Freedom (DOF). Each DOF is changed iteratively, f(x) is evaluated and the
gradient of f(x) is calculated. The new viewpoint xnew is calculated by xnew =
xold + s · ∇f(xold), where xold is the current viewpoint, s is the step size and
∇f(xold) is the gradient of f(xold). The gradient ascent stops if the gradient
magnitude falls below a threshold t with t = 0.001. Moreover, f is evaluated for
different values of s, where the integer values range from 1 to 5.

Starting point selection: The camera path should indicate interesting surface
regions during the cardiac cycle. Within a time step, there are mostly several po-
sitions where significant parameter correlations arise. To find these local optima,
we select multiple starting points per time step. It would be possible to define an
arbitrary number of points at arbitrary positions around the aneurysm. However,
possibly the optimization would require many iterations to find local optima.
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Thus, we try to select starting points close to local optima on an approximated
ellipsoid around the aneurysm. The ellipsoid’s axes are the eigenvectors scaled
by twice the eigenvalues of the covariance matrix of all aneurysm’s vertices. The
ellipsoid is sampled by using polar coordinates θ = 2π/36 · i, i ∈ {0, . . . , 18}
and φ = 2π/m · j, with m = 2 · (9 − |i − 9|) + 1, j ∈ {0, . . . ,m}. The scaling
of the ellipsoid’s eigenvalues ensures that the camera has an appropriate dis-
tance to the aneurysm, yielding the viewpoints xi. For each of these candidates,
f is sampled. From this scalar field, we calculate the 90 % quantile and keep
the remaining viewpoints as candidates for possible starting points. To further
reduce their number, we cluster the candidates by using DBSCAN, a density-
based clustering [10] that does not need a priori selection of the cluster number,
because the number of optimal viewpoints is unknown. For each cluster, the aver-
aged position is used as a starting point. However, for DBSCAN two thresholds
must be specified, the minimum number of objects to form a valid cluster, and
a maximum allowed dissimilarity between two objects of a cluster. In our case,
each cluster must contain at least one candidate, and a maximum difference of
20 degrees for both angles, θ and φ, between a candidate and the cluster center
is allowed. Smaller values lead to clusters, where the resulting starting points are
very similar. With greater values the clusters are too large so that not all be-
longing candidates lie within the view frustum of the averaged camera position.

Camera animation: For each simulated time step, our approach calculates a
set of optimal viewpoints. We order these viewpoints by their φ angle within
a time step and connect them to a camera path. Moreover, the viewpoints are
combined between adjacent time steps to generate a global camera animation
during the cardiac cycle. Therefore, for each time step the viewpoint is used first
that has the smallest distance of φ to the last viewpoint in the previous time step.
We move the camera from one viewpoint in time to the next, where the camera
position and view direction is interpolated from their known camera settings in
each render pass. For the interpolation factor t, a cubic easing function is used
with t < .5 ? 4 · t3 : (t − 1) · (2 · t − 2) · (2 · t − 2) + 1. With this the camera
accelerates until halfway between two adjacent viewpoints and decelerates then.
The resulting path enables a smooth animation between two adjacent viewpoints.

3 Results

We calculated camera animations for five data sets, where the results were eval-
uated with two domain experts by conducting informal interviews. The compu-
tation time per time step is between 8 and 10 s, depending on the amount of
starting points. Our testing system uses an Intel Core i7 CPU with 2 GHz, 12 GB
RAM and an NVidia GeForce GT 540M. The experts are one neuroradiologist
with 16 years of work experience and one CFD engineer working on blood flow
simulations for cerebral aneurysms with three years of work experience. They
should assess if the automatic camera path supports the exploration and naviga-
tion within time-dependent data. Moreover, the experts had to manually search
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for suspicious surface regions depending on the selected parameters s1 and s2.
Fig. 1 shows the optimal viewpoints for two data sets at the systolic peak. The
left part shows the segmented aneurysm together with the manually selected
results of our neuroradiologist. In both cases, three optimal views (1,2,3) are de-
tected, presented in the right part of the subimages. In Fig. 1(a) and (b) the Wall
Shear Stress (WSS) and wall thickness are color-coded, respectively, and the wall
deformation and pressure are depicted with illustrative techniques, respectively,
as introduced in [1]. Reddish, dense hatched areas indicate suspicious surface re-
gions. The experts described the camera path as very helpful for the exploration
of the time-dependent data. The automatically selected views correlated with
the manual results within that time step. However, for the manual searching a
series of rotations was necessary. Further, the time-dependent behavior of the
data increases the manual exploration effort, because it is difficult to find critical
regions during animation, since the rotation process itself needs a certain amount
of time. Moreover, the experts liked that no further specification of thresholds
is necessary for the calculation of the camera path. In addition, they described
the animation as helpful for the navigation in 3D. However, it depends on which
part of the aneurysm the users want to navigate their way around. If the users
only want to navigate in a small region such as a bleb, a manual rotation was
preferred. For the time-dependent navigation over the whole aneurysm surface,
the automatic rotation was preferred.

Fig. 1. Exemplary viewpoint selections for two data sets at the systolic peak. The left
part shows the segmented aneurysm together with the manually selected results of our
medical expert. For both, three optimal views (1,2,3) are detected, presented in the
right part of the subimages. In (a) and (b), WSS and wall thickness are color-coded,
respectively, and wall deformation and pressure are depicted by hatching, respectively.
The camera is moving to all positions in a smooth way indicated by the purple spline.
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4 Discussion

We present an automatic selection of occlusion-free views on suspicious surface
regions for cerebral aneurysms based on user-selected parameters. From the view-
points, a camera path is generated over the cardiac cycle. Our domain experts
confirm the importance of camera paths to support the data exploration, be-
cause they enable the detection of suspicious regions without a time-consuming
manual search. A possible application of our method is to get a quick overview
of the aneurysm data, where rupture-prone areas are presented. In addition, our
method could support the clinical report generation and serve as a summary of
a patient’s rupture risk. In the future, the camera path should be calculated in
real time. Moreover, we want to integrate information about specific blood flow
patterns such as vortices into the target function. Then, it would be possible to
select views that present the time-dependent vortex behavior. A possible crite-
rion in this context could be the optimization of the vortex core line visibility.
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