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A B S T R A C T

This paper presents a method for clustering time-dependent blood flow data, represented
by path lines, in cerebral aneurysms using a reliable similarity measure combined with
a clustering technique. Such aneurysms bear the risk of rupture, whereas their treat-
ment also carries considerable risks for the patient. Medical researchers emphasize the
importance of investigating aberrant blood flow patterns for the patient-specific rupture
risk assessment and treatment analysis. Therefore, occurring flow patterns are manu-
ally extracted and classified according to predefined criteria. The manual extraction is
time-consuming for larger studies and affected by visual clutter, which complicates the
subsequent classification of flow patterns. In contrast, our method allows an automatic
and reliable clustering of intra-aneurysmal flow patterns that facilitates their classifi-
cation. We introduce a similarity measure that groups spatio-temporally adjacent flow
patterns. We combine our similarity measure with a commonly used clustering tech-
nique and applied it to five representative datasets. The clustering results are presented
by 2D and 3D visualizations and were qualitatively compared and evaluated by four
domain experts. Moreover, we qualitatively evaluated our similarity measure.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

For the diagnosis and treatment assessment of cardiovascular2

diseases (CVDs), the analysis of patient-specific morphologi-3

cal and hemodynamic data is necessary [1]. This work focuses4

on cerebral aneurysms, characterizing pathologic dilatations of5

intracranial arteries. Their most serious consequence is their6

rupture leading to a subarachnoid hemorrhage (SAH), which7

is associated with a high mortality and morbidity rate [2]. In8

case of a rupture, a treatment is essential. A frequently used9

treatment option is stenting, where the flow is diverted from10

the aneurysm sac by an expandable medical implant (stent).11

However, treatment is also associated with a considerable risk12
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e-mail: meuschke@isg.cs.uni-magdeburg.de (Monique

Meuschke)

of severe complications, such as post-treatment hemorrhaging, 13

which can exceed the natural rupture risk [3]. In most cases 14

an aneurysm is asymptomatic and will never rupture. But due 15

to the poor prognosis of a SAH, aneurysms are usually treated. 16

Thus, it is highly desirable to better understand the individual 17

rupture risk and to restrict treatment to high-risk patients. 18

Unfortunately, the aneurysm progression and rupture de- 19

pends on different factors such as genetics, morphological con- 20

ditions and hemodynamics, where their interplay is not well un- 21

derstood [4]. Hemodynamic data are characterized by quantita- 22

tive parameters such as Wall Shear Stress (WSS), and qualita- 23

tively, e.g., w.r.t. specific flow patterns, such as vortices. More- 24

over, flow patterns are assumed to be related to the success of 25

treatment and their distance to the vessel wall seems to be an 26

important factor for the assessment of the aneurysm’s state [5]. 27

To investigate the influence of flow patterns on the 28

aneurysm’s rupture, medical studies are performed [6]. There- 29
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fore, hemodynamic information are used that can be obtained1

by Computational Fluid Dynamic (CFD) simulations. Flow pat-2

terns are extracted and manually classified according to their3

complexity and stability during the cardiac cycle. The results4

were compared between ruptured and non-ruptured cases to5

identify characteristics associated with rupture. This is a time-6

consuming process in which flow patterns more distant to the7

wall are easily overlooked due to visual clutter and occlu-8

sion. To uncover correlations between flow patterns and the9

aneurysm state, more efficient analysis techniques are essential.10

This requires a reliable grouping of blood flow-representing11

path lines characterizing individual flow patterns.12

In this work, we present a method for an automatic cluster-13

ing of blood flow in cerebral aneurysms over the cardiac cy-14

cle. Blood flow-representing path lines were integrated in simu-15

lated CFD data and clustered to obtain groups with similar flow16

behavior. For this purpose, we extend an established similar-17

ity measure for streamlines to path lines that incorporates their18

temporal component. To explore the behavior of individual flow19

patterns, we provide 2D views linked to a 3D depiction of the20

aneurysm wall and internal blood flow. The 2D views enable21

an occlusion-free visualization of flow patterns, including their22

distance to the vessel wall. The 3D visualization represents the23

focus upon which the exploration of morphological aneurysm24

characteristics together with the blood flow information over25

the cardiac cycle takes place. We integrate these techniques into26

a framework that we developed in collaboration with domain27

experts. In summary, we make the following contributions:28

• An automatic clustering of intra-aneurysmal flow patterns29

over the cardiac cycle.30

• A linked 2D and 3D view of the aneurysm surface and31

internal flow patterns for an interactive exploration.32

2. Related Work33

Our work is related to partition-based blood flow visualiza-34

tion, as well as the visual exploration of aneurysm data.35

2.1. Partition-Based Flow Visualization36

Partitioning techniques decompose flow into areas of com-37

mon structure to investigate hemodynamics. Graphical repre-38

sentatives of flow regions can be computed to generate a visual39

summary or a subsequent visualization can be restricted to re-40

gions with specific properties, e.g., vortices. Such techniques41

are mainly based on integral curves, since in contrast to lo-42

cal vectorial flow data, they represent continuous flow patterns.43

The partitioning is performed in a user-guided [7, 8, 9] or auto-44

matic fashion [10, 11, 12, 13, 14]. Less frequently, local flow45

vectors [15] or aneurysm wall properties [16, 17] are employed.46

User-guided techniques partition integral curves based on47

line predicates (LP) [18], which are Boolean functions that de-48

cide if integral curves fulfill properties of interest. Gasteiger49

et al. [8] applied LP to CFD data of cerebral aneurysms to ex-50

tract flow features, e.g., the inflow jet – the structure of high-51

speed, parallel aneurysm inflow and the impingement zone –52

the region where the inflow jet hits the wall with high impact.53

Based on this, a comparative visualization for evaluating vari- 54

ous stent configurations was presented, integrating morpholog- 55

ical and hemodynamic data [19]. Born et al. [7] utilized LP to 56

identify relevant flow features such as jets and vortices in mea- 57

sured cardiac data. Köhler et al. [9] used different local vortex 58

criteria as LP to filter path lines that represent aortic vortices. 59

Automatic techniques employ a data-driven approach and 60

utilize clustering methods to group integral curves based on 61

a similarity measure. McLoughlin et al. [14] introduced a 62

streamline similarity measure by computing geometrical fea- 63

tures based on the underlying vector field and used an agglom- 64

erative hierarchical clustering (AHC) with average link for par- 65

titioning. Their method was applied to time-dependent data 66

by extracting the geometrical features from the vector field of 67

the corresponding time step. However, the temporal compo- 68

nent was not directly considered. Two geometrically similar 69

path lines occurring in non-overlapping time intervals would 70

have a high similarity. Oeltze et al. [13] compared multiple 71

streamline clusterings in the context of aneurysm hemodynam- 72

ics. Streamline similarities were computed based on line geom- 73

etry [20]. They conducted a quantitative evaluation of k-Means, 74

AHC, and spectral clustering (SC) w.r.t. cluster purity mea- 75

sures, where SC as well as AHC with average link and Ward’s 76

method performed best. Furthermore, a visual summary of 77

blood flow was proposed, containing one representative stream- 78

line per cluster to reduce visual clutter. Englund et al. [10] 79

employed a partitioning approach for the exploration of aortic 80

hemodynamics. They used the Finite-time Lyapunov Exponent 81

to measure the separation of path lines and coherent areas are 82

derived. Liu et al. [11] measured path line similarities using 83

an octree. The space is divided into cubes either by equidis- 84

tant length or by adaptive length that depends on the features of 85

the underlying vector field. A sequence is assigned to the path 86

lines that incorporates the passed cubes, where the similarity is 87

based on the longest common sequence. Meuschke et al. [12] 88

compared multiple clustering methods of path lines represent- 89

ing aortic vortex flow. Path line similarities were computed 90

based on the spatio-temporal coordinates of line endpoints and 91

the line’s average distance to the vessel centerline. AHC with 92

average link performed best in separating vortices. 93

We introduce a time-dependent clustering of flow- 94

representing path lines by extending an eligible approach 95

for streamline clustering [20]. In contrast to the streamline 96

similarity measure by McLoughlin et al. [14], our method 97

directly incorporates the temporal component. If a flow pattern 98

occurs, decays and reoccurs during the cardiac cycle, our 99

method results in several clusters. This is required, since 100

stability of flow patterns is an important criterion in medical 101

studies to predict the rupture risk [6]. Existing methods are not 102

able to represent instable flow patterns by different clusters. 103

Moreover, compared to existing time-dependent clustering 104

approaches [11, 12], we are not dependent on the centerline or 105

the underlying partitioning of the space. 106

2.2. Visualization and Exploration of Aneurysms 107

To visualize the aneurysm morphology, Hastreiter et al. [21] 108

presented a direct volume rendering (DVR) method. Tomandl et 109
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Fig. 1. The preprocessing pipeline. Based on clinical image data, the 3D vessel surface is reconstructed. From this, a volume mesh is generated as input
for the CFD simulation. Based on the simulated data, flow-representing path lines are integrated, which are finally clustered to analyze flow patterns.

al. [22] introduced a standardized vessel depiction using DVR1

for a more objective assessment of the aneurysm morphology.2

Several works parametrize the aneurysm surface to generate3

more abstract representations. Goubergrits et al. [23] mapped4

the aneurysm to a uniform sphere to analyze statistical WSS5

distributions. Meuschke et al. [24] generated a 2D aneurysm6

map by using least squares conformal maps [25] that provides7

an occlusion-free overview visualization. Tao et al. [26] pre-8

sented the VesselMap, a 2D mapping of an aneurysm and parent9

vasculature formulated as a graph layout optimization problem.10

For the simultaneous exploration of anatomical and vecto-11

rial flow data, Gasteiger et al. [27] introduced the FlowLens, an12

interactive focus-and-context approach. However, outside the13

lens area, the flow cannot be observed. To improve this, La-14

wonn et al. [28] provided a vessel visualization such that the15

morphology can be better perceived and the flow is always vis-16

ible. For a more detailed analysis, Neugebauer et al. [17] de-17

veloped a qualitative exploration of near-wall hemodynamics18

in cerebral aneurysms. Several 2D widgets are used to simplify19

streamlines at different surface positions. Gambaruto et al. [29]20

analyzed flow features that are potentially related to aneurysm21

rupture. They extracted critical points related to WSS, vortices22

and surface shear lines, which are visualized using standard23

techniques such as glyphs, vortex-isosurfaces, and streamlines.24

Lawonn et al. [30] presented a framework for an occlusion-25

free blood flow visualization by using illustrative techniques.26

Meuschke et al. [24] extended this approach to investigate mor-27

phological and hemodynamic data simultaneously by providing28

a low-occlusion 2.5D view linked to a 3D aneurysm depiction.29

We visualize flow patterns using a 2D map linked to a 3D30

aneurysm depiction. Existing methods need a lot of user inter-31

action, i.e., interactive lenses [27] or manually selected seed-32

ing regions [17] to find suspicious flow patterns. Based on our33

clustering, our visualizations allow a detailed exploration of in-34

dividual flow patterns and an assessment of the most prominent35

flows without a manual search. In contrast to existing map-36

based visualizations that enable an exploration of scalar data,37

our aneurysm map provides also the depiction of vectorial flow38

data. With this, possible correlations between mechanical wall39

properties and blood flow characteristics can be explored.40

3. Medical and Hemodynamic Background41

In clinical practice, several morphological features of42

aneurysms, such as size, shape and location, are used to as-43

sess the rupture risk [31]. These parameters differ statistically44

significant between ruptured and non-ruptured cases [4, 23].45

However, the patient-specific rupture risk cannot be reliably es- 46

timated using these features. The internal blood flow seems 47

also to play an important role in the initiation, progression, and 48

aneurysm rupture [4]. CFD allows modeling of the hemody- 49

namics resulting in quantitative and qualitative flow parame- 50

ters [32]. Quantitative parameters are, e.g., WSS, whereas qual- 51

itative features comprise specific flow patterns such as vortices. 52

To investigate how flow patterns influence rupture, medical 53

studies manually evaluate the complexity and temporal stabil- 54

ity of flow patterns in ruptured and non-ruptured cases [6, 33, 55

34, 35]. Cebral et al. [6] distinguished three flow types: flow 56

with an unchanging direction, flow with a changing direction 57

and vortical flow. They also considered the size of the im- 58

pingement region and the inflow jet. Non-ruptured aneurysms 59

showed mainly type one with some vortical flow, large impinge- 60

ment regions, and large jets. In contrast, type two with vorti- 61

cal flow was mainly seen in ruptured aneurysms together with 62

small impingement regions and small jets. Castro et al. [34] cor- 63

related rupture to inflow jet structure and peak WSS. Nakayama 64

et al. [35] classified systolic flow in cerebral aneurysms depen- 65

dent on their rotational position. They distinguished the side- 66

type pattern, where the flow began from the side of the ostium, 67

separating the aneurysm from the parent vessel, and the split 68

type, where the flow began from the ostium center. Recently, 69

Futami et al. [33] classified cerebral aneurysms into four types 70

based on the relationship between morphology and inflow jet. 71

Neck-limited jets were correlated to rupture. 72

4. Data Acquisition and Preprocessing 73

For the CFD simulation, a polygonal model of the vascular 74

wall is extracted from clinical CT angiographic images using 75

the pipeline by Mönch et al. [36], see Figure 1. A threshold- 76

based segmentation, followed by a connected component anal- 77

ysis with a subsequent isosurface extraction (Marching Cubes) 78

is applied. Occurring segmentation errors were manually cor- 79

rected and the mesh quality was optimized [37]. Based on the 80

optimized mesh, a hybrid volume mesh was generated as in- 81

put for the simulation. CFD numerically calculates the patient- 82

specific hemodynamics by solving the Navier-Stokes equations, 83

where blood is considered as an incompressible Newtonian 84

fluid [38]. The inlet boundary conditions are derived from two 85

patient-specific velocity profiles [38], lasting 0.93 s and 0.81 s 86

respectively, depending on the patient’s heart rate during acqui- 87

sition. These profiles are used for the remaining cases due to 88

the absence of similar data. This is a reasonable step, since 89

any applied patients heart rate is only a snapshot and varies due 90

to physical activity and health condition. A rigid vessel wall 91
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Fig. 2. Our approach computes the mean distance of two path lines at positions where the time coincides. In case 1 (left), the time interval coincides, in
case 2 (middle), parts of the path lines share the same time interval, and in case 3 (right) the path lines occur at different points in time.

was assumed and the outlet pressure was defined as zero, since1

only the relative pressure is calculated. For every dataset, two2

cardiac cycles were simulated, where the first was discarded3

to avoid inaccuracies from initialization. Based on the CFD4

results, path lines are integrated with an adaptive fifth order5

Runge-Kutta method every 0.01 s on the ostium, to assess the6

aneurysm inflow. For seeding, the centers of the ostium tri-7

angles are used resulting in a homogeneously distributed num-8

ber of vertices to avoid under- and over-representation of flow9

parts. The integration terminates if the current path line leaves10

the spatio-temporal domain. Finally, the ostium surface was11

used to remove path line parts outside the aneurysm that are not12

relevant for the clustering process.13

5. Requirement Analysis14

Our approach is based on the discussion with three domain15

experts: one neuroradiologist treating and researching cerebral16

aneurysms and two engineers working on CFD simulations for17

cerebral aneurysms. We asked them about the importance of18

analyzing flow patterns over the cardiac cycle that was rated19

as highly important by all experts (details can be found in20

Sec. 8.4). The most relevant scientific task of the neuroradiolo-21

gist is to assess the rupture risk. Similar to other medical stud-22

ies [6, 33, 34, 35], morphological and hemodynamic features23

are therefore explored, which might lead to a patient-specific24

assessment of the rupture risk in the future. This includes a25

comparison of ruptured and non-ruptured datasets. Based on26

this, neuroradiologists have to make optimal treatment deci-27

sions. Therefore, they analyze how flow patterns and scalar28

flow parameters are changing depending on different stent con-29

figurations. In contrast, an important task for CFD engineers is30

to validate their simulation results according to physical plausi-31

bility. In addition, a standardized classification method enables32

an objective comparison of datasets w.r.t. the dominant flow33

patterns. Furthermore, the visualization of more than one phys-34

ical quantity at once can help to find spots of fluid wall interac-35

tions. This also requires an exploration of scalar and vectorial36

flow features as well as morphological properties.37

The typical workflow to analyze aneurysm data is quite sim-38

ilar for both types of experts w.r.t. the tasks. They examine39

color-coded scalar parameters on the vessel surface, e.g., WSS40

in combination with flow-representing path lines over the car-41

diac cycle. For a more detailed analysis, flow patterns are man- 42

ually classified by our domain experts according to the flow 43

types defined by Cebral et al. [6]. This process is affected by vi- 44

sual clutter due to the flow complexity, which makes the classi- 45

fication error-prone. To facilitate classification of flow patterns, 46

a computer-based detection is needed. This requires a reliable 47

path line clustering that does not need a priori selection of the 48

(unknown) cluster number. Therefore, a similarity measure is 49

needed that is able to group spatio-temporally adjacent patterns. 50

However, due to the large anatomic diversity, the automatically 51

calculated results will not always be appropriate. Thus, the ex- 52

perts should be able to manually correct the results. 53

In order to verify and interpret the clustering results, both 54

types of experts wanted an adequate visualization of flow pat- 55

terns. A more abstract depiction of the complex flow and vessel 56

morphology would help the neuroradiologist comparing rup- 57

tured and non-ruptured cases. According to the CFD experts, a 58

more simplified depiction would support the assessment of the 59

most prominent flow patterns. Moreover, the neuroradiologist 60

want to evaluate whether local changes of flow parameters oc- 61

cur on morphologically abnormal wall sections to uncover pos- 62

sible rupture-prone correlations. Based on these discussions, 63

we summarize the main requirements for our tool as follows: 64

Req. 1. Clustering. The clustering should separate spatio- 65

temporal flow patterns without a predefined cluster number. 66

Req. 2. Contribution of expert knowledge. The experts should 67

be able to correct the automatically calculated clustering results. 68

Req. 3. Cluster visualization. More abstract visualizations are 69

needed that allow a simultaneous analysis of scalar and vecto- 70

rial flow properties as well as a assessment of flow patterns. 71

6. Blood Flow Clustering 72

In the following, we give a detailed explanation of our path 73

line similarity measure. We proceed with a description of the 74

used clustering method that does not need a priori selection of 75

the cluster number (Req. 1). In the remainder of this paper, we 76

use the following notation. A path line pl consists of vertices 77

V = {1, . . . ,n}, edges E = {(i, i+1) | i ∈ {1, . . . ,n−1}}, and a 78

time set T = {t1, . . . , tn | ti < ti+1} ∈ IRn. The corresponding 3D 79

coordinates of the vertices are denoted with pi ∈ IR3, i ∈V . We 80

use pl(ti) = pi with i ∈ V , ti ∈ T to denote the 3D coordinates 81

of the path line points as a function of time. 82
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Fig. 3. To measure the mean distance of two path lines, the points of the
first line with different times are projected on the other line and vice versa.
Then, the mean distances of the rectangular segments are determined.

6.1. Calculation of the Similarity Matrix1

Our path line clustering builds up on the mean of closest
point distances (MCPD) [20] measure that was successfully
used for streamline clustering [13]:

dM(si,s j) = mean(dm(si,s j),dm(s j,si)) with

dm(si,s j) = mean
pl∈si,

min
pk∈s j
‖pk− pl‖. (1)

This measure determines for every point on the streamline the2

minimum distance to another streamline and averages it. How-3

ever, it does not encode the temporal component. Our distance4

measure integrates the time component of path lines. Inspired5

by MCPD, we incorporate the mean distances of path lines.6

Note, that a path line usually does not exist during the7

whole cardiac cycle due to the high velocities (up to 1.518

m/s) and the small spatial domain size (5-11 mm in the x,y,z-9

direction) [32, 38]. This further means, that the temporal com-10

ponents of two path lines would not have been synchronized for11

integration with a uniform temporal step length instead of the12

used adaptive step length (see Sec. 4). Thus, we have to deter-13

mine corresponding path line points depending on their tempo-14

ral component, which is explained in the following.15

Given are two path lines plk, pll with time components16

tk
1 , . . . , t

k
n and t l

1, . . . , t
l
m for which we like to calculate the mean17

distances. For this, we distinguish three cases, see also Figure 2:18

1. [tk
1 , t

k
n ] = [t l

1, t
l
m] means both path lines occur in the same19

time interval, see Figure 2 (left).20

Fig. 4. Calculation of the mean distance for two path line pairs, where each
line has two points. A sample-based calculation of the mean distance would
result in the same distance for both pairs, although they show a different
behavior. Using the integral-based calculation, the left pair has a higher
mean distance than the right pair.

2. [tk
1 , t

k
n ], [t

l
1, t

l
m] and [tk

1 , t
k
n ]∩ [t l

1, t
l
m],Ø means the path lines 21

share a time interval, see Figure 2 (middle). 22

3. [tk
1 , t

k
n ]∩ [t l

1, t
l
m] = Ø means the path lines occur in different 23

time intervals, see Figure 2 (right). 24

Case 1: In this case, the time components of both path lines 25

coincide: [tk
1 , t

k
n ] = [t l

1, t
l
m]. To determine the mean distance, we 26

need points on both path lines such that their timings coincide. 27

In general, the time components of the points on the first path 28

line vary compared to the points on the second line, see Figure 3 29

(top). Therefore, we place new points on both lines such that 30

the time components coincide, see Figure 3 (bottom). For this, 31

we linearize the time along an edge and determine the position 32

such that the time at this position correspond to the desired time 33

component. This yields two path lines with the same number 34

of points pk
1, . . . ,p

k
M , pl

1, . . . ,p
l
M and the same time components 35

tk
1 , . . . , t

k
M , t l

1, . . . , t
l
M . Note, that tk

1 = t l
1, t

k
2 = t l

2, . . . , t
k
M = t l

M holds 36

by construction of the points, thus we will omit the superscript. 37

Finally, we compute the M− 1 mean distances between the
path line parts given by the curves:

ck(t) = pk
i + t(pk

i+1−pk
i ),

cl(t) = pl
i + t(pl

i+1−pl
i),

t ∈ [0,1], i ∈ {1, . . . ,M−1}.
(2)

The mean distance of two path lines in the time interval
[ti, ti+1] could be determined by a sample-based calculation.
However, the resulting mean distance would be dependent on
the number of samples, see Figure 4. Here, both pairs would
have the same mean distance, although their behavior is differ-
ent. Generating enough samples would converge to the correct
mean distance, but would increases the calculation effort. To
avoid such inaccuracies, the mean distance of both path lines in
the time interval [ti, ti+1] is determined by:

Dkl
(ti, ti+1) =

∫ 1

0
d(t)dt,

with d(t) = ‖ck(t)− cl(t)‖. Thus, the mean distance of two
moving particles is determined by a novel approach using the
integral of the distances, which is of the form:

Dkl
(ti, ti+1) =

∫ 1

0
d(t)dt =

∫ 1

0

√
a+2bt + ct2 dt, (3)

see Section 11 for details. 38
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Fig. 5. Calculation of path line distances for Case 2. Therefore, (at most)
three sets, T k

1 , T k
2 and T l

2 , are distinguished, whereas T k
2 = T l

1 .

Therefore, we determined the M−1 mean distances between
the path line parts Dkl

(t1, t2),D
kl
(t2, t3), . . . ,D

kl
(tM−1, tM),

which yields the overall mean distance:

Dkl =
1

tM− t1

M−1

∑
i=1

(ti+1− ti) ·D
kl
(ti, ti+1). (4)

Case 2: For case 2, we determine the distance of the over-1

lapping temporal part with Eq. 4. Thus, there exist two dis-2

joint sets that partitioned the time set of the path lines such that3

T k
1 ∪T k

2 = [tk
1 , t

k
n ] and T l

1 ∪T l
2 = [t l

1, t
l
n]. Without loss of gener-4

ality, we assume T k
2 = T l

1 , see Figure 5. Then, the distance of5

the set T k
2 is determined based on Eq. 4. To consider the miss-6

ing parts T k
1 and T l

2 , we calculate the mean distance with Eq. 4,7

but change the curves given in Eq. 2. For T k
1 , we alter cl to8

cl = pll(t l
1) = pl

1 (and for T k
1 , we set ck = pk

n).9

Case 3: In case 3, the time intervals do not overlap. Without10

loss of generality, we assume tk
n < t l

1. Again, we determine the11

mean distance with Eq. 4, but change the curves given in Eq. 2.12

First, we set ck = pk
n and determine Dkl (to all line segments on13

pll). Then, we set cl = pl
1, determine Dkl (to all line segments14

on plk), and add this to the result.15

Jaccard Matrix: So far, we determined the mean distances of16

two path lines as basis for the similarity calculation. Besides17

this, we want to ensure that two path lines of case 1 are more18

similar than path lines of case 3. For this, we compute a Jaccard19

matrix J, which uses a Jaccard metric. For two path lines plk, pll20

with time components Tk = {tk
1 , . . . , t

k
n} and Tl = {t l

1, . . . , t
l
m}, the21

Jaccard matrix is given by (J)kl = 1− max(Tk∩Tl)−min(Tk∩Tl)
max(Tk∪Tl)−min(Tk∪Tl)

. In22

case Tk∩Tl = /0, we set max(Tk∩Tl) = min(Tk∩Tl) = 0. Thus,23

if (J)kl = 0, both path lines exist in the same time interval (case24

1). If (J)kl = 1, both lines occur at different points in time (case25

3). Otherwise, they share a time interval (case 2).26

Distance Matrix: Based on the cases 1, 2, and 3 we con-27

struct the distance matrix D with (D)i j = Di j + Ji j ·maxi j Di j.28

Note, with the construction of the Jaccard matrix, we ensure29

that D(case1) ≤ D(case3). For case 2, we have to split the30

distance calculation into (at most) three parts, one or two parts31

of time intervals that do not overlap. In case 3, we have two32

components, which are used to determine the similarity.33

6.2. Path Line Clustering34

The distance matrix is used as input for the path line cluster-35

ing. Each path line is assigned to exactly one cluster. Oeltze36

et al. [13] recommend to use AHC or SC to group stream- 37

lines in cerebral aneurysms. We extend their similarity mea- 38

sure for applying it on path lines and used AHC. Density-based 39

approaches such as DBSCAN are also used to cluster integral 40

lines [10, 12]. However, we reject DBSCAN, since two thresh- 41

olds have to be defined, which essentially determine the clus- 42

ter structure and an appropriate threshold selection can be te- 43

dious [12]. Moreover, using AHC allows to compare our simi- 44

larity measure to existing techniques [12, 13] that used AHC to 45

cluster blood flow-representing lines. 46

AHC is a bottom-up approach, which builds a hierarchical 47

decomposition of a set consisting of n objects based on the sim- 48

ilarity matrix. At the beginning, each object is initialized as a 49

cluster. In an iterative process, the two most similar clusters 50

are fused based on D and a measure of cluster proximity until 51

a single cluster remains. We used average link that is defined 52

as the average distance of all object pairs from two clusters. 53

The cluster hierarchy enables a fast analysis of different clus- 54

ter numbers. Furthermore, AHC is non-parametric, except for 55

D and the proximity measure. To reduce the effort for select- 56

ing an appropriate cluster number, we aim to make a ”good 57

guess” using the L-method [39]. If the automatically calculated 58

number is not appropriate, the expert can incorporate his expert 59

knowledge by chaining the cluster number (Req. 2). 60

7. Visualization of Blood Flow Clusters 61

The path line clusters are visualized in two juxtaposed render 62

contexts that are linked to each other. The first one shows the 63

clusters within the 3D aneurysm, whereas the second provides 64

a more abstract depiction. Here, the clusters are visualized as 65

2D structures. In the following, we comment on the design 66

decisions for the different views and their interplay. 67

7.1. 3D Cluster Visualization 68

The 3D aneurysm view enables a detailed exploration of pos- 69

sible correlations between individual flow patterns that are as- 70

sociated with an increased risk of rupture and high-risk wall 71

regions. Therefore, the aneurysm surface is depicted following 72

the approach by Meuschke et al. [24]. This enables a simul- 73

taneous exploration of two user-selected scalar fields, see Fig- 74

ure 6 (left). The first is depicted using a gray-to-red color scale 75

and the second one is visualized using an image-based hatching 76

scheme. The blood flow is represented by lines and color-coded 77

according to a user-selected property, e.g., the velocity. To an- 78

alyze scalar data and the internal flow simultaneously, we ap- 79

plied Fresnel shading to the vessel’s transparency as suggested 80

by Gasteiger et al. [40], see Figure 6 (right). 81

The simultaneous depiction of all path lines would lead to vi- 82

sual clutter. Therefore, we determined a representative for each 83

cluster that summarizes the blood flow and enables the percep- 84

tion of inner flow structures. We used density-based representa- 85

tives [41] to approximate the shape of the clusters. The method 86

is based on generating a Cartesian grid around the cluster using 87

its axis-aligned bounding box. The grid resolution corresponds 88

to the resolution of the image data that was used to reconstruct 89

the aneurysm morphology. For each voxel of the grid, a density 90
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Fig. 6. Simultaneous exploration of two scalar fields on the aneurysm sur-
face using color-coding (here WSS is depicted) and an image-based hatch-
ing scheme (here pressure is depicted)(left). To reveal the qualitative flow
behavior Fresnel shading is applied to the surface (right).

value is determined by counting the number of passing lines.1

Finally, the densities per line are integrated and the line with2

the highest value is used as representative. The representatives3

are shaded as tubes to improve their perception from a more dis-4

tant point of view. The user can select a specific representative5

by clicking into the scene, which activates the rendering of the6

corresponding path lines of that cluster. This allows a targeted7

exploration of suspicious flow patterns.8

Fig. 7. For generating the 2D map, the user defines markers along the
ostium that are connected to a cut line. The aneurysm surface is unfolded
where the ostium is emphasized in the map.

7.2. 2D Cluster Visualization9

In some cases, the aneurysm morphology is very complex.10

A very irregularly deformed surface complicates the simultane-11

ous exploration of internal flow patterns and scalar wall proper-12

ties. Manual rotations of the surface are necessary to perceive13

the flow behavior and to detect critical wall regions. The time-14

dependent behavior of the data further complicates the explo-15

ration, because it is almost impossible to find critical regions16

during animation, since the rotation process itself needs a cer-17

tain amount of time. To facilitate the flow pattern analysis, we18

provide more abstract visualizations where the aneurysm sur-19

face and the clusters are depicted as 2D structures in two ways.20

7.2.1. Map-Based Cluster Visualization21

Similar to Meuschke et al. [24], we provide a 2D aneurysm22

map in an additional view to avoid visual clutter. The map23

ensures an occlusion-free exploration of a chosen scalar quan-24

tity and shows the flow behavior of individual clusters. There-25

fore, the path line points of a user-selected cluster are projected26

onto the map and are visualized as circles by applying depth-27

dependent halos [42]. In the following, we describe the map28

Fig. 8. Mapping of the path lines from 3D to the 2D aneurysm map. The
path line points are rendered as circles, which leads to occlusion problems
(left). To avoid this, we applied depth-dependent halos to them (right).

generation, including the projection and visualization of the 29

path lines. 30

Aneurysm Separation. The generation of the map requires a 31

separation of the aneurysm surface from the parent vessel ge- 32

ometry, see Figure 7. For this, we asked the user to delineate 33

the ostium, which is achieved by generating a curve around the 34

aneurysm. The user clicks on the surface, which yields con- 35

secutive points on the surface mesh. Once the user finished the 36

drawing, these points are connected to a closed curve by ap- 37

plying the Dijkstra algorithm that determines the shortest path 38

based on the Euclidean distances. Then, the surface is cut along 39

this curve to separate the aneurysm part, which is indicated by 40

two other user-selected points on the aneurysm region. 41

Aneurysm Mapping. After separation, the aneurysm part is 42

used to calculate the map. The map is determined by a 43

parametrization algorithm that maps every point pi ∈ IR3 on 44

the surface mesh to a point p′i ∈ IR2 in the plane. Similar to 45

Meuschke et al. [24], we employ least squares conformal maps 46

(LSCM) to obtain a 2D aneurysm map [25]. LSCM employs 47

the conformality condition, which states that the gradients of 48

the 2D coordinates are perpendicular ∇v = (∇u)⊥, where⊥ de- 49

notes the counterclockwise rotation of 90◦ around the normal 50

n. This method is boundary-free and only two points need to be 51

set as constraints for the parametrization. To establish a spatial 52

correlation between the 2D map and the 3D view, the cut line 53

is color-coded in both views, see Figure 8. Moreover, the user 54

can pick a specific point on the map and the camera rotates au- 55

tomatically to the corresponding 3D position in a smooth way. 56

Path Line Mapping. After generating the 2D map, the path 57

lines are projected on the map. Thus, for each path line point pi 58

the nearest surface point of the aneurysm part p j is determined 59

based on the Euclidean distance, see Figure 9a. For this, pi is 60

orthogonally projected into the triangle’s plane defined by its 61

normal. After projection, we check if the projected point lies 62

inside the triangle by computing the barycentric coordinates. If 63

the point lies inside the triangle, we determine the distance of pi 64

and the projection and store the previously determined barycen- 65

tric coordinates of the triangle. In case the projected point lies 66

not inside the triangle, we compute the nearest point on the tri- 67

angle’s boundary. For this, the distance of pi and the three edges 68

is determined. Again, we store the minimum distance and the 69

barycentric coordinates of the closest point with the triangle. 70
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Fig. 9. First, the path line points are projected onto the aneurysm surface
a). The projected points are used for the 2D map where a quad is gen-
erated around consecutive path line points b). For every point in time a
circle is generated between the projected points c). The contour of the cir-
cle is transformed behind the circle itself d). This yields non-overlapping
contours during the animation e).

This procedure is repeated with all triangles on the aneurysm1

part such that we obtain the minimum distance, the barycentric2

coordinates of the closest point, and the associated triangle.3

Then, all path line points pi are projected on the 2D map4

yielding p′i. To ensure a smooth animation of the points, we5

generate quads on the GPU for the successive path line points6

p′i and p′i+1, see Figure 9b. The quads are equipped with7

a coordinate system that reflects the extent of the quad. In8

y−direction we have [−
√

r,
√

r] and in x−direction we have9

[−
√

r,‖pi+1−pi‖+
√

r]. Here r is used for the radius of the10

drawn circle that represents the animated path line point. A cir-11

cle is drawn on the quad if the animation time t is in [ti, ti+1]12

(the time interval of the current time period), see Figure 9c.13

Fig. 10. Applying depth-
dependent halos to the circles
representing the mapped path
lines. Pixels of the circle con-
tour (zcon) get a higher depth
value than pixels of the inner
area of the circle (zin).

Then, we define X(t) = t−ti
ti+1−ti

·14

‖pi+1 − pi‖ and draw a white15

filled circle if (x−X(t))2+y2 ≤16

r2, again x,y are the coordi-17

nates of the quad, see Figure 9d.18

In case that (x−X(t))2 + y2 ≥19

r2 and (x− X(t))2 + y2 ≤ (r +20

c)2 holds, where c denotes the21

thickness of the contour, we use22

a colored outline and set the23

depth of these fragments higher24

than the (white filled) circle, see25

Figure 10. This avoids over-26

draw between overlapping cir-27

cles, see Figure 9e. However,28

the user can switch between the29

depth-dependent halos and the more cluttered image, see Fig-30

ure 8. The circle contours can be color-coded according to a31

user-selected scalar field, e.g., the distance of the flow to the32

aneurysm wall, using a blue-to-yellow color map. Applying33

the depth-dependent halos avoids also occlusions between the34

circles and the color-coded scalar field on the 2D map, see Fig-35

ure 8 (right). This enables a simultaneous exploration of scalar36

flow and wall properties to detect probably rupture-prone wall37

regions (Req. 3).38

7.2.2. Plane-Based Cluster Visualization 39

To further facilitate the perception of flow patterns, a second 40

2D visualization is provided. This shows the contour of the ves- 41

sel surface and path lines of a user-selected cluster projected on 42

a plane, see Figure 11. Hand-drawn sketches of aneurysms by 43

medical experts show the aneurysm sac as most important fea- 44

ture pointing upwards. To fulfill this, the aneurysm has to be 45

oriented along the y-axis of the underlying coordinate system, 46

see Figure 11 (right). Moreover, an appropriate view should 47

show the maximum extent of a cluster. To construct a projec- 48

tion plane that fulfills both conditions, we perform a principal 49

component analysis (PCA) of the ostium positions and deter- 50

mine the eigenvectors eoi with i ∈ 1,2,3. By using the ostium 51

positions instead of all aneurysm vertices, the viewpoint selec- 52

tion is more independent from the aneurysm shape. We take 53

the eigenvector of the ostium eo3 with the smallest magnitude, 54

which runs similar to the y-axis. Moreover, we perform a PCA 55

of the spatial path line point positions of the cluster and deter- 56

mine the corresponding eigenvectors eci with i ∈ 1,2,3. After- 57

wards, we calculate the scalar product between the eci and eo3. 58

The eigenvector, which is most parallel to eo3 is used as first 59

plane vector. If this vector runs in the opposite direction of eo3, 60

we invert its direction. From the remaining two eci, we choose 61

the one with the largest eigenvalue as second plane vector. If 62

the eigenvalues of both vectors are the same, we take the first 63

one. The remaining eci defines the view direction of the virtual 64

camera. Finally, we project eo3 into the constructed plane and 65

rotate the plane that eo3 runs along the y-axis. This guarantees a 66

view, where the aneurysm points upwards. To calculate the sur- 67

face contour, we used the approach by Lawonn et al. [28]. The 68

contour results from the positions at which the surface normal 69

and the view direction are mutually orthogonal.

Fig. 11. Plane-based visualization of a cluster (right) from the 3D view
(left). On the path lines the distance to the aneurysm surface is color-coded
using a blue-to-yellow color scale.

70

8. Evaluation 71

To assess the quality of our similarity measure, we compared 72

it with other similarity measures. Moreover, we conducted a 73

qualitative evaluation, where participants ranked different path 74

lines according to their similarity. We compared the rankings 75

to our calculated similarities to assess the suitability of our 76

method. Furthermore, we questioned experts to assess the suit- 77

ability of the visualizations and their bidirectional connection. 78
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8.1. Comparison with other Similarity Measures1

We compared our similarity measure with MPCD [20],2

which is used to calculate streamline similarities and the ap-3

proaches by Liu et al. [11] and Meuschke et al. [12] to calcu-4

late similarities between path lines. Moreover, we extended the5

MCPD measure by the temporal component ([20]+t). There-6

fore, we calculate two distance fields d1 and d2, where d1 rep-7

resents the MCPD measure based on the 3D spatial components8

(x,y,z) of a path line point, and d2 represents the MCPD mea-9

sure based on the points’ temporal component t. To be indepen-10

dent from spatial/temporal units of the underlying domain, d111

and d2 are normalized to the range [0,1], resulting in d1′ and12

d2′. The final distance value between two path lines is com-13

puted by adding their corresponding d1′ and d2′ value. With14

this, we evaluated if such a simple integration of the temporal15

component leads to plausible results.16

Fig. 12. Comparison of our similarity measure to MCPD [20] and existing
path line similarity measures by Liu et al. [11] and Meuschke et al. [12].
Moreover, we extended MCPD by the temporal component [20]+t. We cal-
culated the distance values for three path line pairs with the corresponding
distance ranges in brackets. The first pair is spatially similar, but the path
lines occur in different time intervals and should, therefore, not be in the
same cluster (left). The second image shows two cases. The left case should
be more similar than the right one due to the temporal behavior.

Figure 12 shows three pairs of path lines, where the temporal17

component is color-coded. Below, the corresponding distance18

values and ranges are listed. The higher the distance value, the19

less similar the lines are. The path lines in the left image are20

geometrically quite similar, but do not occur in the same time21

interval. Therefore, they should receive a high distance value.22

However, using MCPD the path lines have a low distance mea-23

sure, since only geometrical properties are considered. With24

our approach, the highest distance value can be reached, ensur-25

ing that these path lines would be grouped into the same clus-26

ter only for a very low and inappropriate cluster number using27

AHC. For the remaining three approaches, the distance values28

are quite similar because of the stronger influence of geomet-29

rical properties compared to the temporal distances. The right30

image shows two pairs of path lines that are geometrically less31

similar to each other. Considering the temporal component, the32

left case should be more similar than the right case, which could33

be reached with our method. In contrast, MCPD results in a34

lower distance value for the right case. Integrating the temporal35

component for MCPD ([20]+t) results also into a lower distance36

for the left case. However, the distance value for the left case37

is quite similar to the first case in the left picture, which is not38

desired due to their different temporal behavior. Based on [12], 39

the distance values are quite similar for both cases, since only 40

the lines’ start- and endpoints are considered for calculation. 41

The distance of the right case using the method by [11] is also 42

lower than for the left case, which shows the dependence of the 43

underlying spatial partition into cubes. In contrast to the left 44

pair, the right one shared some cubes. 45

To further evaluate our similarity measure, we compared our 46

clusters with the results of existing similarity measures, see Fig- 47

ure 13. The first row shows a cluster that enters and leaves the 48

aneurysm more distant to the wall, where the temporal compo- 49

nent is color-coded on the lines. Using MCPD (Fig. 13a), lines 50

with different temporal behavior are clustered together. Inte- 51

grating the temporal component (Fig. 13b) leads to a cluster 52

were path lines with a laminar and vortical behavior are grouped 53

together. A similar result is generated with the method by [12] 54

(Fig. 13d), since the geometrical behavior of path line points, 55

which are no start- or endpoints is less considered. Our method 56

(Fig. 13e) leads to a cluster that exhibits only laminar behav- 57

ior without integrating path lines that occur at different times. 58

A similar result could be generated with the method by [11] 59

(Fig. 13c). However, this cluster contains path lines with dif- 60

ferent spatial behavior and the results were sensitive to the used 61

cube size. Small changes of the cube size led to quite different 62

results. The second row shows a vortical flow pattern that be- 63

comes more and more tight over the cardiac cycle. Our method 64

(Fig. 13e) results in a cluster that shows a tight vortex at the 65

end of the cycle. Using the other similarity measures, it is not 66

possible to depict the decay of the vortex by individual clus- 67

ters. Path lines, occurring more early in time occlude the inner 68

vortex structure. However, to cluster instable flow patterns is 69

important, since such patterns are correlated with rupture [6]. 70

In addition, we artificially generated a vortex using:

Ci(u) =


ri · sin(u)
ri · cos(u)

u
(i−1)+u

 , i ∈ {1, ...,100} , u ∈ [0,10π], (5)

where ri =
1
2 cos( 2πi

100 ) · (1+ sgn(cos( 2πi
100 ))) and

sgn(x) =

{
1 if x≥ 0
−1 if x < 0.

(6)

The vortex occurs, decays to a line and reoccurs over time, see 71

Figure 14a. Due to its time-dependent behavior, five clusters 72

are expected showing the vortex occurring and reoccurring, the 73

transition to laminar flow, and vise versa, as well as the laminar 74

flow itself. MCPD (Fig. 14b) and MCPD with time (Fig. 14c) 75

are not able to separate these stages. Similar problems would 76

arise with the method by McLoughlin et al. [14], since just geo- 77

metrical features are considered for calculation, which are quite 78

similar for the phases. The approach by Liu et al. [11] was again 79

sensitive to the cube size and was not able to separate the lam- 80

inar flow (Fig. 14d). Our method (Fig. 14f) and the measure 81

by [12] (Fig. 14e), where the laminar stage was used as center- 82

line, are able to distinguish the individual stages. However, for 83

patterns that are not so perfectly symmetric such as the exam- 84

ple in Figure 13 (DS4), the measure by [12] is not appropriate to 85
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Fig. 13. Two exemplary clusters for two datasets generated with MCPD [20], MCPD [20] with time integration, the approach by Liu et al. [11] and
Meuschke et al. [12] and with our method. The temporal component is color-coded using a blue-to-yellow color map.

Fig. 14. Clustering results for an artificially generated instable vortex that occurs, decays and reoccurs over time. We compared our method to MCPD [20],
MCPD [20] with time integration, the approach by Liu et al. [11] and Meuschke et al. [12]. Due to the time-dependent vortex behavior, five clusters are
expected showing the vortex occurring and reoccurring, the transition between vortex and laminar flow and the laminar flow itself.

cluster instable patterns. These comparisons show that existing1

similarity measures are less reliable than our new approach.2

8.2. Robustness Experiments3

To evaluate the robustness of our similarity measure, we4

added different amounts of noise to the artificially generated5

vortex of Figure 14a. Figure 15 shows the clustering results6

of our measure for three noise levels. The different levels were7

generated by adding a random number rn to the 3D spatial com-8

ponents (x,y,z) of a path line point, where rn was selected in the9

of range of [0, i] with i∈ [0.2,0.6,1.0]. Adding noise to the spa-10

tial position simulates possible occurring artifacts in measured11

or simulated data, whereas temporal noise would not occur in12

measured or simulated data sets due to the predefined time be-13

tween two successive time steps. Our method is able to detect14

the five expected clusters of the vortex representing its different15

stages for the different amounts of noise, which shows that our 16

similarity measure is robust against noise. 17

Besides the robustness analysis of our similarity measure, we 18

perform a qualitative comparison between AHC with average 19

link and SC as described in Oeltze et al. [13] for the artificially 20

generated vortex and the aneurysm data set DS5. For the arti- 21

ficial vortex, there was no visual difference between the results 22

of both clustering methods. SC leads to the same clusters as 23

depicted in Figure 14f. Figure 16 shows exemplary cluster re- 24

sults for DS5 based on AHC and SC. We yielded quite similar 25

results for both methods, which is similar to the findings by the 26

works of [13, 12], who state that both methods lead to reason- 27

able results for blood flow clustering. An in-depth comparison 28

of these techniques based on our similarity measure would be 29

out of the scope of this paper and part of future work. 30
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Fig. 15. Clustering results for the artificial vortex of Figure 14a). We
added different levels of noise to evaluate the robustness of our similarity
measure. Our method is able to detect the expected clusters.

Fig. 16. Exemplary clustering results for DS5 using AHC and SC based on
our similarity measure. Both methods lead to qualitatively similar clusters.

8.3. Participants’ Cluster Comparison1

Due to the absence of a clustering ground truth, this evalu-2

ation should show if the participants’ sense of path line sim-3

ilarity is coherent with our similarity measure. For this, the4

participants ranked different path line pairs manually according5

to similarity for ten cases based on five datasets. Each case con-6

tains four pairs, where one path line was the same for all pairs7

that serves as reference. The cases were generated in the fol-8

lowing way: a path line was randomly chosen. Then, the other9

path lines were ordered according to their similarity. Then, the10

path lines were categorized in four intervals with approximately11

the same interval length (based on the similarity measure). For12

each interval a path line was randomly chosen.13

This evaluation was conducted with 12 participants with14

background in flow visualization ranging from one to six years15

of experience (four years on average). All pairs of a case were16

shown side-by-side within the 3D aneurysm surface. If the user17

rotates one scene, all pairs were rotated synchronously. The18

participants were asked to order the path lines according to their19

similarity to the reference line from the highest to the lowest20

value. Therefore, we color-code the time component on the21

path lines. Besides the manual ranking, we also ranked the path22

Table 1. The results of the manual path line comparisons. The columns
correspond to the different cases. One point was given for no mistake (3),
half a point was given for one mistake (m) and zero points were given for
more than one mistake (7). The last column shows the total number of
reached points for each participant.

1 2 3 4 5 6 7 8 9 10 Total
3 3 3 3 3 m m 3 3 3 9.0
3 m 3 3 3 m 3 3 3 3 9.0
3 3 3 3 3 3 m 3 3 3 9.5
m m 3 m 3 m 3 3 3 m 7.5
3 3 3 3 3 3 3 3 3 m 9.5
3 m 3 m 3 3 3 3 3 m 8.5
3 3 3 3 3 3 3 m m 3 9.0
3 7 3 3 3 3 3 3 3 m 8.5
3 m 3 3 3 m 3 m 3 m 8.0
3 3 m m 3 m 3 m m 3 7.5
3 m 3 3 3 m 7 3 3 3 8.0
m m 3 3 3 7 3 3 3 3 8.0

line pairs according to their calculated similarity using our mea- 23

sure. Finally, we compared our rankings with the manual user 24

rankings, see Table 1. For this purpose, we evaluated the or- 25

der of the path lines with points. If the order of our measure 26

to the participants’ order was the same, we gave one point (3). 27

In case the ordering of one pair was wrong, only half a point 28

(m) was given. In case two or more orderings were wrong, zero 29

points (7) were given. The last column of Table 1 shows the to- 30

tal number of points for each participant. A maximum number 31

of ten points could be achieved in total. The higher the value 32

the greater the consistency between our similarity measure and 33

the manual rankings. On average, 8.5 points were reached. 34

8.4. Informal Expert Feedback 35

The informal evaluation was conducted with four domain ex- 36

perts, two CFD experts P1, P2 with three and six years of ex- 37

perience, respectively, one neuroradiologist P3 with 15 years 38

of experience and one expert for medical flow visualization P4 39

with five years of experience, respectively. The informal study 40

was conducted in two steps: 41

1. Introduction to the framework with the 3D and 2D visual- 42

izations of the flow patterns and the interaction techniques. 43

2. A questionnaire that inquires the importance of intra- 44

aneurysmal flow analysis and the visualization of the clus- 45

tering results. 46

The first step is necessary for the experts to familiarize them- 47

selves with the tool. Then, the experts answered the question- 48

naire using a five-point Likert scale (−−, −, ◦, +, ++). For 49

the analysis of the Likert scores, we provide the number S(·) of 50

experts who chose the individual scale. 51

Evaluation of intracranial aneurysm. All domain experts 52

confirmed the importance to analyze quantitative and qualita- 53

tive flow properties, respectively for the patient-specific rup- 54

ture risk assessment (S(++) = 3; S(+) = 1). The simultane- 55

ous investigation of these factors was rated as highly important 56

(S(++) = 4). The CFD experts stated that a combined analysis 57
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Fig. 17. Exemplary clustering results for three datasets (DS1, DS2, DS3). In the first column, the path lines are color-coded according to their cluster
correspondence. As a preview, the cluster representatives are shown. Column 2-5 show different clusters of the dataset, where the path lines in the preview
are color-coded according to their temporal component.

is necessary to understand the interplay between specific flow1

patterns and scalar data such as WSS. Furthermore, we asked2

about the importance to investigate the distance of flow patterns3

to the vessel wall that was rated with S(++) = 4. P1 stated4

“[...] vortical flow patterns coming close to the wall are more5

associated with rupture than more distant patterns.” Moreover,6

they emphasized the importance of the data exploration during7

the whole cardiac cycle, because it is unknown if the aneurysm8

rupture risk is higher at the systole or diastole (S(++) = 4).9

Flow Pattern Recognition. The experts evaluated visualiza-10

tion techniques to recognize flow patterns. One possibility is11

to show all path lines simultaneously in an animated way. This12

was considered as inappropriate due to occlusion problems and13

visual clutter (S(−) = 1; S(−−) = 3). Coloring the path lines14

due to their cluster affiliation slightly improves the identifica-15

tion of flow patterns (S(◦) = 1; S(−) = 3). In contrast, the16

selection of individual clusters based on the 3D view per mouse17

click was assessed as very appropriate (S(+) = 1; S(++) = 3).18

3D Cluster Visualization. All experts confirmed that the 3D19

visualization of the cluster representatives allows a reasonable20

simplification of the complex flow behavior (S(++) = 4). The21

CFD experts stated the cluster representatives support the as-22

sessment of the most prominent flow patterns, which is one their23

main tasks, see Section 5. Moreover, they stated that the surface24

transparency reveals the qualitative flow behavior (S(++)= 4).25

2D Cluster Visualization. All participants found that the map26

provides a fast overview about a selected scalar field (S(++) =27

3; S(+) = 1). Moreover, they confirmed that the path line pro-28

jection on the map allows a fast detection of possible rupture-29

prone wall regions (S(++) = 2; S(+) = 2). In addition, the30

experts stated that the 2D map reduces the exploration effort in31

3D (S(++)= 3; S(+) = 1). However, for the assessment of the32

most prominent flow patterns, P1, P2 preferred the 3D cluster33

representatives. P3 stated the map would support the compari- 34

son of ruptured and non-ruptured cases due to simplified visual- 35

ization of scalar and vectorial data. The suitability of the plane- 36

based visualization to support the detection of the flow behavior 37

was rated more controversially with S(+) = 2 and S(◦) = 2. P2 38

and P3 argued that the 2D map in combination with the 3D view 39

is sufficient to understand individual flow patterns. Moreover, 40

the experts wished to visualize the used plane also in the 3D 41

view to better understand the underlying projection. Further- 42

more, we asked if the color-coding of the ostium in the 3D and 43

2D view provides a visual correspondence between both views, 44

which was confirmed (S(++)= 4). In addition, the selection of 45

individual points on the map, followed by changing the camera 46

in 3D, was described as helpful (S(++) = 2; S(+) = 2). 47

Finally, we qualitatively evaluated our clustering results with 48

the experts. They visually inspected clusters and stated that they 49

should be spatially compact and temporally coherent. Figure 17 50

shows exemplary results for three datasets DS1, DS2 and DS3. 51

In the first column, the path lines are color-coded according to 52

their cluster correspondence and the cluster representatives are 53

shown as a preview. Moreover, four clusters per dataset are de- 54

picted, where the temporal component is color-coded. All clus- 55

ters are spatio-temporally compact. For example, the purple and 56

blue cluster of DS1 are spatially very similar, but exhibit an op- 57

posite temporal behavior. Thus, they are not grouped together. 58

Reoccurring patterns over time are grouped into different clus- 59

ters such as the pink and yellow cluster of DS2. 60

8.5. Performance 61

Computation times of our approach are listed in Table 2. 62

Memory consumption is not critical. We measured the com- 63

putation time of the similarity matrix and the clustering, which 64
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dependents on the number of path lines and their average num-1

ber of vertices (columns 2-3 in Table 2). Moreover, we deter-2

mine the computation time of the map, which depends on the3

number of mesh triangles (column 6 in Table 2). The timings4

were taken on an Intel Core i7 CPU with 2 GHz, 12 GB RAM5

and an NVidia GeForce GT540M. The computation of the sim-6

ilarity matrix represents the bottleneck, where the clustering is7

quite fast. The computation of the map varies between 1.1 and8

6.8 s, which has to be calculated just once. For the visualiza-9

tion, we reach real-time frame rates of 60 frames per second.

Table 2. Timings [s] of path line clustering and 2D map computation.

Dataset
#Path #Vertices Similarity AHC #Mesh 2D
lines (∅) Matrix [s] [s] Triangles Map [s]

DS1 3218 138 2671 26.9 57.912 6.8
DS2 1932 209 1878 12.3 27.534 3.0
DS3 7999 117 5584 53.4 63.132 4.4
DS4 1704 146 1563 9.2 20.974 1.1
DS5 1435 128 1213 7.1 55.192 6.2

10

Fig. 18. Exemplary cases from the manually performed path line compar-
isons with the calculated distances by our method below. The most similar
(left) and the most dissimilar pair (right) were correctly ranked by all par-
ticipants. Deviations occurred for the middle pairs.

11

9. Discussion12

Similarity Validation. Due to the absence of a ground truth13

to validate our clustering results, we evaluate if our similarity14

measure leads to plausible results. For this purpose, we com-15

pared our calculated similarities with manually prepared simi-16

larity rankings of our participants. The experts stated that path17

lines are similar, if they have a low spatial distance and oc-18

cur in similar time intervals. In contrast, path lines that occur19

in different spatial areas or time intervals are classified as less20

similar. Moreover, path lines that are neither spatially nor tem-21

porally similar should get very low similarity values. Our re-22

sults were consistent with the manual orders in 8.5 points on23

average. Thus, in most cases, the calculated similarity values24

conforms to the rankings of the participants. The expert’s rank-25

ings of cases, showing stronger differentiations in their spatial26

and temporal behavior, i.e. case 5, conform to our calculated27

ranking, see Figure 18. Deviations occurred for cases with a28

more complex flow behavior, such as Case 6, see Figure 18. 29

They ranked the most similar and the most dissimilar pair cor- 30

rectly for almost all cases, but interchanged the second and 31

third rank. The reason therefore were problems to visually esti- 32

mate the distances between corresponding points based on the 33

temporal component. The participants stated that they are less 34

confident with their estimations for these cases and thus, they 35

would prefer to use our measure. In addition, generating such a 36

ground truth is challenging. Path lines would have to be labeled 37

manually according to predefined types. This would be a time- 38

consuming and subjective process, which is highly affected by 39

visual clutter. The time-dependent behavior of the data would 40

further complicates this process. 41

In contrast to existing clusterings, our method allows an anal- 42

ysis of flow patterns that are not stable over the cardiac cycle, 43

since instability is (besides complexity) a major predictor for 44

rupture risk [6]. Vortices that only occur during a specific time 45

interval may be investigated with our approach. Such patterns 46

would probably be missed with a static clustering depending on 47

the selected time step for seeding. 48

Robustness. We could show that our method is robust against 49

noise. However, the measure depends on the most dissimi- 50

lar path line to ensure that D(case1) ≤ D(case3). Thus, our 51

measure might count the same pair of path lines either as rel- 52

atively similar, or as more dissimilar, depending on the pres- 53

ence of outliers. In our cases, this does not lead to inappro- 54

priate results. To overcome this limitation, we would have to 55

change the calculation of (D)i j to (D)i j = 1− 1
(Di j+1) + Ji j or 56

(D)i j = 1− exp(−(D2
i j

σ
))+ Ji j, where σ is a user-defined vari- 57

able. However, with these new calculations of (D)i j, the dis- 58

tance values would not change linearly. This also might lead to 59

inappropriate clustering results. 60

Aneurysm Shape. Currently, the map is designed for saccular 61

shaped aneurysms, where one ostium can be defined. Fusiform 62

aneurysms are dilatations over a certain length of the vessel, 63

where two regions separate the aneurysm from the parent ves- 64

sel. To handle their cylindrical shape, we would have to adapt 65

the 2D mapping by defining three cutting edges, two along the 66

ostium contours and one connecting these two cutting edges. 67

Then, we would unfold the cylindrical structure using the 68

LSCM parametrization. However, saccular aneurysms occur 69

significantly more frequently (≈ 90% of all treated aneurysms). 70

In addition, CFD does not consider the mechanical wall de- 71

formation due to static segmentation of the aneurysm surface. 72

However, intracranial vessels exhibit a low deformation due to 73

the cardiac pulsation. Therefore, a static segmentation allows 74

an estimation of the distance of flow patterns to the wall. 75

Uncertainty. The individual preprocessing steps, image recon- 76

struction, segmentation, and choice of inflow boundary condi- 77

tion are related to uncertainties [43, 44, 45]. To reconstruct 78

angiography images as input for the surface extraction, differ- 79

ent reconstruction kernels can be used. Depending on the se- 80

lected kernel, the vessel diameter and ostium area is influenced, 81

which further leads to differences in hemodynamic values such 82

as pressure and flow magnitude. In addition, the shape of the 83

reconstructed surface and CFD results depend on the selected 84
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segmentation method. Finally, the chosen boundary conditions1

for the CFD simulation influence the resultant vector fields. De-2

riving flow rates from known patient-specific flow rates could3

lead to uncertainties in the CFD results, since flow rates depend4

on different factors such as sex, body size and normal or patho-5

logical variants of vascular anatomy. However, patient-specific6

flow rates are rarely available. In summary, uncertainties arising7

from the individual preprocessing steps could lead to inaccura-8

cies in the resultant flow patterns, i.e., flow patterns could be9

traced that are actually not existing. However, until now there10

is no clear recommendation which methods should be used for11

preprocessing. A more detailed analysis of possibly arising un-12

certainties is beyond the scope of this work.13

Findings. During the evaluation it was transpired that the 3D14

and 2D depictions represent a useful combination for an effi-15

cient exploration of flow patterns. The experts liked the con-16

cept of the linked and juxtaposed 3D and 2D depictions, which17

avoids switching between the views. The 3D view allows a18

detailed analysis of individual flow patterns. Thus, our experts19

were able to find correlations between rupture-relevant flow pat-20

terns and high-risk wall regions, see Figure 19. Here, for two21

datasets DS1 and DS2 the WSS is color-coded and the pres-22

sure is depicted by hatching. The experts analyzed individual23

clusters of both cases. In DS1 they detected a flow pattern that24

orthogonally hits the wall during the whole cardiac cycle and25

could lead to rupture. Conversely, the flow patterns of DS2 run26

along the wall and have therefore been assessed as less rupture-27

prone despite the increased pressure and WSS values. However,28

in some cases the experts were unsure if the current flow pattern29

is closer to the anterior or posterior wall of the vessel. There-30

fore, they wished to have additional clipping planes or a 2D31

color map, coding the distance to the respective wall side.32

Fig. 19. Detailed flow pattern exploration by using different cluster visu-
alizations for two datasets DS1 and DS2. WSS is color-coded and pressure
is depicted by hatching. DS1 can be assumed to be more rupture-prone
due to the flow pattern that orthogonally hits the wall. DS2 was assessed
as less rupture-prone due to flow patterns going along the wall despite the
increased pressure and WSS values.

The 2D map gives a fast overview about possible correlations33

between flow patterns and scalar wall properties. By depicting34

the path lines as circles with depth-dependent halos, the color-35

coded scalar field can be analyzed simultaneously. Existing ap-36

proaches used cut away techniques [30] or surface transparency37

for this purpose [24]. However, with these methods, the vis-38

ibility of the displayed scalar field on the surface is severely 39

restricted, which is avoided with our map-based visualization. 40

Due to the different assessment of the plane-based cluster de- 41

piction, we provide an optional activation of this view. More- 42

over, the experts wished to have more interaction techniques on 43

the map that support the identification of the corresponding path 44

lines in 3D. This could be realized by selecting a specific circle 45

region on the map, followed by highlighting the corresponding 46

path lines in 3D. In addition, the map-based path line rendering 47

using circles was emphasized positively by all experts, because 48

it provides a useful simplification of the complex 3D flow. 49

Further Applications. Our path line clustering may also be 50

helpful to explore the predicted blood flow after different treat- 51

ment options, such as coiling and stenting. Therefore, a visu- 52

alization of the used stent or coils would be required. More- 53

over, a comparative visualization of flow patterns before and 54

after treatment would be necessary to assess the applicability of 55

the used treatment option. Other important applications are re- 56

search and student education. CFD also plays an essential role 57

in other vascular structures, such as the aorta, to better under- 58

stand CVDs, e.g., aortic aneurysms. Our method would prob- 59

ably be useful in these applications as well. However, in the 60

aorta, fusiform aneurysms occur more frequently. Therefore, 61

we should extend our mapping to fusiform aneurysms. 62

10. Conclusion and Future Work 63

We presented a method for clustering path lines in cerebral 64

aneurysms. Besides the aneurysm separation, our method per- 65

forms fully automatically. Our similarity measure extends the 66

MCPD, a reliable measure to determine streamline similarities. 67

We achieved convincing results compared to manual similar- 68

ity estimations of path lines. For clustering, we used AHC, 69

an established method to group integral lines. This assures a 70

comparability of datasets and reproducibility of the results. In 71

contrast, a manual analysis of flow patterns is time-consuming. 72

A common advantage of AHC is the possibility to incorporate 73

expert knowledge. The cluster number can be changed, which 74

allows an investigation of alternative cluster configurations. 75

At the moment, there is no calculable value that indicates the 76

rupture probability, because rupture seems to depend on various 77

factors, i.e., on inflammation processes that cannot be modeled 78

until now. Moreover, clinicians evaluate the rupture risk differ- 79

ently based on their experience. Our tool provides a faster and 80

more objective analysis of suspicious flow patterns into clini- 81

cal discussions by providing a time-dependent clustering and 82

efficient exploration techniques. Our domain experts stated that 83

they want to use our framework for a larger study in the future 84

to investigate possible correlations between flow patterns and 85

rupture and to analyze flow patterns with different stents. 86

In the future, we want to perform a comparison of our 87

current similarity measure and the suggested solution in Sec- 88

tion 9 to overcome the global distance calculation. Further- 89

more, the generation of the 2D map is currently restricted to 90

the aneurysm. We would like to compare other mappings that 91

preserve the aneurysm shape including adjacent vessels. This 92

would be important for the analysis of different stents and their 93
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influence on the blood flow in adjacent vessels. In addition, our1

technique will form the basis for an automatic classification of2

flow patterns based on the manual approach by Cebral et al. [6].3

Related to this, we want to integrate an automatic determination4

of inflow jets and impingement zones. Another interesting point5

would be a perception-based user study that evaluates concepts,6

i.e., color or illustrative techniques, to encode scalar values on7

lines such as the distance of path lines to the aneurysm wall.8

11. Appendix9

Mean distance of two path lines: The mean distance of both
path lines in the time interval [ti, ti+1] is determined by:

Dkl
(ti, ti+1) = lim

N→∞

N

∑
i=0

1
N +1

‖ck(i/N)− cl(i/N)‖︸                      ︷︷                      ︸
d(i/N)

= lim
N→∞

N

∑
i=0

 i+1
N +1︸   ︷︷   ︸

ti+1

− i
N +1

 ·d(i/N)

= lim
N→∞

N

∑
i=0

(ti+1− ti) ·d(ti)

=
∫ 1

0
d(t)dt.

Thus, the mean distance of two moving particles is determined10

by a novel approach using the integral of the distances.11

Integral form: The integral of the mean distance of two curves
given in Eq. 2 is of the form:

Dkl
(ti, ti+1) =

∫ 1

0
d(t)dt =

∫ 1

0

√
a+2bt + ct2 dt, (7)

where a = 〈pk
i −pl

i ,pk
i −pl

i〉, b = 〈pk
i −pl

i ,p−pk
i −pl

i+1 +pl
i〉,12

and c= 〈pk
i+1−pk

i −pl
i+1+pl

i ,p−pk
i −pl

i+1+pl
i〉. This integral13

can be solved analytically.14
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[9] Köhler, B, Gasteiger, R, Preim, U, Theisel, H, Gutberlet, M, 47

Preim, B. Semi-automatic Vortex Extraction in 4D PC-MRI Cardiac 48

Blood Flow Data using Line Predicates. IEEE Trans Vis Comput Graph 49

2013;19(12):2773–82. 50

[10] Englund, R, Ropinski, T, Hotz, I. Coherence Maps for Blood Flow 51

Exploration. In: EG VCBM. 2016, p. 79–88. 52

[11] Liu, R, Guo, H, Zhang, J, Yuan, X. Comparative visualization of 53

vector field ensembles based on longest common subsequence. In: IEEE 54

PacificVis. 2016, p. 96–103. 55
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