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Abstract
Surface models derived from medical image data often exhibit artifacts, such as noise and staircases, which can be
reduced by applying mesh smoothing filters. Usually, an iterative adaption of smoothing parameters to the specific
data and continuous re-evaluation of accuracy and curvature is required. Depending on the number of vertices
and the filter algorithm, computation time may vary strongly and interfere with an interactive mesh generation
procedure. In this paper, we present an approach to improve the handling of mesh smoothing filters. Based on a
GPU mesh smoothing implementation, model quality is evaluated in real-time and provided to the user as quality
graphs to support the mental optimization of input parameters. Moreover, this framework is used to find optimal
smoothing parameters automatically and to provide data-specific parameter suggestions.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Model generation from tomographic medical image data,
e.g., computed tomography (CT) or magnetic resonance
imaging (MRI), often requires segmentation of the target
structures suffering from image noise and intensity inhomo-
geneities. These problems are pronounced in medical imag-
ing, where radiation exposure and examination times need
to be reduced. The delineation of a target structure often
yields binary image data causing strong aliasing artifacts
(e.g., “staircases”, “terraces”) instead of smooth anatomi-
cal surfaces. Such discontinuities draw the viewer’s attention
and distract from relevant features. Combining the segmen-
tation information with the original intensity, e.g., to remove
background structures with similar intensity values, allows
to restrict surface extraction to the target structure, but may
result in local staircase artifacts.
To reduce surface discontinuities, various mesh smoothing
filters can be employed as part of a complex model genera-
tion pipeline. Anatomical surface models used for surgery or
radiation treatment planning put high demands on accuracy,
e.g., for estimating distances to neighboring structures or for
blood flow simulation in vascular structures. The minimiza-
tion of artifacts with concurrent preservation of the individ-
ual shape and volume requires careful testing of different
smoothing methods and parameters. After each parameter

change, the resulting model needs to be evaluated w.r.t. cur-
vature reduction and accuracy. Even small delays may dis-
turb during such iterative testing if they appear repeatedly.
Surface model generation is performed for different use
cases with specific requirements: within web-based, medi-
cal e-learning tools, in computational fluid dynamics (CFD)
for blood flow simulation, or in software used by medical
experts, such as ENT surgeons or radiology technicians. For
example, in radiation treatment planning usually two radi-
ologists perform therapy planning separately based on 3d
models. In surgery and treatment planning, high accuracy
is required to ensure that, e.g., tumor tissue is completely re-
moved or that a radiation dose is correctly adjusted. In CFD,
the loss of features on the aneurysm or parent vessel sur-
face affects flow properties (e.g., wall-shear-stress, flow ve-
locity). Thus, a fast, flexible, and user-friendly integration of
smoothing filters into such pipelines is desirable.
In this paper, we present an OpenGL-based framework
for interactive real-time mesh smoothing. We control rel-
evant smoothing parameters via mouse-movements similar
to brightness and contrast adjustments on radiology work-
stations and provide immediate visual feedback on accuracy
(e.g., volume, local errors) and smoothness. Following this
concept, a fast evaluation of model quality allows for a data-
specific preview of the accuracy and smoothness evolution
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if parameters are modified. We introduce the model quality
graph as an effective means to perform parameter adjust-
ments in mesh processing. This allows for examining pa-
rameter sensitivity and data-specific smoothing suggestions.

2. Related Work

Mesh smoothing filters are applied as part of the model gen-
eration pipeline, e.g., to reduce noise within surfaces from
laser scanning data or staircase artifacts in models from to-
mographic medical image data. For binary segmented data,
constrained elastic surface nets yield smooth and accu-
rate surfaces [Gib98]. Mesh smoothing filters may cause
strong shape and volume changes. Such changes affect the
measurement and interpretation of 3d structures in surgi-
cal planning, but also the results of blood simulations, e.g.,
performed for stent implantation planning [MGJ∗11]. De-
pending on the data and application, a large variety of fil-
ters is available (e.g., [DMSB99,JDD03,KBSS01,LMJZ09,
NISA06, TW03]). Especially the Laplace+HC [VMM99]
and LowPass [Tau95] filter are suitable for artifact reduction
in surfaces from medical image data [BHP06]. Hence, we
consider these filters exemplarily, but a generalization of our
methods to other data domains and filters is possible. Both
filters operate on the topological neighborhood of each ver-
tex and are controlled by the number of iterations (#Its.) and
vertex displacement weights. These weights have different
meanings which complicates testing and parameter adjust-
ment. For these exemplary filters, computation takes roughly
a few seconds for typical anatomical surface models (e.g.,
<500,000 vertices) on a current CPU using only one core.
This is, for a pipeline with fixed methods and parameters,
not critical. For repeating smoothing tasks in combination
with an evaluation of accuracy and artifact reduction, real-
time capabilities and a dynamic interface are preferable.
Bade et al. [BHP06] performed a sophisticated analysis on
mesh smoothing filters for anatomical surface models to
derive parameter suggestions for different shape categories
(e.g., compact vs. elongated). Within this study, numerous
time-consuming measurements have been performed to find
acceptable parameter sets regarding accuracy and smooth-
ness. This correlation between the input parameters and re-
sulting quality measures (curvature, local error, volume) is
usually considered as sensitivity. Marks et al. [MAB∗97] de-
scribed the idea of “design galleries”, which provides pre-
computed visual results to the user. Berger et al. [BPFG11]
presented an interactive approach for the investigation of
system dynamics by analyzing parameter sensitivity. Chan
et al. [CCM10] determine sensitivity as partial derivative of
one variable w.r.t. another, approximated using linear regres-
sion. The sensitivity is then used to augment scatterplots.
An example for automated parameter optimization has been
presented by Selle et al. [SPSP02]. They estimated opti-
mal thresholds for vessel segmentation and conveyed its ef-
fect on the structure’s volume. Similarly, Torsney-Weir et
al. [TWSM∗11] suggested a complex system to replace te-

dious manual parameter testing by an approach that samples
the parameter space and evaluates the results.
Due to the different meanings of smoothing parameters and
methods, an estimation of their sensitivity would be helpful
and support users during parameter testing and evaluation.

3. OpenGL-Based Mesh Smoothing

For GPU computing, several frameworks, such as CUDA,
OpenCL, and DirectCompute are available. The shader con-
cept of OpenGL is ideally suited for mesh operations be-
ing closely related to graphical operations, such as displace-
ment mapping or computation of vertex attributes (normals,
colors, illumination). Note, that the other frameworks could
also be used for computation and their buffers shared with
OpenGL for rendering. A pure OpenGL implementation pre-
vents, however, further dependence hardware and SDKs.

3.1. Workflow

OpenGL vertex shaders do natively not provide topologi-
cal information, such as the location of neighboring vertices.
We provide such topology information within the OpenGL
shader framework via vertex attributes (vertex buffer objects,
VBOs) and large 1d-arrays (texture buffer objects, TBOs)
(see Fig. 1b). Within this data structure, each vertex (see Fig.
1a) can access the indices of its 1-ring neighbors via a lookup
table (see Fig. 1c) providing information on the number of
neighbors and the location (offset) of the indices of neigh-
boring vertices in a neighbor index list (see Fig. 1d). The
provided data structure provides fast access to the coordi-
nates of vertex neighbors. A dynamic modification of these
arrays, e.g. for topological changes, is not intended.
To enable neighborhood information within vertex shaders,
we bind the vertex coordinates buffer, and the buffer with the
indices of neighboring vertices as sampler buffers (TBO).
For storing the smoothed vertices, we employ a transform
feedback buffer (XBO) with the same size as the VBOs
(see Fig. 2). The VBOs provide local smoothing weights,
e.g. to involve vertex position constraints (e.g., [Gib98]) or
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Figure 1: The data is organized in three arrays: vertex co-
ordinates (b), a lookup table (c) holding information on the
number of neighboring vertices and their location in the list
of neighboring vertices (d).
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Figure 2: Each vertex catches its neighborhood informa-
tion and indices of neighboring vertices from differently
bound buffers (VBO, TBO) and stores the smoothed posi-
tion within a transform feedback buffer (XBO).

Model Vertices #Neighbors
Min Max Avg

carotid artery 6,988 4 11 5
sternocleidomastoid

38,069 4 15 5
muscle (SCM)
liver 247,772 4 13 5
cerebral aneurysm 6,773 3 12 5

Table 1: The medical surface models employed for evalua-
tion of real-time smoothing capabilities.

to restrict smoothing to artifact areas only [MGJ∗11]. After
catching neighborhood information from VBOs and TBOs,
computing new vertex positions and writing to XBOs, these
buffers are switched, such that the modified vertex positions
become the input data. Finally, the same workflow is em-
ployed to update the vertex normals. With respect to the
memory accesses, the lookup of neighborhood information
is expensive, since the data might be widely distributed in
memory. However, the memory accesses via VBOs and data
output via XBO are coalesce.
In this paper, we process surface models from (segmented)
tomographic image data with up to 250,000 vertices (e.g.,
the liver model in Tab. 1). Using an NVIDIA GTX460 as
common reference graphics card, frame rates of ≈25 fps
are achieved for this comparably large model with 20 iter-
ations of the Laplace+HC algorithm. The subsequent nor-
mal update is similar to one smoothing iteration with a uni-
form Laplace filter, which takes less than 1 ms. Similarly,
the smaller models yield clearly higher frame rates. Thus,
we obtain a completely smooth rendering, even if we would
execute mesh smoothing for each render frame.

3.2. Interactive Adjustment of Parameters

The achieved performance gives the opportunity to com-
bine smoothing filters and rendering in an interactive man-
ner. In the reading of radiological image data with a radi-

ology workstation, brightness and contrast adjustments are
performed by mouse movements (i.e., horizontal – contrast;
vertical – brightness). This feature is used extensively to in-
vestigate suspicious regions and variations carefully while
the radiologist remains focused on the image data and its
features. An interface with separated controls for the view-
ing parameters would require to interrupt the visual exami-
nation of the radiological images.
Borrowing this idea, we can map, e.g., mouse movement
direction and distance onto relevant smoothing parameters.
Similar to the radiology scenario, this interaction is activated
by holding the right or middle mouse button. Any interaction
causes an immediate execution of the selected smoothing fil-
ter. Thus, the user can remain focused on its visual evalua-
tion of artifact reduction and accuracy preservation. Since
users familiar with radiology workstations and exploration
of medical image data are among our target users, we can ex-
pect a high acceptance of this feature. For occasional users,
this should become intuitive very fast.

4. Visual Feedback

Real-time mesh smoothing, combined with an interactive ap-
proach, gives an expressive visual feedback and allows for
a direct perception of modifications caused by different fil-
ters and parameters. The user does, however, not obtain de-
tailed information on the resulting accuracy. Local distance
changes (minimum Euclidean distances) and changes of the
structure’s volume are typical accuracy measures. To deter-
mine the influence of mesh smoothing on accuracy, a com-
parison of the modified mesh M′ versus a reference mesh
M, regarded as accurate, needs to be performed. For a cor-
rect comparison, M should have a high resolution and depict
the artifact-free, real shape of the considered structure. For
anatomical surface models, we do not have access to such a
perfect reference mesh. Hence, we employ the changes be-
tween initial mesh M and M′ as accuracy indicator.

4.1. Approximation of the Local Error

Within the presented shader-based framework, a comparison
of each vertex v′ ∈ M′ to each vertex of v ∈ M would be
highly inefficient. Employing the Euclidean distance of v′ to
its initial position v would roughly reflect the local changes,
but does not account for possible drifts along the surface.
Thus, we divide error approximation in two steps:

1. the determination of the reference neighborhoods Nre f
during mesh smoothing (see Fig. 3a) and

2. the final computation of the minimum Euclidean distance
(see Figs. 3b and 3c).

The initial reference neighborhood Nre f of v′ is the 1-ring
of v. As the position of v′ is modified during smoothing, it
may tend to drift along the surface (see Fig. 3a). As a con-
sequence, one of the 1-ring neighbors of v might now be
closer to v′ than v. Thus, this neighbor vertex becomes the
new center vre f of Nre f . This procedure is repeated after
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each smoothing step and moves Nre f according to the drift
of v′. After completing the smoothing procedure, we exe-
cute the final error computation step. We evaluate all trian-
gles in Nre f by testing whether v′ is located inside the prism
spanned by each of the triangles (see Fig. 3b) and the corre-
sponding normal. This can be solved by:

(a,b,c) = P−1(v′− vre f ). (1)

The columns of the matrix P are the vectors e1, e2 along
the triangle edges incident to vre f , and the triangle normal
ni. P−1 exists only for non-degenerated triangles. If a,b≥ 0
and a+b≤ 1, v′ is inside the prism of the considered trian-
gle. Moreover, if ni is orthonormal to e1 and e2, c returns the
distance from v′ to the triangle plane (d = c). In case v′ is not
inside any of the prisms of Nre f , v′ might be close to one of
the vertices or edges of Nre f (see Fig. 3c). As a special case,
v′ might have left Nre f , but the closest vertex is still vre f .
In those cases, we determine d as the minimum Euclidean
distance towards the edges of Nre f .
By moving Nre f we may get stuck locally, and thus, not find
the global minimum Euclidean distance to M. This occurs,
if, e.g., a smoothed vertex is getting close to a topologically
very distant part of the model (e.g., another branch of a vas-
cular structure). This real minimum is, however, not impor-
tant to the error feedback.

4.2. Curvature

A decrease of curvature is an indicator for the degree of
smoothing. Thus, within the same final computation step ex-
ecuted for error computation (see Sec. 4.1), we estimate the
curvature. Within the vertex shader, we determine the dis-
crete Gaussian curvature KG at a vertex vi by iterating over
all adjacent triangles (# fi) considering the area AMixed and
the angle θ j between the edges incident to v j of each trian-
gle [MDSB03]:

KG(vi) = (2π−
# fi

∑
j=1

θ j)/AMixed . (2)

5. Sensitivity Analysis

The immediate rendering update in combination with curva-
ture or error coloring provides a fast overview on the local
effects. By modifying relevant parameters continuously via
mouse movement (see Sec. 3.2) and observing the changes,
the user performs a mental sensitivity analysis to explore
the correlation between input parameters and smoothing re-
sults. Since parameters of different filters may have different
meanings, an intuitive usage is not guaranteed. For exam-
ple, the weights of the Laplace+HC method describe the in-
fluence of the original vertex positions. Thus, higher values
represent lesser smoothing. In this section, we describe how
we support this analysis visually and quantitatively.
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Figure 3: 2d illustration of the error approximation. (a) Nre f
consists of v2,v3,v4. After some iterations, v2 is the closest
vertex and Nre f comprises v1,v2,v3. (b) P1,P2 represent the
prisms spanned by v1,v2,v3. (c) The prism test fails, if v′3 is
not inside of P1 or P2.

5.1. Volume Computation

Besides local distances, volume preservation is a major cri-
terion for the accuracy of mesh smoothing. For a closed
surface, the computation of the volume of a model may be
determined from the discrete form of the divergence theo-
rem [DMSB99] (see Eq. 3). Following this equation, we de-
termine the volume by iterating over all m triangles and em-
ploy the face normal n̂i, the area Ai, and an arbitrary point vi
on each triangle. Within our framework, this can be achieved
efficiently by employing geometry shaders, which allow for
computations per primitive. The volume fractions of the tri-
angles are accumulated via parallel prefix sums [Ble93].

V =
1
3

m

∑
i=0

vi · n̂iAi (3)

5.2. Model Quality Graphs

To further improve the handling of mesh smoothing filters,
we introduce model quality graphs. These graphs display
the correlation between a smoothing parameter and model
quality. The current setting is visually indicated by a vertical
line. After initially loading the model and building the data
structures, we execute an initial computation of the qual-
ity metrics. For that, we increase each smoothing parameter
within its defined bounds (e.g., weights∈ [0,1] with step size
0.05). During modification of one parameter, all others re-
main constant. After each smoothing operation, the mesh is
again evaluated w.r.t. local distance changes, volume shrink-
age, and curvature reduction. This procedure is repeated for
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Figure 4: Prediction of model quality for the carotid artery,
color-coded by the local error (Laplace+HC with 3 parame-
ters – #Its. & smoothing weights λ ,µ).

all desired input parameters. Figure 4 shows model quality
graphs for a surface model of the carotid artery. In this ex-
ample, three input parameters of the Laplace+HC filter have
been considered. In contrast to standard Laplacian smooth-
ing, two parameters (λ ,µ) control the influence of original
and intermediate vertex positions. Thus, stronger smoothing
is achieved for small values of λ and µ . Without the model
quality graphs, this might be confusing to occasional users.
This initial guess on the evolution of model quality is avail-
able to the user before any manual parameter adjustments.
The quality graphs are updated after each interaction step.
Scaling of the y-axis is performed depending on the qual-
ity measures of the initial surface model without smoothing.
For each input parameter (and diagram), a value hint is dis-
played (dashed vertical lines in Fig. 4), which helps the user
to visually correlate the current parameter set with the pre-
computed quality measures. The user can also modify each
smoothing parameter via the graphs. For integer parameters
the value hint is aligned accordingly.
The described concept of quality graph previewing supports
the user during the interactive parameter optimization and
shall decrease the amount of trial and error cycles during
parameter testing and model inspection. The graph-based
quality preview provides a direct feedback on the influence
of each input parameter. Thus, it assists the mental sensi-
tivity analysis performed by the user. This feedback sup-

ports primarily experienced users and enables them to adjust
the parameters efficiently. Occasional users will still need
a few trial and error cycles. The graphs enhance the visual
feedback provided by the (curvature-/error-)colored, smooth
mesh with quantitative measures.

5.3. Parameter Suggestions

By analyzing the quality measures automatically, we gen-
erate parameter suggestions to further simplify manual test-
ing. This is used for an initial suggestion of model-specific
default values. Thus, a large number of parameter combina-
tions needs to be evaluated w.r.t. accuracy and smoothness.
For an initial guess, a rough parameter sampling can be cho-
sen, e.g. a step size of 5 or 10 for #Its. ∈ [0,50], or a step size
of 0.1 for weighting factors ∈ [0,1]. By executing smooth-
ing and mesh evaluation for all parameter combinations, we
compute the quality score S for each parameter set separately
as a weighted sum of the total curvature K, the average lo-
cal error E, the volume V , the initial curvature and volume
K0,V0, and the target smoothness coefficient τ:

S = τ
K
K0

+(1− τ)
1
2

(
E

E +1
+
|V −V0|

V0

)
. (4)

The weighted sum is controlled by the target smoothness τ ∈
[0,1] describing the tradeoff between accuracy and smooth-
ness. τ maps all n input parameters onto a single one. Hence,
it may be used to bypass interaction with several separated
parameters. The optimal parameter set is then found by min-
imizing S. For τ→ 1, the suggestion considers more smooth-
ness, whereas it yields higher accuracy for τ→ 0. By default,
τ is set to 0.5. The effect of τ can be seen in Tab. 2. For the
carotid artery (see Fig. 4), the average curvature increases
with stronger smoothing, since thin parts tend to collapse.
Our method is sensitive to such changes. The liver model is
more compact and has a large volume. Smoothing can thus
be stronger compared to elongated structures.
This optimization yielded stable and plausible results for
all employed models and took up to 400 ms for small and
medium sized models (e.g., SCM and carotid artery in Tab.
1). For large models, such as the liver, computation takes
about 6 s, which is still acceptable, since the optimization is

τ Carotid artery SCM Liver
λ #Its. λ #Its. λ #Its.

0.0 0.0 0 0.0 0 0.0 0
0.2 0.3 5 0.6 5 0.7 10
0.4 0.6 5 0.7 10 0.8 30
0.6 0.9 5 0.8 15 0.8 45
0.8 1.0 5 0.9 50 1.0 50
1.0 1.0 15 1.0 50 1.0 50

Table 2: Parameter suggestions for modifying τ for differ-
ently shaped structures (uniform Laplace, 2 parameters).
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Figure 5: Examples for iterative score optimization for two parameters (λ , #Its.) (a). Beginning from two positions (b) in
parameter space, similar parameter sets are evaluated. (c) We proceed with the parameter set, which yielded the minimum
scores in each neighborhood until a local minimum is found (d).

performed only once during model initialization. For more
input parameters, computation times increase accordingly.
As a remedy, we suggest an iterative, local search in the
spanned parameter space of S (see Fig. 5a). The precom-
putation of K,E,V, and S is not required. Starting at a given
position in the parameter space, we perform a local gradi-
ent search. We consider all parameter sets defined by the
direct 3n− 1-neighborhood and perform smoothing, evalu-
ation, and score computation (see Fig. 5b for the 2d case).
The parameter set which yielded the minimum score, serves
as next search center. We proceed until a local minimum has
been found (see Figs. 5c and 5d). Depending on the num-
ber of input parameters n, we create n search patterns. For
example, for two input parameters (#Its., λ ), two search pat-
terns are initialized. Each of these patterns begins at the max-
imum value of one parameter, e.g., at λ = 1.0, #Its.= 0 and
λ = 0.0, #Its.= 50. This yields at most n local minima, from
which we select the lowest value. Since the quality scores
for the complete parameter space are not known, we can-
not guarantee to find the global minimum, but the use of n
search patterns, starting from opposite sides of the parameter
space, yielded the global minimum for most test cases. Oth-
erwise, the suggested parameters were always valid alterna-
tives, since they were located in an area with similar qual-
ity scores as the global minimum. The iterative optimization
was up to 6× faster than an evaluation of the complete pa-
rameter space. The use of only one search pattern is faster,
but increases the likelihood that the optimum is not found.
During user interaction, the suggestions for the other param-
eters are updated. Each parameter is again modified sepa-
rately, while all others remain constant. For each modified
parameter we obtain curves for the quality measures and
scores according to Eq. 4. The location of the minimum
score yields the suggestion for the specific parameter.

6. Application

The described methods are the core of a real-time smooth-
ing framework of medical surface meshes. Within fixed
model generation pipelines, our framework is employed to

select smoothing parameters automatically based on a prede-
fined target smoothness τ . During interaction, model quality
graphs and τ guide the user.

6.1. Interactive Model Generation

Our framework is utilized within a prototype software for
the segmentation and surface extraction of structures for
building physical models using rapid prototyping technol-
ogy. The resulting phantoms are utilized for training of in-
terventional techniques, procedures and teaching. Thus, sur-
face and physical models are required to depict the indi-
vidual anatomical shape and features to provide a realistic
look and resemble the intraoperative situation. Within this
context, medical experts operate the software which com-
prises segmentation and model generation. Interaction with
the software has to be intuitive, fast and avoid complex pa-
rameter tuning.
Mesh smoothing is applied as subsequent to a real-time
Marching Cubes implementation (similar to [DZTS08]),
which yields an immediate surface update after isovalue
adjustment. Models range between 50k and 300k ver-
tices. With the immediate (graph-based) quality feedback,
smoothing does not interfere with this highly interactive pro-
cedure. The mapping of smoothing parameters to mouse
movements integrates well to the interaction schemes known
by medical experts. Our reliable, initial parameter sugges-
tions, utilized to minimize iterative parameter testing.

6.2. Web-based Medical e-Learning

Web-based rendering (e.g., via X3D, WebGL) in combina-
tion with higher bandwiths of current internet connections
becomes increasingly important. In medicine, web-based e-
learning platforms arise to share and discuss clinical cases.
This comprises tomographic data, but also explorable sur-
face renderings. Such models may be provided by platform
users or dedicated authors that are responsible. In both cases,
it is most likely that several models need to be generated,
e.g., to describe spatial relations of separated structures.
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We have integrated our methods into the model genera-
tion pipeline of a web-based e-learning platform that incor-
porates Web 2.0 functionality to enhance the cooperation
between surgeons. The users providing content for this e-
learning platform prepare 3D models according to the re-
quirements of a medical expert, e.g., a liver surgeon. These
users, e.g., technical assistants or co-workers in medical in-
formatics, are familiar with model generation. Since usually
several models need to be prepared, manual effort should be
reduced, but still allow for full control. This functionality is
provided by our model quality graphs and data-specific pa-
rameter suggestions.

6.3. Simulation of Blood Flow

CFD of vascular systems is performed to estimate the rup-
turing risk of aneurysms and the ability to reduce this risk,
e.g., by inserting stents. Accurate and smooth surface mod-
els are used as input for the patient-specific simulation of
blood flow [CCA∗05, CLS∗01] (see Fig. 6). Fine details on
the surface influence the granularity of the resulting vol-
ume mesh and finally the quality of CFD results (e.g., wall-
shear-stress, flow velocity) [MGJ∗11]. The extraction of a
surface from the image data involves a lot of manual ef-
fort to remove artifacts caused by, e.g., low resolution, par-
tial volume, beam hardening effects, or insufficient contrast
agent distribution [MNP11]. This procedure is usually ex-
ecuted by people with long experiences in segmentation
and model generation. Permanent feedback of medical ex-
perts is required to differentiate between surface artifacts and
pathological deviations. CFD simulation raises several con-
straints, which also need to be considered during model gen-
eration. Thus, the pipeline is often executed several times for
the same data. To reduce this effort, the methods within each
step should be easy to configure and should not introduce
disturbing waiting times. Our framework integrates these
characteristics, since resulting errors can be evaluated im-
mediately and parameters can easily be adjusted according
to different requirements. By employing the quality score,
we can obtain appropriate smoothing suggestions automati-
cally without the need for manually adjusting the smoothing
parameters after the model input has been changed in earlier
pipeline steps.

6.4. Evaluation

We performed a small informal evaluation with four partici-
pants to test mouse movement smoothing, interaction with
the quality graphs, and plausibility of smoothing sugges-
tions. All volunteers had a strong background in medical vi-
sualization, only two had sophisticated knowledge in model
generation, and one of these was familiar with mesh smooth-
ing algorithms. All participants confirmed that model qual-
ity graphs in combination with the interaction concept are
helpful and intuitive. After a brief introduction and getting
familiar with the interface its interaction options (mouse

(a) (b)

Figure 6: (a) Model quality graphs for a cerebral aneurysm
(Laplace+HC filter). (b) The aneurysm model with embed-
ded flow information obtained from CFD simulation.

movement, parameter selection in the graphs), they began
to explore the effect of each parameter. Afterwards they
were told to smooth two differently complex models (carotid
artery, petrous bone) considering accuracy. All participants
started rotating the models to explore it and to look for arti-
facts. Subsequently they concentrated on the quality graphs
and adjusted the parameters intuitively to a parameter set
yielding an initial strong curvature reduction. Thereby, we
observed two issues: an initial exploration of the parame-
ter influences and rough adjustments were performed using
mouse movements to observe the model behavior and qual-
ity graphs. Precise parameter tuning was often accomplished
by selection in the graphs. The adjustments in the quality
graphs were more careful than during model observation.
The interaction with two parameters of uniform Laplace
was trivial, since both parameters (#Its., λ ) yield stronger
smoothing for higher parameters. For the Laplace+HC fil-
ter, three volunteers were confused after the first look at the
quality graphs. However, even without algorithm knowledge
they could easily adjust smoothing parameters to their needs.
The parameter suggestions were considered as plausible, but
were more careful, than the user-specified parameter sets.
The initial suggestions were often slightly modified to eval-
uate small parameter changes. Two participants mentioned,
that they prefer the initial suggestions when preparing sev-
eral models within a complex pipeline and use the graphs as
visual validation of the automated smoothing result.
All participants remarked that the labeling of the y-axis was
not completely clear, since three different curves were pre-
sented within each graph. A uniform labeling and scaling
is, however, not trivial. The scaling of the error graphs was
slightly misleading, since they were scaled according to the
currently occurring maximum error. Thus, the absolute er-

c© The Eurographics Association 2012.



Moench et al. / Visually Guided Mesh Smoothing

ror is not clear. This might be resolved by scaling with the
specific voxel diagonal. Moreover, horizontal reference lines
could help provide a better feedback on the strength of accu-
racy loss or curvature reduction.

7. Conclusion

We described how different applications working with
anatomical surface models benefit from interactive real-time
mesh smoothing. Using OpenGL, mesh smoothing filters
have been combined with a mapping of mouse movements
to their input parameters. This is strongly motivated by the
typical interactions of the intended users (e.g., radiologists,
radiology technicians) with medical image data. The inter-
action scheme is not intended to set parameters precisely,
but provides insight to the influence of each parameter. We
presented how quality measures (local error, volume, curva-
ture) are determined efficiently to provide visual feedback.
The achieved performance enabled model quality graphs for
visually guiding the user during parameter adjustments. By
evaluating accuracy and smoothness for a large variety of
parameter sets, model-specific parameter suggestions can be
made. The quality graphs and parameter suggestions are es-
pecially relevant, since the weighting factors of different
smoothing methods may have different meanings.
User guidance in terms of model quality graphs and pa-
rameter suggestions is crucial for comparing the effects of
different parameters. Especially occasional users without a
strong background in mesh smoothing methods benefit from
the previewing functionality. In the reading of tomographic
image data, e.g., radiologists are highly familiar with com-
paring images arranged in galleries. By providing a gallery
of differently smoothed (and color-coded) instances of ini-
tial model, the handling of mesh smoothing might be further
adapted to medical workflows.
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