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ABSTRACT

Surface models from medical image data (intensity, binary) are used for evaluating spatial relationships for
intervention or radiation treatment planning. Furthermore, surface models are employed for generating volume
meshes for simulating e.g. tissue deformation or blood flow. In such applications, smoothness and accuracy
of the models are essential. These aspects may be influenced by image preprocessing, the mesh generation
algorithm and mesh postprocessing (smoothing, simplification). Thus, we evaluated the influences of different
image preprocessing methods (Gaussian smoothing, morphological operators, shape-based interpolation), model
generation (Marching Cubes, Constrained Elastic Surface Nets, MPU Implicits) and mesh postprocessing to
intensity and binary data with respect to its application within surgical planning and simulation. The resulting
surface meshes are evaluated regarding their smoothness, accuracy and mesh quality. We consider the local
curvature, equi-angle skewness, (Hausdorff) distances between two meshes (before and after processing), and
volume preservation as measures. We discuss these results concerning their suitability for different applications
in the field of surgical planning as well as finite element simulations and make recommendations on how to receive
smooth and accurate surface meshes for exemplary cases.
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1. INTRODUCTION

Patient-specific medical surface models are used to convey the morphology of anatomic and pathologic structures
as well as spatial relations between them. Moreover, surface models are essential for generating volume models
for simulations where the blood flow or the behavior of tissue is simulated. The surface meshes are reconstructed
from volume data, e.g. from computed tomography (CT) or magnetic resonance imaging (MRI). The structures
need to be identified and delineated by user interaction (e.g. manual segmentation), automatic or semi-automatic
approaches. Thus, the generation of surface models from medical image data is a multi-stage process including
segmentation and preprocessing of relevant structures, mesh generation and mesh postprocessing (e.g. simpli-
fication, smoothing, remeshing). An inherent problem of medical image data is the limited resolution and the
anisotropic character of the voxels (slice thickness is usually considerably larger than the in-plane resolution).
Thus, the surface meshes may contain several artifacts, such as staircases, terraces, holes, and noise. In med-
ical visualization, these models should look naturally, referring to smoothness of the surface, since anatomical
structures usually do not exhibit sharp edges. A natural appearance is particularly desired by surgeons, since
it resembles the intraoperative experience. The artifacts represent strong differences compared to the original
structure and influence the visual and numerical evaluation of spatial relationships. For surgical planning it is
essential to employ accurate models to ensure the correct computation and visualization of safety margins and
potential infiltrations. Accuracy can therefore be regarded as preservation of volume and shape of the individual
structures but also as preservation of distances between relevant neighboring structures. Within other applica-
tions, such as computational fluid dynamics (CFD) and simulation of tissue deformation, smooth and accurate
surface models are required to enable convergence of numerical simulation. The number and quality (size and
shape) of the triangles affect the accuracy of numerical computations on medical data. Triangles with bad ratios
of minimum and maximum angles and strong differences in size of the triangles will prevent convergence of the
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underlying equations and lead to interpolation errors. Hence, the generation of smooth, uniform and accurate
triangle meshes is desirable.
However, there are methods available to solve the specific problems, but recommendations on how to parametrize,
combine and apply them to medical image data for surgical planning and simulation are missing. The influence
of mesh postprocessing (smoothing) has been examined,1 but the effects of filtering or resampling of binary
masks on the accuracy of the resulting surface models are not clearly documented. Hence, we selected common
preprocessing methods (image smoothing, morphological operators, shape-based interpolation) and applied them
to binary masks of anatomical structures. We evaluated their influence on accuracy of the surface models and
discuss the suitabilty for simulation purposes. Furthermore, we investigated the influence of different mesh gen-
eration algorithms with subsequent mesh postprocessing (smoothing, remeshing) to allow for general suggestions
on mesh generation pipelines.

2. DATA AND RELATED WORK

In medical visualization, input data for model generation are intensity data (e.g. derived from computed to-
mography (CT) or magnetic resonance imaging (MRI)) or binary masks of the same data. However, both may
introduce problems to the model generation process. In the following, we characterize these data and discuss
aspects related to the mesh generation pipeline (image preprocessing, model postprocessing).

2.1 Binary and Intensity Data

Binary masks are derived from medical volume data by preprocessing and segmenting the target structures (e.g.
bones, vessels, liver, lymph nodes, ...) resulting in binary images which can be transformed into a surface mesh
using e.g. the Marching Cubes (MC) algorithm,2 Constrained Elastic Surface Nets (CESN),3 or level-set meth-
ods.4 Binary segmentation removes all intensity information from the image data and reduces the structures
to voxels classified as object and background. Unfortunately, depending on the model generation algorithm,
binary segmented image data may introduce additional artifacts (e.g. staircases, terraces, frayed parts or holes)
to the final model which can be reduced by suitable preprocessing of the segmentation masks (e.g. increas-
ing the resolution by interpolation, smoothing, morphological operators) or subsequent mesh postprocessing
(smoothing). Alternatively, the Constrained Elastic Surface Nets (CESN) method combines reconstruction and
iterative smoothing (forcing the surfaces nodes to remain within their original cells). This can be compared to
a MC surface mesh with consecutive (node position restricted) laplacian smoothing. CESN guarantees a certain
smoothness reducing terracing artifacts but retaining features, but larger terraces may still remain to the model.
Very thin structures (diameter <= voxel size, e.g. blood vessels) tend to collapse to a line.
Applying surface reconstruction methods, such as the MC algorithm, to non-binary data is promising but may
still not remove all critical artifacts reliably. Mesh generation from intensity data can be a difficult task which
can be facilitated by knowledge on the intensity range or shape information. The specification of an appropriate
isovalue can avoid small staircases. However, intensity inhomogeneities along the borders of the structures (e.g.
due to non-uniform distribution of contrast agent in vessels during image acquisition) and similar intensity values
of adjacent structures will lead to wrongfully included or excluded parts (see Fig. 1). Thus, larger terraces caused
by anisotropic voxels may still remain to the final model.
Involving additional information (e.g. on the expected shape) can help to overcome such identification problems.
A promising example for direct mesh generation from intensity data are 3D stable mass-spring models,5 since
the model initially represents an average shape of the target structure without voxelization-related artifacts that
iteratively adapts to the real data. Size and number of triangles depend on the initial model and are chosen
appropriately. Important (small) features can still be detected and extracted as long as they are included in the
model. Unfortunately, due to their aberrant shape, pathological structures can typically not be reconstructed
such that the methods can not be used generally.
The application of general mesh generation methods to fine, elongated, and branching objects (e.g. vasculature,
bronchial trees) often gives unsatisfying results with strong artifacts and thin branches collapsing to lines. Spe-
cialized methods, such as Convolution Surfaces6 or MPU Implicits,7 lead to an improved visual quality at the
expense of a higher computational effort but might be a better choice for small and elongated structures (e.g.
vasculature, bronchial trees, thin bondes) where the structure’s main axis is unfavorable with respect to the slice



Figure 1. The figures show the intensity data (left) of a neck CT dataset overlayed with the dilated binary mask of the
arteria carotis. The different 3D models show the vascular structure generated via MC from a CT dataset (masked with
the dilated segmentation mask, colored red) with increasing isovalues from left to right. Volume, smoothness and artifacts
are strongly affected by intensity inhomogeneities, such that the result is often a tradeoff between staircase artifacts or
frayed/missing parts.

direction.
Combining the information of intensity and binary data can increase accuracy and robustness of mesh generation.
Masking the intensity data with a dilated or eroded binary segmentation can prevent from involving or removing
too many voxels by mistake and therefore restrict surface extraction to a certain error level. However, this
can also not completely prevent from terracing artifacts, and further mesh postprocessing should be considered.
Alternatively, subsequent adjustment of the surface using gradient information from the image data as presented
by Bruin et al.8 is also feasible, since accuracy and smoothness can be improved compared to the original CESN
method.

2.2 Image Preprocessing

For the reduction of the mentioned problems, a wide range of methods is provided by image processing. To
account for artifacts from highly anisotropic voxels, increasing the resolution in slice direction using shape-based
interpolation9 is often applied to the image data. Different interpolation methods affect smoothness, but also
accuracy of the models resulting from mesh generation. Smoothing operators (e.g. Gaussian smoothing, diffusion
filters) are usually employed to reduce noise within structures. They might also improve smoothness of the sur-
face and thus reduce segmentation artifacts. However, smoothing filters are usually applied to intensity data to
reduce noise within the structures preserving the borders (e.g. anisotropic diffusion). Additionally, small holes or
noisy voxels at the segmentation borders can also be removed using morphological operators (opening and clos-
ing). However, manipulation of the image data might cause strong changes regarding accuracy of the final models.

2.3 Model Postprocessing

Irrespective of the input data and the mentioned visual artifacts, surface reconstruction often results in large
numbers of small and possibly badly shaped (elongated) triangles. Especially within finite element method
(FEM) simulations, size, shape and number of surface elements are relevant. As a consequence of anisotropic
voxels the triangles often tend to be elongated decreasing the overall mesh quality and simulation accuracy.



Thus, simplification and remeshing steps10 are necessary to meet the requirements of performance and numerical
computations (e.g. using quadric error metrics11). Besides resolution, the quality of the triangles affects inter-
polation steps in simulations of e.g. blood flow in CFD.12 The MC algorithm may additionally raise problems
due to ambiguities (see also13) and will not remove any possible artifacts.
Noise, staircase artifacts, or plateaus resulting from the limited resolution can be removed by appropriate mesh
smoothing operations reducing the local curvature (e.g. Dual Marching Cubes,14 Laplace filter, Laplace+HC,15

Mean Curvature Flow,16 or Taubin’s λ|μ(LowPass) smoothing17). Many of the related methods focus on the
removal of noise,15, 18 which arose e.g. as an artifact of laser scanning and have not been applied to medical
data.16, 19 Especially Belyaev et al.19 compared mesh smoothing approaches by adding noise to a perfect artifi-
cial reference mesh and subsequently smoothed it. Similarly, Desbrun et al.16 focus on the treatment of noise
and uneven edges using diffusion and curvature flow. Furthermore, the preservation of sharp edges does not fit
to the application on medical data because of anatomical structures typically having smoother shapes. Bade et
al.20 compared different smoothing algorithms for models derived from binary segmentation masks but did not
involve intensity information, neither for initial model generation nor during surface enhancement. Furthermore,
they presented a smoothing constraint to preserve accuracy during mesh filtering.1

2.4 Requirements

Obviously, medical image data exhibits further artifacts which need to be reduced for optimally supporting
surgical planning, intervention planning, CFD or tissue simulation where anatomical structures need to be
displayed or simulated faithfully. The requirements to be considered by the model generation pipeline can be
summarized as follows:

• The generated surface should represent the object boundary as close as possible.

• Distances between neighboring structures might not be changed.

• Staircases and terraces have to be reduced or removed as they are caused by discretization and segmentation
and do not represent the typical shape of anatomical structures.

• Sharp edges should be avoided, since anatomical structures do not exhibit such surface shapes (in contrast
to CAD).

• Remaining artifacts should not be emphasized by the mesh generation algorithm.

• Frayed parts (caused by over-/undersegmentation) have to be removed or reduced, since they are additional
or missing parts.

• The mesh resolution has to be chosen adequately to represent the individual anatomical shape and relevant
features.

• With respect to performance aspects but also numerical accuracy during simulation the mesh should not
be over-/undersampled.



Figure 2. The figure shows the three target structures (colored by euclidean distances to each other, in mm) generated
from binary masks using Marching Cubes algorithm without further pre-/postprocessing.

3. INFLUENCES OF PREPROCESSING

The preprocessing of image data can help to improve the visual quality of surface models. However, altering the
image data may also have strong influences on the accuracy of the resulting 3D models.

3.1 Sample Data

We decided to apply different types of preprocessing methods to binary segmented structures of the neck.
Neck surgery is a typical example where different categories of anatomic shapes are located very close to
each other. We refer to three characteristic structures from a clinical CT dataset of the neck (voxel size:
0.453mm×0.453mm×3mm). Since the structures often exhibit similar intensity values, the selected structures
have been segmented by a medical expert: (1) a vessel (arteria carotis), (2) a tumor located directly near the
vessel, and (3) a muscle (sternocleidomastoid muscle, SCM) located close to both (see Fig. 2). For generating
initial surface models, we employed the Marching Cubes algorithm (IsoValue=0.5×MaxValue) without any mesh
postprocessing. These models are used as reference data.
For artifact reduction, we increased the resolution in slice direction to isotropic voxels using shape-based interpo-
lation (with linear, hermite spline, and cubic b-spline interpolation). 3D Gaussian smoothing (3×3×3 and 5×5×5
voxels) has been applied, since smoother boundaries in the image data should allow for smoother surfaces after
reconstruction. Furthermore, morphological operators, such as dilation and erosion (spherical kernels: 3×3×3
and 5×5×5 voxels), have also been applied to remove smaller frayed parts or holes at the object boundaries.
Image smoothing and morphological operators are applied to the initial segmentation masks and the resampled
data.
To evaluate the influence of these methods to the mesh generation process, we considered smoothness, volume
preservation and accuracy (distance preservation) of the initial and resulting surface models. Smoothness is in-
terpreted as average maximum node curvature to show the effects on artifacts, such as staircases exhibiting high
curvature values. Distance preservation is evaluated in terms of the Hausdorff distance (in relation to the specific
voxel diagonal) between the initial model (generated from the original segmentation masks) and the processed
models. We consider distance values of <0.5×voxel diagonal as acceptable. However, in case of frayed parts
or strong contour differences between neighboring slices, even stronger distance changes might be acceptable in
selected cases.

3.2 Results

In terms of accuracy, our tests showed that the mesh generation process is very sensitive to the considered pre-
processing methods. For all employed structures, Gaussian smoothing could slightly reduce the overall maximum



(a) Tumor (b) Sternocleidomastoid Muscle (c) Arteria Carotis

Figure 3. The three images show the surface models generated from the initial segmentation masks (colored mesh) and
from image data after Gaussian smoothing (3×3×3, gray colored surface). The meshes are colored by the Euclidean
distances (in mm) between each two models.

curvature (depending on kernel size, see Tab. 1), whereby accuracy decreased significantly (e.g. 2.11 and 3.21 ×
voxel diagonal for the tumor data). The main differences to the initial model occured where the segmentation
borders show a strong variation from slice to slice (see Fig. 3(a)). In contrast, the effects of smoothing (3×3×3)
to the more continuous vessel data are more acceptable (volume changes <4%, avg. max. curvature reduced
by ≈28%, Hausdorff distance 0.87×voxel diagonal, see Fig. 3(c)). Looking at the results for the muscle data
showed problems for parts of the structure, where there is nearly no segmentation overlap between neighboring
slices (as indicated in Fig. 3(b), bottom right part of the model).
For the opening operators (both kernel sizes), nearly no volume change was noticed and the Hausdorff distance
for the vessel (0.26 and 0.41× voxel diagonal) and the muscle (0.47 and 0.60× voxel diagonal) data remained
low. In contrast, the tumor data with strong inter-slice variations of the segmentation borders resulted again in
unacceptable inaccuracies. Closing operations caused strong volume shrinkage and thus large Hausdorff distances
to the original surface model.
Resampling of the segmentation masks via shape-based interpolation achieved very good values in terms of
volume preservation and accuracy for all examined anatomical structures. Curvature reduction could only be
achieved by subsequent smoothing of the resampled data (see Tab. 2). Cubic B-spline interpolation yielded
unacceptable distance values (≈2-3× voxel diagonal) for the tumor and muscle dataset.

4. MESH GENERATION AND POSTPROCESSING FOR SELECTED CASES

The choice of an appropriate workflow for the generation of smooth and accurate surface models depends on
the data and subsequent usage of the resulting mesh. Applications, such as surgical planning, primarily require
accuracy, whereas CFD or the simulation of tissue additionally involve mesh quality (shape, resolution). We
selected data from two different fields to discuss and evaluate basic mesh generation and postprocessing methods
with focus on the requirements specified in Section 2.4.

4.1 Neck Surgery

The neck contains a variety of close and differently shaped anatomical structures (e.g. lymph nodes, vessels,
pharynx, muscels, thyroid cartilage, bones, salivary glands). Medical visualization is applied to evaluate their
spatial relations (e.g. extent of a tumor and its possible infiltration to surrounding structures). Hence, accuracy
regarding the distances between the structures and their exact shape and size are most important for the correct
interpretation of safety margins in surgical planning. As an example, we refer again to a CT dataset (voxel size:
0.453mm×0.453mm×3mm) of the neck with a tumor located close to important vessels, such as vena jugularis



Table 1. The table shows the results for selected preprocessing methods. Distances are given as the Hausdorff distance as
fraction of the original voxel diagonal compared to the reference model.

Model Filtering Kernel Size Volume (%) Avg. Max. Curvature Distance

Tumor none none 100 0.44 0
Gauss 3×3×3 97.26 0.37 2.11
Opening 3×3×3 104.89 0.43 3.23
Closing 3×3×3 90.06 0.43 3.47
Gauss 5×5×5 96.55 0.31 3.21
Opening 5×5×5 108.72 0.42 3.24
Closing 5×5×5 82.73 0.39 3.8

Arteria Carotis none none 100 0.64 0
Gauss 3×3×3 96.14 0.46 0.87
Opening 3×3×3 102.20 0.63 0.26
Closing 3×3×3 90.62 0.61 1.46
Gauss 5×5×5 93.49 0.42 1.06
Opening 5×5×5 104.44 0.62 0.41
Closing 5×5×5 78.82 0.61 2.29

SCM none none 100 0.52 0
Gauss 3×3×3 98.97 0.30 1.88
Opening 3×3×3 100.85 0.50 0.47
Closing 3×3×3 97.24 0.48 3.66
Gauss 5×5×5 98.33 0.24 1.99
Opening 5×5×5 101.16 0.50 0.60
Closing 5×5×5 94.32 0.48 3.96

Table 2. The table shows the results for shape-based interpolation (hermite spline) and subsequent application of the
filtering methods. Distances are given as the Hausdorff distance as fraction of the voxel diagonal.

Model Filtering Volume (%) Avg. Max. Curvature Distance
Tumor none 99.36 0.60 0.30

Gauss 99.17 0.41 0.35
Opening 99.89 0.58 0.83
Closing 98.61 0.59 0.51

Arteria Carotis none 98.36 0.68 0.30
Gauss 97.65 0.51 0.33
Opening 99.62 0.66 0.30
Closing 97.01 0.66 0.30

SCM none 99.44 0.57 0.30
Gauss 99.22 0.35 0.40
Opening 100.00 0.53 0.32
Closing 98.62 0.54 0.77



and arteria carotis.
Pathological structures, such as tumors, can usually not be identified automatically, which necessitates manual
segmentations involving anatomical knowledge. We applied the MC algorithm to the binary mask of a tumor
with subsequent volume preserving smoothing (Laplace+HC or Taubin’s λ|μ filter) and additional node posi-
tioning constraints (restricting to cubical or diamond cells). This eliminates sharp artifical edges and smaller
staircase artifacts but does not alter the segmented contours, which is important since especially tumors often do
not exhibit completely smooth contours. As depicted in Table 3, an appropriate mesh smoothing (Laplace+HC,
10 iterations, λ=0.5, node position restricted to cubical cells) preserves the volume (99.09%), whereas the mean
curvature is obviously reduced. The CESN method, which is comparable to the mentioned steps, achieves similar
results and yields just a negligible volume shrinkage (97.63% volume preserved). However, the tumor model still
suffers from strong terracing artifacts due to 3mm slice thickness (vs. 0.45mm in-plane resolution). A smooth
model could only be achieved by very strong mesh smoothing which would evoke inacceptable inaccuracies. Since
the correct spatial extent of the tumor is most important in surgical planning and the shape of pathological struc-
tures might be very irregular, preservation of shape and distances should be preferred to visual quality in that
case.
Vasculature may also be hard to distinguish from surrounding tissue by analyzing the intensity values only.
However, masking the intensity data with dilated binary segmentations as boundary constraint can exclude false
additional or detached parts and thus allow mesh generation via MC. Subsequently applying node position con-
strained mesh smoothing (Laplace+HC, 10 iterations, λ=0.5) results in a smooth and accurate vessel model (see
Tab. 3, 99.56% volume preservation, mean curvature reduced to 0.265) as long as the target structure does not
contain filigree parts. The comparable CESN approach yields similar results regarding smoothness but suffers
from stronger volume shrinkage (14.25%). For the vessel model we additionally applied MPU Implicits with
oversampling of thin structures which led to a smooth and artifact-reduced model. The resulting surface model
exhibits a more natural look at branching points. The curvature is reduced, but the volume increased about 5%
and exhibits strong distance deviations at the structure’s endings (1.15× voxel diagonal). The MPUI method
yields visually better models but the required parameters are very sensitive to minimal changes and the models
even tend to grow.
Comparing these methods regarding the smoothness and preservation of distances between the target structures,

Tumor Vena jugularis
MC Smoothed MC CESN MC Smoothed MC MPUI CESN

Volume 100% 99.09% 97.63% 100% 99.56% 105.44% 85.75%
Mean Curv. 0.505 0.366 0.422 0.451 0.265 0.222 0.301
Distance 0 0.307 0.306 0 0.359 1.150 0.742
EAS (Mean) 0.427 0.421 0.406 0.652 0.675 0.462 0.658
EAS (Max) 0.981 0.887 0.870 0.983 0.910 0.999 0.915
Homogeneity 0.276 0.210 0.197 0.288 0.162 0.516 0.174
(EAS)
Homogeneity 0.182 0.104 0.089 0.234 0.126 0.828 0.141
(Size)

Table 3. Comparison of the initial MC mesh of a tumor (from binary data, 48k faces) and the vena jugularis (from masked
intensity data, 21k faces): smoothed MC mesh (Laplace+HC), CESN, and MPUI of the vessel (10k faces). Distances are
given as the Hausdorff distance in relation to the specific voxel diagonal. Homogeneity is defined as the mean maximum
error within the 1st order neigborhood of the triangles.

����������Vessel
Tumor

MC Smoothed MC CESN

MC 0.334 0.373 0.752
Smoothed MC 0.344 0.411 0.769
CESN 0.712 0.726 0.996
MPUI 0.710 0.398 0.849

Table 4. Comparison of the minimal distances between the examined structures. The values are given as fraction of the
specific voxel diagonal.



a combination of MC and subsequent node position constrained smoothing gives the best results without altering
the minimum distances between neighboring structures (refer to Tab. 4).
The quality of the meshes is usually not relevant for surgical planning. Due to the anisotropic voxel size, all
approaches created large numbers of badly shaped, elongated triangles (EAS ≈0.9, see Tab. 3). Especially the
MPUI approach results again in very inhomogeneous meshes. Hence, models generated from comparable data
need to be completely remeshed before usage in simulation applications. But also for usage in surgical planning
applications, an adjustment of the mesh resolution might be appropriate.

4.2 Simulation

The simulation of tissue deformation or of blood flow in CFD incorporates complex computations (e.g. FEMs) on
volume meshes built from 3D surface models. Thus, the quality of the initial surface meshes affects the volume
meshes and finally computational effort and errors. Besides the general requirements (accuracy, preservation of
shape and size, smoothness), quality and homogeneity (of size and quality) become important. For example the
shape of surface triangles can be described via equi-angle skewness (EAS, ranging from 0 to 1), whereas lower
values of EAS represent higher mesh quality.

MC Smoothed MC Smoothed MC CESN MPUI
+ Optimized

Volume 100% 100.56% 100.07% 90.37% 105.63%
Mean Curvature 0.354 0.262 0.494 0.253 0.277
Distance 0 0.197 0.320 0.514 0.768
EAS (Mean, Max) 0.322, 0.924 0.265, 0.698 0.149, 0.643 0.254, 0.701 0.462, 0.999
Homogeneity (EAS) 0.291 0.212 0.146 0.215 0.552
Homogeneity (Size) 0.145 0.109 0.013 0.095 0.208

Table 5. Comparison of the initial MC mesh (10k faces) of a cerebral aneurysm (from intensity data, 256×384×88,
0.781×0.781×0.781 mm), the smoothed MC mesh (Taubin’s λ|μ filter), an optimized high resolution MC mesh (62k
faces) and CESN (from binary data, 10k faces). Distances are given as the Hausdorff distance in relation to the specific
voxel diagonal. Homogeneity is defined as the mean maximum error within the 1st order neigborhood of the triangles.

4.2.1 Blood Flow in Cerebral Aneurysms

CFD typically focuses on one single target structure. Thus, spatial relationships to neighboring structures are
less relevant. The individual morphology of the cerebral aneurysm and connected vessels need to be preserved
to allow for a successful computational approximation of the real blood flow behavior.
In the image data, aneurysms are represented as contrast-enhanced connected regions. Applying the MC algo-
rithm to the intensity data (MRI angiography, voxel size: 0.781mm×0.781mm×0.781mm, no resampling) with
an appropriate isovalue results in an accurate initial surface model of the aneurysm (see Fig. 4). A preceding
filtering step with a dilated binary mask removes background structures and noise exhibiting similar intensities.
Slight smoothing (e.g. Taubin’s λ|μ filter, 20 iterations, λ=0.5, μ=-0.52, 1st order neighborhood) removes small
staircases and fine, sharp features which could cause a locally very high subdivision during volume mesh gener-
ation for FEM. As depicted in Table 5, mean curvature is reduced by 26%, whereas volume is preserved and the
maximum distance is less than 20% of the voxel diagonal (compared to the initial MC mesh).
Filigree elements with a diameter equal to the voxel size or less cannot be clearly reconstructed with the provided
workflow, since the intensity values will vary strongly due to partial volume effect. If the segmentation results
in binary masks, or if only binary data is available, MPU Implicits with oversampling of the filigree structures
yield smooth and volume preserving surface models (see Tab. 5). Other approaches for binary data, such as
CESN, shrink the volume (90.37% preserved) and should not be applied to thin vessels.
Isotropic voxel dimensions facilitate a better initial mesh quality, since the triangles do not get elongated in
slice direction, whereas mesh smoothing can slightly improve the quality (e.g. EAS decreased from 0.924 to
0.698). Subdividing the surface elements during the optimization process yields a smooth and accurate high



Figure 4. Surface model of a cerebral aneurysm colored by equi-angle skewness (flat shaded). Left: A sample slice of the
employed MRI angiography data. Top right: Initial mesh derived from MC. Bottom right: Smoothed MC mesh (Taubin’s
λ|μ filter) after subdivision and optimization. In the top left corner of each subfigure, a corresponding close view to the
mesh is given.

quality mesh. Further edge flipping and collapsing can reduce the mean EAS enormously (from 0.265 to 0.149).
Moreover, these quality optimization steps go along with simplifications and may hence introduce additional
errors. For example a simplification of the optimized MC mesh from 62k faces to 8k increases the Hausdorff
distance to the initial MC model from 0.32 to 1.175 of the voxel diagonal. Since CFD is usually not used in
performance-critical real time applications, a high mesh resolution can be accepted allowing smaller interpo-
lation steps and hence less errors during simulation. Comparing the homogeneity of the meshes with respect
to size and EAS of the triangles, MC with subsequent smoothing and CESN yield similar results, whereas the
MPUI approach generates very inhomogeneous surface meshes (see Tab. 5). Optimal results can be achieved by
subsequent quality focussed remeshing.

4.2.2 Tissue Deformation

The requirements for the simulation of tissue deformation can be compared to the aspects in CFD. Depending
on the data, a good quality mesh can again be derived by applying the MC algorithm to (masked) intensity
data with subsequent filtering using Taubin’s λ|μ smoothing. If there is only binary data available, CESN (or
an equivalent combination of MC and smoothing with node positioning constraint) should be used for recon-
struction, since the mesh is slightly smoothed but still prevented from strong volume shrinkage (see Fig. 5 for
an example of the liver).
The required level of detail is the main difference to CFD simulations. Since tissue deformation is typically used
in interactive visualization environments, rendering performance and simulation speed are the most important
aspects. Edge flipping and collapsing techniques decimate the mesh, but reduce accuracy, whereas a good quality
of the mesh needs to be guaranteed (e.g. using quadric error metrics).



Figure 5. Surface model of a liver colored by mean curvature: MC applied to binary mask (left), to masked and smoothed
non-binary data (middle), and CESN applied to binary data (right).

5. CONCLUSION

The suitability of mesh generation methods for medical image data is influenced by several aspects, such as
the goal in diagnosis or treatment planning, data resolution, voxel size, or shape information. We considered
several steps of the mesh generation pipeline with respect to accuracy and focussed on the influence of image
preprocessing but also of mesh generation and postprocessing for different applications.
We showed that basic image preprocessing methods can improve visual quality of the final models but can also
have strong influences on distances between neighboring structures and thus may be critical for application within
a surgical context. A commonly used technique to overcome terracing artifacts by image preprocessing is the
interpolation of additional slices. However, accuracy of the results strongly depends on the involved interpolation
method.
The choice of an appropriate mesh generation method (e.g. MC, CESN, MPUI) depends on the type of available
data. We tested commonly used mesh generation algorithms (MC, CESN) in combination with appropriate
constrained smoothing (Laplace+HC, Taubin’s λ|μ) and optimization steps (edge flipping and collapsing) and
showed that they are applicable for the fields of surgical planning and simulation for intensity and binary data.
The discussed approaches yield adequate surface models for most relevant structures, except thin elongated
objects where more specialized methods need to be applied. Especially for pathological structures, the mesh
generation process should focus more on accuracy than on smoothness.
However, it is important to involve more data and structures of the same categories and thus evaluate the influ-
ence of different structure sizes and diameters (e.g. for vascular structures). Further methods involving intensity
information need to be considered to increase accuracy compared to voxel-cell-restricted approaches. For example
model-based methods, such as stable mass-spring models, can be applied to structures exhibiting typical shape
information and characteristic gradients at the boundaries (e.g. lymph nodes, thyroid cartilage). Since the mass-
spring model’s nodes are not restricted to initial voxel cell boundaries, the method is able to fit target structures
without introducing terracing artifacts and thus to yield more accurate results. Additionally, the adjustment of
visual smoothness could help to provide naturally looking surface models without altering the topology too much.
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