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Abstract

Smoothing algorithms allow to reduce artifacts from mesh generation, but often degrade accuracy. Thus, we present a method that
identifies staircase artifacts which result from image inhomogeneities and binary segmentation in medical image data for subsequent
removal by adaptive mesh smoothing. This paper makes the following specific contributions: caps, which are flat regions, resulting
from segmentation or clipping at the endings of anatomical structures are detected and modified by smoothing; the effects of the
adaptive smoothing method involving context information are quantitatively analyzed with respect to accuracy and their influence
on blood flow simulations; the image stack orientation, which is relevant for this context-aware smoothing approach, is estimated
automatically from the surface models. Thus, context-aware smoothing enables to adaptively smooth artifact areas, while non-
artifact features can be preserved. The approach has been applied to CT neck datasets, as well as phantom data and the results
are evaluated regarding smoothness and model accuracy. The accuracy of model orientation estimation and cap detection has
been evaluated for clinical and phantom data. Finally, context-aware smoothing has been applied to CT angiography data for the
simulation of blood flow. The simulation results are presented and prove the general suitability of context-aware smoothing.
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1. Introduction

The morphology of anatomic and pathologic structures and
their spatial relations are examined for planning of surgical in-
tervention or radiation treatment. Surface models of anatomical
structures are usually derived from tomographic medical image
data (e.g., from computed tomography (CT) or magnetic res-
onance imaging (MRI)). Tomographic image data often suffer
from a limited resolution and exhibit anisotropic voxels (slice
distance is considerably larger than the in-plane resolution). Al-
though, low slice distances and an isotropic resolution is tech-
nically feasible with the latest generation CT scanners, clinical
data still often exhibit a large anisotropy. This may be due to the
devices, e.g., older CT or MRI scanners, due to the goal to min-
imize ionizing radiation, or simply to recude the amount of data
which often significantly affects waiting times because of low-
bandwidth networks. For generating surface meshes, the target
structures need to be identified and delineated by user interac-
tion, automatic or semi-automatic segmentation methods. In
simple cases, e.g., when air-filled structures in CT data should
be displayed, the surface can be extracted directly from the in-
tensity data. Often, this is not feasible since tomographic im-
age data, acquired in clinical routine, may suffer from inhomo-
geneities or similar intensity values of neighboring structures
complicating their segmentation. Applying the segmentation
information to the intensity data, e.g., by masking, such prob-
lems can be overcome. 3D models, generated from intensity
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data and such segmentation information, may contain several
artifacts, such as staircases, terraces, holes, and noise. For a
correct and convenient perception of shapes and spatial rela-
tions, the models should look naturally to resemble, e.g., the
intraoperative experience of surgeons. The natural appearance
refers to smoothness of the surface, since anatomical structures
usually do not exhibit sharp edges. Feature edges attract the ob-
servers’ attention and might severely disturb perception of the
overall shape and structure of the surface model. Artifacts can
be reduced during mesh generation or by additional mesh post-
processing (smoothing). Unfortunately, features, which are not
caused by model generation, might get removed and the struc-
tures’ volume, extent, and relevant inter-structure distances may
get altered. Mesh smoothing methods, in general, apply a uni-
form filter to the surface mesh. Artifacts, however, are often
not uniformly spread over the surface (see Fig. 1(a)). As a re-
sult of uniform surface smoothing, artifacts get reduced, but as
a side-effect non-artifact areas might get altered too much (see
Fig. 1(b)). As a remedy, feature-sensitive smoothing was sug-
gested [1], which detects features and adjusts the sampling ac-
cordingly to reduce modifications of these features. This and
other related methods (e.g., [2, 3, 4]) are successful in pre-
serving sharp edges, such as in CAD models or laser scanning
data. The artifacts in tomographic medical image data may re-
sult from anisotropic voxels and from involving (binary) seg-
mentation information in the model generation process. Since
features are not discriminated with respect to their origin, stair-
case artifacts would be maintained by such feature-preserving
smoothing methods. Context information, such as slice orienta-
tion, slice distance and knowledge on the properties of artifacts
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(a) Original Model (b) Uniform Laplacian
Smoothing

(c) Context-aware Laplacian Smoothing

Figure 1: Context-aware smoothing applied to a surface model of the sternocleidmastoid muscle. (a) The initial model generated via the marching cubes algorithm,
colored by mean curvature; (b) Uniform Laplacian filtering; (c) Context-aware Laplacian filtering. (b) and (c) are colored by the minimum Euclidean distance (of
each vertex) to the surface of the original model shown in (a).

are usually not considered for a locally adaptive artifact reduc-
tion.
To account for the described problems, we present an extended
approach for the detection of staircase artifact areas, which has
partly been described in [5]. Determining the distance to these
identified artifacts, we can apply weights to the displacement
vectors of each vertex during the smoothing procedure. Thus,
our approach can be integrated into any available mesh smooth-
ing method. As a result, only the artifact areas of the surface
are smoothed adaptively (see Fig. 1(c)) in contrast to uniform
Laplacian smoothing (see Fig. 1(b)), where the surface is mod-
ified in artifact and non-artifact areas. This allows to preserve
model accuracy in non-artifact areas which is important in 3D
diagnostic or surgical planning applications. We refer to this
concept as context-aware smoothing.
For the simulation of blood flow, flow inlets and outlets are de-
fined by clipping the vessel branches perpendicular to the cen-
terline. The resulting flat areas (caps), which may be oriented
arbitrarily with respect to the image stack orientation, would
get distorted during further mesh processing (e.g., smoothing).
Thus, manual clipping is usually the last step in surface model
generation pipeline used as input for the generation of a volume
mesh for computational fluid dynamics (CFD) simulations. The
detection and preservation of arbitrarily oriented caps would
thus yield more flexibility for related workflows, since addi-
tional smoothing steps could easily and automatically be car-
ried out after defining the in- and outlets.
Besides CFD, the segmentation of image data usually focusses
on a defined region of interest, which often contains only a part
of the structure. Especially elongated structures, such as vessels
and muscles, are cut during the segmentation process resulting
in flat, clipped areas. Caps, whose flat regions are oriented ac-
cording to the image stack orientation (e.g., z-axis), might get
detected as staircase areas and subsequently be smoothed. Fur-

thermore, caps with a surface normal differing strongly from the
image stack orientation might not get smoothed. In contrast to
CFD, medical visualization might also require rounded caps to
prevent abrupt endings [6]. A correct and consistent handling
of these endings requires their identification. This allows to
preserve the caps for measurement tasks or to consistently gen-
erate smooth endings for visualization. Context-aware smooth-
ing implies knowledge on the image stack orientation (usually
the z-axis) as basic information for the differentiation of stair-
case artifacts. If the coordinate system of the target structure
is modified, e.g., the surface model is being aligned with an-
other reference structure, context-aware smoothing could not
be applied due to the missing correlation between the staircase
artifact orientation and the original image stack orientation. In
such a case, the orientation information needs to be recovered.
Surface models of anatomical structures are widely used for
planning of surgical interventions, e.g., for ablations of the liver
[7] or tumor resections [8], where the exact location of the tu-
mor, metastases or vascular structures [9, 10, 11] needs to be
known to provide a high degree of safety for the patient. Sim-
ilarly, high accuracy during model generation is also required
in orthopedics, e.g., for osteotomy planning [12], or for neck
surgery. Here, several critical structures (e.g., arteria carotis,
vena jugularis, sternocleidomastoid muscle, lymph nodes, sali-
vary glands) are located very close to each other, which makes
accurate surface models a basic requirement for, e.g., measure-
ment tasks during planning of surgical interventions or further
treatment [13]. High model accuracy and surface smoothness
is also relevant for biophysical and biomechanical simulations,
e.g., of blood flow in order to estimate the rupturing risk of an
aneurysm. Thus, we applied context-aware smoothing to sam-
ple data acquired for surgery planning and blood flow simula-
tion. We investigated the influence on smoothness, distance and
volume preservation.
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2. Related Work

Suface models of anatomical structures are generated from
raw medical image data or binary masks that are derived
from volume data by preprocessing and segmenting the target
structures (e.g., bones, vessels, liver, lymph nodes). Additional
filtering, such as smoothing, erosion, dilation, of the intensity
data or segmentation masks can reduce discontinuities in the
resulting surface, but may remove features or change relevant
properties of the structure [14]. The work of Neubauer et al.
[15] provides an example for such an image processing pipeline
for the reduction of staircase artifacts by combining, e.g., ero-
sion, dilation and distance metrics. The anisotropy problem
can be overcome, e.g., by shape-based interpolation [16].
Interpolating intermediate slices results in much more data and
computational effort. In clinical routine, this additional effort
is often prohibitive, since data with lower resolution is usually
acquired deliberately to save time and storage. Furthermore,
large staircases from anisotropic, segmented image data may
not get removed sufficiently since the interpolation treats the
staircases locally, whereas their effect is more global. The data
can be transformed into a surface mesh using, e.g., the March-
ing Cubes (MC) algorithm [17], or level-set methods [18].
Several methods take care of artifacts during mesh generation,
e.g., by additional trilinear interpolation and subdivision of
the surface elements (Precise MC [19]), by detecting features
and adjusting the data sampling accordingly [1], or by iterative
constrained relaxation of the surface (e.g., Dual MC [20],
Constrained Elastic Surface Nets (CESN) [21, 22]). Some
of the methods, such as Precise MC, achieve better visual
quality at the expense of a significant loss of performance.
The reduction of strong artifacts, such as staircases, goes
along with a loss of smaller, potentially relevant details and
large terraces may still remain. The original CESN approach
[21] extracts the initial surface from binary image data and
restricts the movement of each single vertex to the initial voxel
cells. Additionally involving intensity information during the
relaxation procedure allows for higher accuracy [22]. Large
staircase artifacts, e.g., from anisotropic image data, may still
not be reduced sufficiently and relevant features might get
removed. The extended MC [1] accounts for aliasing artifacts
degrading surface features edges. As a result, features are
better reproduced during model generation. Unfortunately,
both, relevant geometric details and staircase artifacts, would
be maintained.
Similarly, noise, staircase artifacts, or plateaus resulting from
the limited resolution can be reduced after mesh generation
by appropriate smoothing operations (e.g., Laplace filter,
Mean Curvature Flow (Laplace with cotangential weights)
[2]). These methods allow to smooth surface models but
cause volume shrinkage and loss of features. More specialized
methods (Laplace+HC [3], Taubin’s λ|µ smoothing [23]) try
to prevent from shrinking volumes by an additional correction
step or by restricting the vertex movement according to surface
confidence values [24]. The Laplace+HC algorithm [3] intro-
duces further parameters to control the influence of the initial
vertex position and the displacement of the neighboring ver-

tices. Similarly, Taubin’s λ|µ filter [23], improves the default,
Laplacian smoothing by adding a second, negatively weighted
Laplacian filter step, which considers the displacement of the
neighboring vertices and accounts for volume shrinkage. For
models containing extreme staircase artifacts (e.g., Figs. 1(a)
and 4), an appropriate parameter configuration is hard to find, if
a natural appearance and accuracy are required simultaneously.
Surfaces, generated from laser scanning data, often exhibit
noise which can be removed using various mesh smoothing
methods (e.g., [4, 25, 26]). These methods focus on the
preservation of sharp edges in non-medical data [27, 28, 29].
Their direct application to medical surface models likely yields
unsatisfying results, since anatomical structures typically
exhibit smoother shapes. Belyaev and Ohtake [30] compared
different mesh smoothing methods, but did not consider
different requirements of anatomical structures. In contrast,
Bade et al. [31] applied different smoothing algorithms to
anatomical surface models generated from binary image data
and compared the results with respect to artifact reduction
and volume preservation. They identified the Laplace+HC
and Taubin’s λ|µ smoothing as most appropriate for most
anatomical structures with respect to volume and feature
preservation. Additionally, they suggested a constraint for
vertex placement during mesh filtering to preserve accuracy
[32], which is similar to the CESN approach [21]. These
smoothing algorithms are suitable for the reduction of small
artifacts (staircases, noise) with simultaneous preservation of
accuracy. Large staircase artifacts can still not be sufficiently
reduced whilst accuracy is required.
All of these widely used methods apply constant smoothing
parameters to the target structure. In contrast, there exist other
methods that adjust smoothing according to classified features
[33, 34], local mesh density [35], or even apply different filters
[36] to preserve detected features. Thus, most feature-sensitive
methods would maintain the artifacts in medical surface
models. Furthermore, there is no mesh smoothing method
available, which focuses smoothing to artifact areas and thus
tries to split up the smoothing process for different problems.
Besides smoothing, other mesh processing techniques also have
impact on the smoothness. Generating high resolution meshes
from resampled image data and subsequently decimating it
using, e.g., quadric error metrics [37] or the progressive meshes
approach [38], reduces several (small) surface artifacts with
controlled error. Decimation methods are, unfortunately, not
designed for artifact removal, but to maintain relevant features
possibly resulting in a preservation of dominant features, such
as staircases.
Accurate and smooth surface meshes are used as input for
volume mesh generation in biomedical CFD, e.g., for the
patient-specific simulation of blood flow in vascular systems
[39, 40]. Usually, the model generation pipeline involves
different steps for segmenting the target structures and
preparing them for simulation [41]. Thereby, a surface mesh
approximating the underlying anatomical vessel morphology
faithfully is necessary for the volume grid generation. De-
pending on the involved methods (segmentation and surface
reconstruction), the resulting surfaces can be very different
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yielding to varying simulation results for the same structure
[42]. Since the extraction of surfaces for usage in CFD can be
complex and time consuming if manual correction of artifacts
and inhomogeneities is involved, a more automated procedure
is desirable. The use of MPU Implicits [43] based on points
clouds from binary segmentation masks seems promising, but
ignores the intensity information of the image data. The latter
allows for higher accuracy, but might introduce topologically
wrong models due to image inhomogeneities leading, e.g., to
merged vessels.

3. Methods

Our adaptive smoothing procedure consists of three steps:
(I) an initial identification of the artifacts,

(II) a computation of weights for smoothing, and
(III) the application to the smoothing algorithm.

These steps have been presented in [5] in full detail. We
extended the approach of staircase-aware smoothing to allow
for an estimation of the image stack orientation (see Sec. 3.1)
and an algorithm for the detection and preservation of caps (see
Sec. 3.3). The algorithm for staircase detection and weight-
ing is, however, partly described in Section 3.2, since several
details are required for understanding of the further extensions
and results.
As prerequisites for context-aware smoothing, we assume that
all surface normals are consistently pointing either towards the
outside or the inside of the model and the normals of neighbor-
ing faces do not suddenly point to the opposite side. As a re-
sult, we can assume that faces being perfectly orthogonal to the
image stack orientation (typically along z-axis) have normals
parallel to it and vice versa. This orientation information can
be derived directly from the image data since it is usually rep-
resented in the header information. If the image stack orienta-
tion is not known, e.g., because smoothing is not applied within
the surface reconstruction process, or the surface model’s ori-
entation has been modified for registration/alignment reasons,
it needs to be recovered. Thus, we present an additional, but
optional, step, which enables the estimation of the image stack
orientation from the surface model.
Staircases can be characterized as perpendicular surface areas.
This information is usually not sufficient to reliably detect stair-
case artifacts for two reasons:
• Other (relevant) features with similar feature angles might

be contained in the model which should not receive a high
weighting for the smoothing algorithm.

• Depending on the initially applied mesh generation algo-
rithm, these staircase ”borders” might have been smoothed
already slightly. Thus, the features within the staircases
would exhibit similar curvature values as other ”natural”
features.

As a result, we employ knowledge on the (estimated) image
stack orientation, slice distance and on relative changes be-
tween faces in and orthogonal to the image stack orientation.
Especially for data with strongly anisotropic voxel dimensions,

the dihedral angles at the feature edges tend to get closer to
90 degree. For nearly isotropic voxels, these angles might get
smaller. Thus, our approach allows to interactively adjust its
sensitivity for different sizes of staircase artifacts. After com-
puting the initial orientation rating, the vertices, belonging to
staircase artifacts, are weighted to allow for subsequent usage
during mesh smoothing. This is described in detail in the fol-
lowing subsections.

3.1. Estimation of the Image Stack Orientation

The identification of staircases requires knowledge on the
image stack orientation of the source image data. For the esti-
mation of the image stack orientation, we assume that the model
contains several staircase artifacts. It is not necessary, that the
exact location of the artifacts is known. The presence of stair-
case artifacts, however, allows to detect and extract clusters of
similar face normals and approximate the overall model orien-
tation. Within this section, we will refer to the term ”normals”
also as ”samples” since we treat the normal vectors as points on
a unit sphere (see Fig. 2).
To identify these clusters, we extract all face normals and re-

Figure 2: Gauss map of the face normals of a liver model. Regions with higher
density are clearly visible (colored yellow/green). Density is shown according
to the number of samples within the radius r.

gard them as samples in 3D space, where similar normals form
clusters. For example, for a spherical surface model, the nor-
mals would result in a uniformly sampled Gauss map.
As a next step, we compute the density of the samples by count-
ing the number of samples within a given radius r (default value
is 0.1). Thus, iterating over all samples yields one density value
per sample which can then be used to apply a density threshold
to the whole point cloud (see Fig. 2). This threshold allows to
remove samples which do not belong to one of the dominant
clusters. The value is automatically adjusted according to the
average of the mean and maximum density value. This value

4



has turned out to be sufficient among all tested datasets. After
reducing the point cloud to the high density clusters, we label all
samples according to their Euclidean distance to other labeled
samples. For that, we start with a random sample and itera-
tively consider all samples within the defined range r as further
candidates. After labeling the current sample, we proceed with
the identified candidate samples. If no new samples for the cur-
rent cluster are found, we proceed with the remaining unlabeled
samples in the same way. This region-growing-like clustering
method does not require a predefined number of clusters or fur-
ther parameters. Computing the center of each labeled point
cloud region representing clustered face normals, we obtain the
average, that is regarded as potential image stack orientation
vector.
To determine the vector with highest probability of describing
the image stack orientation, we compute the relative orientation
θ fi of all faces fi with respect to each potential orientation vec-
tor. The relative face orientation is defined as the dot product
of the face normal and a given orientation vector. The resulting
values are scaled to the range of [0,1] according to Eq. 1. Thus,
for faces with normals being orthogonal to the orientation vec-
tor the relative orientation θ fi equals 1, whereas for faces with
normals being parallel to slice orientation it equals 0.

∀ fi ∈ F : θ fi = 1 −
∣∣∣~n fi · ~nstack

∣∣∣ (1)

~n fi ,~nstack - normal vector of fi and
image stack orientation

fi ∈ F; F - set of faces of mesh M

θ ∈ [0, 1]; θ fi - orientation of face fi

This computation is performed for each potential orientation
vector, whereby we search for the vector maximizing the num-
ber of faces being almost orthogonal to this orientation vector.
Hence, we count all faces, where θ fi is less then 0.05 which
equals a tolerated deviation angle of 4.5 degree. This value
has also been chosen empirically. The results are quite robust
with respect to this parameter. Higher values, e.g., 0.1, which
equals 9 degree deviation, gave almost similar results. Finally,
the vector maximizing the number of orthogonal faces is cho-
sen as image stack orientation.

The described method for the estimation of the image stack
orientation to re-establish the correlation between the surface
model and the orientation of slices in the image data obviously
depends on the existence of staircase artifacts. The correct vec-
tor can only be detected if the number of faces belonging to
staircases exceeds a certain level, depending on the size and
resolution of the model. Thus, if there are just very small stair-
cases present in the model, the estimation process will return a
vector which cannot correctly describe the image stack orienta-
tion. This fact will be examined further in the results section.

3.2. Context-Aware Smoothing

The procedure for the identification and weighting of stair-
cases has already been presented in [5]. The definition of

Figure 3: 2D illustration of a staircase (left) and a similar feature (right) that is
not related to the image stack orientation (~nstack).

weights for the vertices of a surface mesh allows to smooth
only artifact areas (with high weights), whereas areas without
artifacts (with low weights) remain unchanged. For complete-
ness and better understanding of the extensions and further ap-
plications, we are going to explain this process briefly in the
following sections.

3.2.1. Identification of Staircase Artifacts
At first, it is necessary to determine the relative orientation

θ fi of each single face fi (see Figs. 4(a) and 3) with respect
to the image stack orientation. The orientation may have been
estimated earlier (see Section 3.1). Otherwise, a manually spec-
ified vector (usually the vector is set along the z-axis (0,0,1)) is
employed for further computation. The relative face orientation
is then determined as described in the previous subsection (see
Eq. 1).
As a next step, the orientation change θ′v j

at each vertex v j is
computed as the difference between the maximum and the min-
imum face orientation of all incident faces Fv j at that vertex.
Thus, for vertices at perfect staircase edges, where the maxi-
mum difference of the incident faces would equal 90 degree,
θ′v j

would equal 1. For flat areas, θ′v j
equals 0. The orienta-

tion change yields visually similar results as typical curvature
measures (see Fig. 4(b)) as it highlights feature edges, but is re-
lated to the image stack orientation. Thus, features, which are
related to the image stack orientation, get highlighted, whereas
non-artifact features, which are not caused by segmentation and
a large slice distance, receive a lower weighting (compare Fig.
3 left and right).

3.2.2. Artifact Weighting
In the previous step, all vertices have been weighted accord-

ing to changes of the relative orientation which depends on the
image stack orientation. To enable adaptive smoothing of the
staircases, we define weights for all vertices belonging to the
artifact areas. Thus, we apply a threshold τθ′ and extract only
the vertices with θ′v j

> τθ′ . We have empirically determined to
set τθ′ to 0.7. A decrease of τθ′ will include smoother staircases,
whereas a high value of τθ′ extracts only staircases with 90 de-
gree feature edges. Since the type of staircases should be almost
homogeneous within one surface model, the user can adjust the
threshold τθ′ easily.
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(a) (b) (c) (d)

Figure 4: The single steps of the context-aware smoothing procedure for a part of the geometric model of an arteria carotis: (a) Colored by orientation of the faces
in relation to the slice orientation (z-axis). (b) Coloring of the vertices where the orientation of incident faces changes. (c) Vertex weighting according to distance
to staircase edges. (d) Final smoothing result colored by local minimum Euclidean distance to the initial model.

Based on the identified staircase vertices, we compute the min-
imum Euclidean distance dv j for each vertex v j in the model to
the closest staircase vertex. In this process, we need to exclude
the special case, that a non-artifact part of the surface passes
a staircase corner vertex very close. This would result in mis-
leading smoothing weights for vertices which do not belong to
an artifact. To achieve this, we simply test for topological con-
nectivity within a given range τmax. The resulting weights wv j

are again scaled according to Eq. 2 to [0,1], where values of
1 occur at the staircase vertices and values of 0 occur in dis-
tant parts (see Fig. 4(c)). Additional thresholds give a better
control of the staircase weighting. Setting τmax, the user can
define, how far the influence of staircase smoothing reaches
into the non-artifact areas. Furthermore, a minimum weight
(e.g., βmin = 0.1) for each vertex can be applied, to allow for
a user-defined smoothing effect in non-artifact areas without
the need to apply an additional smoothing step after context-
aware smoothing. As another effect of βmin, visually disturb-
ing borders between the smoothed staircases and areas without
smoothing (e.g., suffering from noise) can be prevented. The
previously computed weights are readjusted to the range above
the applied minimum value (see Eq. 3).

∀v j ∈ V : wv j =


(
1 −

dv j

max(D)

)
if dv j ≤ τmax,

0 if dv j > τmax.
(2)

w′v j
= wv j · (1 − βmin) + βmin (3)

τmax - max. distance threshold
βmin - min. weighting offset
dv j ∈ D; D - set of min. Euclidean distances

of the vertices V to V ′

V ′ ∈ V; V ′ - the extracted staircase vertices
wv j ,w

′
v j

- distance-related weights for each vertex v j

3.2.3. Application
After the previous steps, each vertex holds information on

the distance to the closest vertex belonging to a staircase cor-
ner. These values can be used as weights during the smoothing
process to enable an adaptive artifact correction.
Smoothing filters, in general, compute the new position of each
vertex by moving it along a displacement vector determined
from the original position and the weighted average of the loca-
tions of the neighboring vertices (see Eq. 4). This displacement
vector can be modified by staircase artifact weighting. Thus,
vertices with a weighting value of one are moved according to
the applied smoothing algorithm, whereas vertices with a zero
weight keep their initial position.

∀v j ∈ V : v′j = v j + λ
m

∑m
k=1(uk − v j) (4)

v j, uk ∈ V,∀uk ∈ U1
v j
,m =

∣∣∣∣U1
v j

∣∣∣∣
U1

v j
- 1st order neighbors of vertex v j

λ - uniform smoothing factor

To make the smoothing process adaptive with respect to spe-
cific artifacts, we simply need to replace the weighting factor λ
by λ′ = λ ·w′v j

(see Fig. 4(d) for a sample result). The modifica-
tion of the smoothing factor, shown above for the Laplace filter,
equals to the application of d′v j

to the final displacement vec-
tor. Thus, the previously described modification can be applied
to any smoothing algorithm. More specific algorithms, such as
Laplace+HC or Taubin’s λ|µ, can be employed with their de-
fault parameters for smoothing and back correction as usual.
The staircase weighting applies only to the final displacement
vector resulting from the specific smoothing method with its
individual parameters.

3.3. Detection of Caps
The described approach for context-aware smoothing of sur-

face meshes identifies staircase artifacts which are related to the
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image stack orientation. During segmentation and model gener-
ation, different operations (manual clipping, volume-of-interest
bounding box) may yield caps. For consistently handling these
flat regions (include/exclude during smoothing), we present a
further extension of the adaptive smoothing approach, which
allows to detect arbitrarily oriented caps.

First, we identify flat areas by extracting all faces where all

Figure 5: Differentiation between staircases and caps: The latter are charac-
terized by a consistent face direction at the outer cap vertices (I), whereas the
direction changes along the vertices of staircases (III). Label (II) highlights a
cap-like staircase artifact.

vertices exhibit low maximum normal angles (≤ 5 degree). The
result of this operation is a set of separated flat regions (usually
all staircases and other low curvature areas), which are cap can-
didates.
We noticed small artifacts from reconstruction (see Fig. 6, la-
bel (III); Fig. 5, label (II)) caused by inhomogeneities in the
image data and resulted in small, cap-like structures. However,
looking at their size, these structures, as well as scattered sin-
gle triangles meeting the first low curvature criterion, can be
neglected as potential caps using a region size threshold (e.g.,
10 faces minimum size). Thus, all small regions will still be
subject to smoothing, whereas the larger ones will be exam-
ined further. The remaining areas are used as seeds for local
region growing. Thus, for each triangle, we iteratively look for
neighboring cells whose orientation differs only slightly from
the current one. This expands the initially identified areas until
feature edges are found.
Our basic assumption for the differentiation between caps and
staircases is, that the direction of the surface at the outer
cap/staircase vertices (≡ vertices with a high curvature) should
be constant for caps (thus pointing consistently along or con-
trary to the local cap orientation vector; see Fig 5, label (I)).
In contrast, for staircases, the direction of the surface at the
staircase vertices will change at least twice: from positive to
negative and vice versa (see Fig. 5, label (III)). Algorithm 3.1
indicates this differentiation. In each remaining region, we ex-
amine the vertices that have been identified as outer staircase

vertices. For these vertices, we determine the maximum dis-
tance to the first order neighborhood vertices along the specific
average cap normal (averaged of all faces belonging to the po-
tential cap). Thus, we consider only those neighboring vertices
for comparison, which do not belong to the previously iden-
tified cap candidate region. The maximum distance vertex is
only needed to determine the direction of the surface: a pos-
itive sign means, that the surface continues along the specific
cap normal, whereas a negative sign indicates that the surface
continues contrary to the orientation vector. Counting the di-
rection changes for each candidate region, we can clearly dis-
tinguish between caps and staircases. Finally, regions, where
only one direction has been detected at the outer staircase ver-
tices, can be regarded as caps, whereas all other regions with
higher values are staircases. As a result, the smoothing weights
for the vertices belonging to detected caps are set to zero (see
Fig. 6(b), label (I) and (II)). A subsequent smoothing proce-
dure will exclude these vertices to preserve accuracy, whereas
staircase areas are reduced (see Fig. 6(c), label (III)).

Algorithm 3.1: CapDetection(Faces)

// Flat areas: set of separated low curvature areas
FlatAreas← Faces.getFlatAreas()
CapCandidates← FlatAreas.labelConnectedComponents()
for each Cap ∈ CapCandidates

do



Vertices← Cap.getBorderVertices()
DirectionChange← false
for i← 0 to Vertices.getS ize()

// getDistance() returns the signed maximum distance
// to the vertex neighbors along the orientation vector
if (i = 0)

then
{
Orientation← sgn(v.getDistance())

else if (Orientation , sgn(v.getDistance()))

then
{

DirectionChange← true
break

if (DirectionChange = true )
then Cap.delete()

4. Results

Context-aware mesh smoothing is usually applied within a
pipeline, which may have introduced several inaccuracies (e.g.,
image noise, inhomogeneities, segmentation errors). Thus, the
goal of context-aware smoothing is to strictly avoid additional
errors in non-artifact areas and simultaneously make obviously
erroneous areas (staircase artifacts) look more plausible. In the
following sections, we describe data and the workflow we used
for evaluation as well as the related results. However, specific
results for the usage of our methods in relation to CFD are
shown in Section 5.

4.1. Context-Aware Smoothing
The general suitability of adaptive staircase-aware smoothing

has been shown in [5]. To emphasize the benefit of the method,
we repeated the evaluation for phantom data and for strongly
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(a) Identified Staircases (b) + Cap Detection (c) After Smoothing

Figure 6: Application of cap detection for a model of the arteria carotis: (a) staircase-like structures are highlighted in red; (b) caps are excluded from staircase
weighting; (c) result of context-aware Laplacian smoothing with cap detection. Labels (I) and (II) are caps, whereas (III) is cap-like staircase structure.

anisotropic datasets with more accurate reference models ob-
tained from resampled image data.

4.1.1. Data
We employed two additional structures (vena jugularis, ster-

nocleidomastoid muscle) from CT neck data (voxel size is
0.351×0.351×3.956 mm for both structures). The selected
structures contain non-artifact areas as well as parts suffering
from staircase artifacts.
The surface meshes have been extracted using a typical work-
flow. Thus, they have been segmented semi-automatically by
medical experts and the resulting binary masks have been di-
lated (kernel: 3×3×3 voxel). Afterwards, this contour infor-
mation has been used to mask the intensity data. This allows
to account for image inhomogeneities and neighboring struc-
tures with similar intensity values. The masked intensity has
been used for model generation via MC algorithm. This still
results in staircase artifacts, which tend to be large because of
the strongly anisotropic voxel dimensions. For better evalua-
tion of distance changes during mesh smoothing, we resam-
pled the masked intensity data to isotropic voxel dimensions
(0.351×0.351×0.351 mm) using cubic B-spline interpolation.
The default MC mesh (obtained from the anisotropic image
data) and the high resolution MC mesh (from resampled data)
serve both as reference models for evaluation of distance, vol-
ume, and curvature changes.
Furthermore, we employed phantom data to evaluate context-
aware smoothing in a context, where the ground truth is known.
We built image data containing a sphere, where we deleted parts
of the sphere structure in the image data in order to induce
staircases (see Fig. 8(b)). The image data has a resolution of
128×128×43 voxels. We selected anisotropic voxel dimensions
of 1×1×3 mm to keep the data processing workflow similar
to the pipeline used for medical data. Afterwards, we applied
Gaussian smoothing to the image data, to allow for the recon-
struction of a smooth sphere surface model using MC. As for

the previous structures, we resampled the data to isotropic voxel
dimensions (0.3×0.3×0.3 mm) to achieve an accurate high res-
olution surface model as reference. For all structures, we com-
pared context-aware to uniform smoothing approaches:
• Laplacian smoothing (with and without node position con-

straint (NPC)),
• Laplace+HC,
• Taubin’s λ|µ.
• Mean Curvature Flow (Laplace with cotangential weights)

For Laplacian smoothing with NPC, we defined cubical voxel
cells with the original voxel dimensions for each vertex,
whereas the displacement of the vertices during smoothing is
restricted to these cells. Since standard Laplacian smooth-
ing may yield strong tangential shifts, we employed the Mean
Curvature Flow method, which includes cotangent weights.
Context-aware smoothing has been applied to all of these
smoothing methods to allow for a direct comparison. For stair-
case identification, τθ′ has been set to 0.7 and τmax to 3mm. In
non-artifact areas, no smoothing was carried out (βmin = 0) .
For the vessel, cap detection has also been applied. According
to the analysis in [5], we used 20 iterations and λ=0.5 for the
vessel data. For the muscle data, λ has been set to 1, to account
for the large staircases. The parameters allow for a sufficient
reduction of staircase artifacts for all methods. According to
Bade et al. [31], the additional parameters of the Laplace+HC
filter have been set to α = 0 and β = 0.5. For Taubin’s λ|µ filter,
µ equals 0.52 for the vessel data and 1.02 for the muscle data.
The resulting surface models have been compared regarding
smoothness, shape and volume preservation. For smoothness,
we employed the maximum angle between the vertex normal
and the normals of all incident faces, which is less sensitive for
degenerated parts of the model than default curvature measures
[5]. Volume preservation is analyzed to demonstrate the global
error introduced by each mesh smoothing method. The preser-
vation of shape is evaluated with two measures:
• the Hausdorff distance, which is determined between the
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Model Hausdorff Distance ØMin. Euclidean Distance Volume Change (%) ØNormal Curvature
to HighRes Model (mm) to HighRes Model (mm) (degree)
Uniform CA Uniform CA Uniform CA Uniform CA

HighRes MC 0 0 0.00 13.55
Default MC 3.14 0.20 -1.05 26.03
Laplace 5.17 4.09 0.29 0.22 -7.05 -4.57 6.46 9.72
Laplace+HC 3.08 3.08 0.18 0.18 -1.71 -1.56 12.68 16.15
Laplace with NPC 2.94 2.95 0.23 0.21 -4.44 -3.68 11.04 11.59
Taubin’s λ|µ 3.15 3.08 0.18 0.18 -1.69 -1.59 12.14 18.00
Mean Curvature Flow 4.43 3.45 0.23 0.20 -4.91 -3.45 8.07 12.00

Table 1: Results for the comparison of smoothing methods for the data of the sternocleidomastoid muscle: Each smoothing method has been combined with
context-aware smoothing (CA). NPC stands for ”node position constraint”. The ØNormal Curvature is slightly higher for the CA approaches, since major parts the
the original surface remain unchanged.

smoothed and the high resolution surface and
• the average minimum Euclidean distance between the

smoothed and the high resolution reference model.

Figure 7: Changes of minimum Euclidean distance of uniform and context-
aware Laplacian smoothing of the model of the vena jugularis. Context-aware
smoothing reduces the number of larger distance changes.

4.1.2. Evaluation
The comparison of the employed methods reveals, that

context-awareness could successfully restrict the smoothing
process to the artifact areas. In combination with context-aware
smoothing, the accuracy of all involved uniform smoothing
methods could be increased.
As expected, standard Laplacian smoothing yielded strongest
volume shrinkage for both anatomical structures (SCM:-
7.05%; v. jugularis: -3.53%; see Tab. 1 and 2) as well as for
the phantom data (-4.02%, see Tab. 3). This error could clearly
be decreased by context-aware smoothing (SCM:-4.57%; v.
jugularis: +1.08%; phantom: -0.48). The volume changes for
the more volume- and feature-preserving methods, such as
Laplace+HC, Laplace with NPC, Taubin’s λ|µ filter, and Mean
Curvature Flow, are smaller. We could, however, generally
improve the individual results. For the vessel model (see
Tab. 2), most methods yield a volume increase which results
from a large concavely shaped area. The sphere phantom
data shows the strongest differences between the uniform and
context-aware methods.

The error in terms of distance changes (Hausdorff distance,
average mininum Euclidean distance) could also be reduced
by context-aware smoothing for the Laplace, Taubin’s λ|µ
filter, and Mean Curvature Flow for all tested models. The
combination with Laplace+HC as well as Laplace with NPC
did not yield relevant changes for the Hausdorff distance. We
have noticed slight improvements for the average minimum
Euclidean distance to the high resolution model for Laplace
with and without NPC. Figure 7 shows for Laplacian smooth-
ing, that context-aware smoothing (red bars) is able to decrease
the number of large distance changes compared to the uniform
method (blue bars). These differences are obviously smaller
for more restrictive smoothing methods (e.g., Laplace+HC,
LaplaceNPC, Taubin’s λ|µ filter).
The smoothness in terms of average normal curvature is always
slightly higher for the context-aware approaches. This is
obvious, since major parts of the surface models have been
smoothed less. Since the high resolution mesh is smoother by
definition (due to the interpolated image data), we included the
default MC mesh as reference for smoothness. Context-aware
smoothing could reduce the curvature in all cases, but repre-
sents a tradeoff between accuracy and smoothness. Thus, the
uniform smoothing methods yielded smoother surfaces. The
average normal curvature for context-aware smoothing can be
reduced by setting βmin to 0.1 or 0.2 for a restrained smoothing
effect in non-artifact areas.
According to Tab. 1, the sequence of the five methods in
terms of accuracy (especially Hausdorff distance) remains
the same for the uniform and the context-aware approach.
For the vessel data (see Tag. 2), the sequence is modified.
Context-aware smoothing improves the accuracy of uniform
Laplacian smoothing to be similar and even slightly better than
the more restrictive methods.
The results have shown, that context-aware smoothing could at
least keep the accuracy of the initial models and, in almost all
cases, preserve the volume better then the employed uniform
smoothing methods. Furthermore, it does not introduce
essential additional effort to the model generation pipeline.
Identification and weighting of staircases took less then one
second for all employed surface models. The default parame-
ters did not have to be adjusted. The parameters yield, however,
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Model Hausdorff Distance ØMin. Euclidean Distance Volume Change (%) ØNormal Curvature
to HighRes Model (mm) to HighRes Model (mm) (degree)
Uniform CA Uniform CA Uniform CA Uniform CA

HighRes MC 0 0 0.00 12.83
Default MC 1.40 0.22 +3.07 25.74
Laplace 2.63 1.40 0.24 0.21 -3.53 +1.08 7.31 12.12
Laplace+HC 1.60 1.54 0.22 0.22 +3.68 +3.48 13.08 17.64
Laplace with NPC 1.80 1.40 0.23 0.21 -1.40 +1.87 10.38 13.18
Taubin’s λ|µ 1.50 1.45 0.22 0.22 +3.78 +3.29 15.01 22.26
Mean Curvature Flow 1.80 1.44 0.21 0.20 -0.22 +1.62 8.92 13.05

Table 2: Results for the comparison of smoothing methods for the data of the vena jugularis: Each smoothing method has been combined with context-aware
smoothing (CA). NPC stands for ”node position constraint”.

Model Hausdorff Distance ØMin. Euclidean Distance Volume Change (%) ØNormal Curvature
to HighRes Model (mm) to HighRes Model (mm) (degree)
Uniform CA Uniform CA Uniform CA Uniform CA

HighRes MC 0 0 0.00 0.44
Default MC 2.73 0.04 -0.01 1.72
Laplace 1.96 1.51 0.57 0.06 -4.02 -0.48 1.37 1.49
Laplace+HC 2.08 2.09 0.03 0.03 -0.02 0.00 1.61 1.67
Laplace with NPC 1.51 1.51 0.42 0.04 -2.91 -0.04 2.45 1.47
Taubin’s λ|µ 2.20 2.21 0.03 0.03 -0.01 0.00 1.70 1.71
Mean Curvature Flow 1.64 1.61 0.29 0.04 -2.17 -0.02 2.46 1.475

Table 3: Results for the comparison of smoothing methods for the sphere phantom data: Each smoothing method has been combined with context-aware smoothing
(CA). NPC stands for ”node position constraint”.

stable results for small changes. Thus, a time-consuming pa-
rameter tuning is not necessary.

4.2. Estimation of the Image Stack Orientation

We applied orientation estimation to three differently shaped
MC surface models of the arteria carotis, the sternocleidomas-
toid muscle (SCM), and the liver which have all been extracted
with the workflow described in Section 4.1.1. We rotated the
initial models around the x-axis and the y-axis separately up to
90 degree in 30 degree steps. Finally, we compared the accu-
racy of the estimated orientation vector to the one known by the
applied rotation. The radius r has been set to 0.1 for all em-
ployed datasets. Even small changes (e.g., 0.05 or 0.2) did not
yield significant changes.
The results of the experiments are shown in Table 4. The av-
erage estimation error (deviation from the known orientation
vector) of all structures is 0.444 degree. The individual struc-
tures containing large staircase areas, but also non-artifact parts,
showed slight differences: 0.830 (arteria carotis), 0.481 (SCM),
and 0.021 (liver) degree.
The accuracy of the orientation estimation depends strongly on
the presence and size of flat areas related to the image stack ori-
entation, as contained in staircases and caps. Thus, for models
with very few staircase artifacts, our approach might be less ac-
curate. To evaluate this aspect, we employed phantom image
data of a sphere, where we cut out parts of the topmost image
data slice with increasing size to generate a staircase-like flat

area, which our approach requires to estimate the image stack
orientation. We used five steps: 1/16th, 1/8th, 1/4th, 1/2, and
a complete removal of the topmost sphere slice (see Fig. 8(a)).
All of these cuts have been applied in the axial images, thus the
target orientation, that our approach should detect is a vector
along the z-axis, e.g., (0,0,1).

Subsequently, we measured the size of the resulting flat ar-

Rotation Rotation Arteria SCM Liver
Axis Angle Carotis

0 0.830 0.479 0.000

X
30 0.828 0.484 0.046
60 0.830 0.483 0.026
90 0.830 0.479 0.000

Y
30 0.830 0.480 0.032
60 0.831 0.482 0.034
90 0.830 0.479 0.000

Average - 0.830 0.481 0.021

Table 4: Results for the estimation of the image stack orientation applied to
three differently shaped structures: For the vessel (arteria carotis), a muscle
(sternocleidomastoid muscle, SCM) and the liver, the deviation angles towards
the known orientation vector are presented (in degree).

eas in terms of the percentage to each surface model (see Tab.
5). For each of the models, the orientation has been estimated.
Less than 0.40 % of the faces in these phantom models were
sufficient to detect the image stack orientation with an accept-
able accuracy. The estimation failed for the model with only
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(a) (b)

Figure 8: Samples of the phantom data employed for evaluation of orientation
estimation and staircase identification: (a) has been derived from phantom im-
age data, where a quarter of topmost slice of the sphere has been removed. (b)
is an example for manually introduced staircases to evaluate accuracy.

0.17% of the faces being oriented along the image stack orien-
tation. For the latter, not only faces orthogonal to the orientation
vector have been generated. Especially at the borders between
the original sphere surface and the cut parts, a lot of diagonal
faces emerged. Thus, an accurate detection of the image stack
orientation was not possible.

Amount Removed % Flat Faces Deviation Angle
1/16 0.17 10.284
1/8 0.40 1.629
1/4 0.78 1.621
1/2 1.63 1.174
Complete Slice 3.09 0.000

Table 5: Results for the comparison of phantom sphere data with differently
sized staircase-like artifacts: In the topmost sphere slice, differently sized parts
have been removed. The percentage of flat faces is the number of faces oriented
along the known image stack orientation in relation to the total number of faces
in the model.

4.3. Detection of Caps

To demonstrate the capabilities of the cap detection method,
we employed phantom data in terms of a cylinder merged with
a cuboid. Thus, the resulting structure contains perfect caps
due to the cylinder and staircases due to the cuboid (see Fig.
9(a) and 9(b)). The surface model has again been generated via
MC from artificially created image data. We extract the sur-
face model from image data instead of directly generating the
mesh in order to keep the mesh properties close to the pipeline
used for medical structures. Subsequently, we applied uniform
Laplacian mesh smoothing to the phantom surface model to
generate variations with increasing smoothness and thus less
feature edges. We applied up to 50 iterations with λ = 0.5.
With that procedure, we did not aim at quantitative evaluation
of (context-aware) smoothing. We evaluated, if the cap detec-
tion method is still able to differentiate between the cap-like
parts of the model and the staircases. Sample results are shown
in Figure 9. Figure 9(c) (50 iterations) demonstrates, that the
caps and staircases have been identified correctly and could be
excluded from the list of potential staircases (see Fig. 9(d)).
The detection of caps and further exclusion from staircase

weighting requires, that the cap has initially been detected as
staircase. Since the feature edges at the caps and staircases
exhibit very low curvature, we decreased τθ′ to 0.2 to detect
these parts as staircases. This low value for τθ′ , however, has
never been required for clinical data where potential caps ex-
hibit sharper feature edges. Finally, for all created phantom
models, the caps could be detected.

(a) (b) (c) (d)

Figure 9: Phantom data used to evaluate cap detection for differently smoothed
caps: (a) and (b) depict the initial surface model after default staircase weight-
ing (a) and with cap detection enabled (b). The models in (c) and (d) show
the same procedure, but for smoothed models (Laplace, 50 iterations, λ = 0.5)
without sharp feature edges.

5. Application to Computational Fluid Dynamics

An application, where accuracy and smoothness are espe-
cially relevant, is the patient-specific simulation of blood flow,
e.g., in cerebral aneurysms. We selected this application, since
the simulation results in terms of flow velocity and wall shear
stress may strongly depend on details of the patient-specific ge-
ometry and corresponding mesh smoothing operations. Thus,
the careful reduction of segmentation artifacts, such as merged
vascular branches due to image inhomgeneities, is often a te-
dious, time-consuming manual procedure.
Applying context-aware smoothing to models for CFD, we
shall investigate two questions:

(I) Can context-aware smoothing reduce the effort for man-
ual correction of local artifacts?

(II) What are the differences between the employed smooth-
ing methods with respect to the blood flow behaviour?

In this section, we describe the employed data and the specific
model generation pipeline. Finally, we discuss the results of
the blood flow simulation for different smoothing methods with
and without context-awareness.

5.1. Data and Workflow
The steps of our CFD model generation pipeline are shown

in Fig. 10. Clinical or phantom image data for blood flow sim-
ulation can be derived from different modalities (e.g., magnetic
resonance angiography (MRA), computed tomography angiog-
raphy (CTA), rotation angiography, time-of-flight MR angiog-
raphy). For evaluation of context-aware smoothing, we em-
ployed CTA data of a phantom aneurysm model (voxel size is
0.4×0.4×0.4 mm). Due to the high contrast in the angiography
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data, vascular structures can be delineated easily by an inten-
sity threshold. Afterwards, we apply a connected component
analysis to extract the aneurysm and its parent vessel (inlets,
outlets) from background noise. Manual effort has been nec-
essary to define an ROI around the aneurysm to exclude bone
structures and distant vessels. The resulting segmentation in-
formation has been used to mask the initial intensity data. As
in many datasets, image inhomogeneities yield wrong contour
information. In the employed phantom dataset, beam harden-
ing artifacts at the two aneurysm outlets lead to blending effects
in the subsequent MC model generation step. Additional effort
was necessary to correct the segmentation mask by manually
drawing contours in the image slices of the affected vessel re-
gions. Unfortunately, this procedure leads to staircase-like arti-
facts in the surface model. Thus, a final smoothing of the sur-
face mesh is necessary to remove surface noise, but especially
staircase artifacts from image segmentation. A typical solu-
tion is the manual correction of local artifacts, e.g., employing
tools, such as Sculptris1 for dynamic mesh tesselation, surface
modeling and smoothing. Such a manual procedure is, how-
ever, time-consuming and error-prone. In contrast, automatic
mesh smoothing might not guarantee the required accuracy and
smoothness simultaneously. Thus, adaptive mesh smoothing
might allow for accurate and smooth surface models applicable
to CFD. As a result of mesh smoothing, the homogeneity of the
triangle size and quality is usually slightly improved. After the
smoothing step, the inlets and outlets are cut orthogonal to the
local vessel centerline to define valid inflow and outflow regions
for the CFD simulation. Finally, we optimize the reconstructed
surface mesh with respect to the mesh quality by employing an
advancing front remeshing algorithm [44]. The resulting mesh
is subsequently used for volume grid generation, which is used
for the CFD simulation.
The numerical computations are performed in parallel using up
to six computing cores applying the commercial CFD solver
ANSYS Fluent 12. Blood rheology is represented using a New-
tonian description with constant density and viscosity, where
the blood density is chosen as 1000 kg/m3 and the dynamic
viscosity as 4 · 10−3Pa · s. In the present case, a steady flow
condition is finally retained with an inlet flow rate of 1.2 cm3/s
at the inlet. All vascular walls are assumed to be rigid, as in
most published studies, since real wall material properties are
unknown. A standard, no-slip boundary condition is employed
at all contact points with surfaces. At the outlets, traction-free
boundary conditions are applied.
To evaluate the influence of context-aware mesh smoothing,
we employed Laplace and Laplace+HC filtering to the initial
MC mesh. Each method has also been combined with context-
aware smoothing. Taubin’s λ|µ smoothing and Laplace with
NPC have been omitted here, since they usually yield inter-
mediate smoothing results compared to Laplace, which pro-
vokes strongest errors, and Laplace+HC, which is very restric-
tive. Furthermore, we employed a manually smoothed and ad-
justed model as reference model. An overview about the mod-
els with their quantitative differences compared to the manually

1www.sculptris.com

Figure 10: Overview about the CFD data flow pipeline from image aquisition
to a meaningful CFD simulation model. In some cases a masking step with
manual effort is necessary to resolve blending artifacts which leads to staircase-
like artifacts. Hence, an adaptive smoothing approach is necessary to resolve
these artifacts.

smoothed model is given in Table 6. We defined this surface as
reference model because of the best trade-off between adap-
tive smootheness and volume preservation to the original MC
model. We assume it fits best to the original vessel surface and
the resulting CFD results are more valid in contrast to the other
models. Note, we compare the CFD results under the given
boundary conditions. Predictions about the validation of sim-
ulated blood flow to the real flow behavior is still a research
task [45]. The numerical results of the CFD simulation, namely
velocity and wall-shear-stress (WSS) are listed in Tab. 6.

5.1.1. Results and Discussion
In the upper left corner of Figure 11, the reference model of

the reconstructed aneurysm surface with its inlet and two out-
lets is shown. Blood flow and velocity magnitude is visualized
with color-coded streamlines. An ROI around the staircase-
like artifact (existent in the original MC model) is marked
and enlarged for each surface model next to the aneurysm
(first row). Additionally, the corresponding WSS (second
row) and velocity magnitude (third row) of that ROI are pre-
sented. Laplacian smoothing caused the strongest volume
change (-18.69%) resulting in an increased velocity magnitude
and WSS because of the small vessel diameters. Context-aware
smoothing could reduce volume shrinkage to -4.53% which
comes along with a strong reduction of WSS. Comparing uni-
form and context-aware Laplacian smoothing to our manually
smoothed reference model shows still strong differences. Uni-
form Laplace+HC filtering could again reduce volume shrink-
age and distance changes resulting in less errors for velocity
and WSS. Adding context-awareness to Laplace+HC filtering
could improve the results and get closer the reference model.
The results demonstrate clearly, that mesh smoothing influences
the results of blood flow simulations strongly. Context-aware
smoothing could clearly improve the results of the employed
uniform smoothing methods. Laplace+HC smoothing com-
bined with context-awareness achieved the smallest error com-
pared to manual smoothing. Keeping in mind, that the manu-
ally smoothed model might also not perfectly describe the real
flow behaviour, context-aware Laplace+HC smoothing might
be a promising alternative to the time-consuming manual arti-
fact correction procedure.
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Figure 11: Comparison of the CFD results for the employed smoothing methods. The manually smoothed reference model is shown in the upper left corner with
color-coded streamlines. A region of interest is defined (black rectangle) around the artifact area and is enlarged for the six models on the right side. The maximum
of the color scales is related to the reference model.

Model Hausdorff ØMin. Euclid. Volume ØNormal Curv. Max. Vel. Max. WSS Difference
Dist. (mm) Distance (mm) Change(%) (degree) (m/s) ROI (Pa) Vel. / WSS

Manual 0 0 0 6.224 1.611 56.135 0 / 0
Original MC 0.497 0.083 -1.05 6.528 1.696 142.824 0.085 / 86.689
Laplace 0.649 0.253 -18.69 6.239 4.281 345.573 2.670 / 289.438
CA Laplace 0.511 0.085 -4.53 6.372 2.591 164.901 0.980 / 108.766
Laplace+HC 0.499 0.078 -3.0 6.382 1.941 103.923 0.330 / 47.788
CA Laplace+HC 0.401 0.07 -1.49 6.32 1.717 94.037 0.106 / 37.902

Table 6: Overview of the six smoothing variations of the aneurysm model on which a CFD simulation is performed. In all cases our context-aware smoothing results
in a more volume preserved smoothing compared to standard Laplace or Laplace+HC. Distance differences and volume change are related to the manual smoothed
model.

6. Conclusion

To reduce staircase-artifacts in medical surface models, we
have presented context-aware mesh smoothing, which is an
extended approach for the improvement of the accuracy of
common uniform mesh smoothing algorithms. Thus, artifacts
can be adaptively smoothed, whereas accuracy and features are
preserved in non-artifact areas of the surface model. This is
especially relevant for surgical planning, where pathological
structures need to be evaluated and quantified. We enable the
automatic estimation of model orientation and detect cap-like
structures to be preserved during the smoothing procedure.
The estimation of model orientation is based on clustering
of face normals. The results have proven, that the presented
approach is able to reliably detect the correct model orientation,
if a relevant number and size of staircase artifacts is available.
We assume, however, that we can further improve the results
to allow for a correct orientation detection with less artifacts
by a more detailed analysis of the clusters formed by similar
normals. Since we only require an arbitrary vector along the
model orientation axis (e.g., z-axis), we might combine the
information of inverse normal clusters. Thus, the clusters for
vectors, such as ~v1(0, 0, 1) and ~v2(0, 0,−1) would be merged
during analysis resulting in higher cluster density.
Evaluating the results for the detection of caps has also shown

the reliability of the method. To generalize it further, we
need to extend it to detect caps, which are not related to the
image stack orientation as, e.g., in aneurysm models for flow
simulation, where the model is usually edited to define correct
inlets and outlets orthogonal to the vessel centerline. This
might be achieved by analyzing homogeneous areas if the
model with respect to the relative orientation θ fi and curvature.
Furthermore, we examined the accuracy of context-aware
smoothing, which could confirm the results of our previous
paper [5]. Comparing the distance and volume changes to
high resolution reference models instead of the default MC
models has shown improvements for all employed anatomical
structures as well as for phantom data. The changes of
Hausdorff distance and average minimum Euclidean distance
lie within the submillimeter/subvoxel range. This is, however,
related to the size of the artifacts and voxel size. The visual
results but also the application of context-aware smoothing
to CFD demonstrate, that context-aware smoothing is able
to preserve non-artifact areas better then uniform smoothing
approaches. For surface models, where only small parts suffer
from staircase artifacts, the strongest visual and quantitative
gain is achieved.
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[26] Bobenko AI, Schröder P. Discrete willmore flow. In: ACM SIGGRAPH
2005 Courses. SIGGRAPH ’05; 2005, p. 101–10.

[27] Lempitsky V. Surface extraction from binary volumes with higher-order
smoothness. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition. 2010, p. 1197–204.

[28] Nealen A, Igarashi T, Sorkine O, Alexa M. Laplacian mesh optimization.
In: Proc. of the 4th International Conference on Computer Graphics and
Interactive Techniques. GRAPHITE ’06; ACM; 2006, p. 381–9.

[29] Li Z, Ma L, Jin X, Zheng Z. A new feature-preserving mesh-smoothing
algorithm. Vis Comput 2009;25(2):139–48.

[30] Belyaev A, Ohtake Y. A comparison of mesh smoothing methods. In:
Proc. of the Israel-Korea BiNational Conference on Geometric Modeling
and Computer Graphics. 2003, p. 83–7.

[31] Bade R, Haase J, Preim B. Comparison of fundamental mesh smooth-
ing algorithms for medical surface models. In: Proc. of Simulation und
Visualisierung. 2006, p. 289–304.

[32] Bade R, Konrad O, Preim B. Reducing artifacts in surface meshes ex-
tracted from binary volumes. Journal of WSCG 2007;15(1-3):67–74.

[33] Huang H, Ascher U. Surface mesh smoothing, regularization, and feature
detection. SIAM J Sci Comput 2008;31(1):74–93.

[34] Ohtake Y, Belyaev A, Seidel HP. Mesh smoothing by adaptive and
anisotropic gaussian filter applied to mesh normals. In: Proc. of Vision,
Modeling and Visualization. 2002, p. 203–10.

[35] Bajaj CL, Xu G. Adaptive fairing of surface meshes by geometric diffu-
sion. In: International Conference on Information Visualisation. 2001, p.
731–7.

[36] Chen CY, Cheng KY. A sharpness dependent filter for mesh smoothing.
Computer Aided Geometric Design 2005;22(5):376 –91.

[37] Garland M, Heckbert PS. Surface simplification using quadric error met-
rics. In: Proceedings of the ACM SIGGRAPH Conference on Computer
Graphics. 1997, p. 209–16.

[38] Hoppe H. Progressive Meshes. In: Proc. of the ACM SIGGRAPH Con-
ference on Computer Graphics. 1996, p. 99–108.

[39] Cebral JR, Mut F, Weir J, Putman CM. Association of hemodynamic
characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol
2011;32(2):264–70.
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