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Abstract

In this paper we present a new approach to the interactive visual analysis of time-dependent scientific data –
both from measurements as well as from computational simulation – by visualizing a scalar function over time
for each of tenthousands or even millions of sample points. In order to cope with overdrawing and cluttering,
we introduce a new four-level method of focus+context visualization. Based on a setting of coordinated, multiple
views (with linking and brushing), we integrate three different kinds of focus and also the context in every single
view. Per data item we use three values (from the unit interval each) to represent to which degree the data item
is part of the respective focus level. We present a color compositing scheme which is capable of expressing all
three values in a meaningful way, taking semantics and their relations amongst each other (in the context of
our multiple linked view setup) into account. Furthermore, we present additional image-based postprocessing
methods to enhance the visualization of large sets of function graphs, including a texture-based technique based
on line integral convolution (LIC). We also propose advanced brushing techniques which are specific to the time-
dependent nature of the data (in order to brush patterns over time more efficiently). We demonstrate the usefulness
of the new approach in the context of medical perfusion data.

1. Introduction

One interesting development of recent times is the increased
share of time-varying scientific measurements and compu-
tations. In numerical simulation, time-dependent represen-
tations of dynamic phenomena are commonly used to solve
real world problems. Additionally, fast imaging devices and
improvements in the fields of registration and motion cor-
rection allow for time-dependent data also in the medical
domain. Traditionally, time-dependent data is either visual-
ized by displaying separate individual time steps or by spec-
ifying a few positions within the dataset for which the evo-
lution of a data attribute is visualized over time (by draw-
ing function graphs). Both approaches provide only a selec-
tive view of the dataset, either with respect to time, when
showing just one timestep at a time, or with respect to space,
when showing the evolution of an attribute for a few sam-
ple positions, only. Users interested in temporal features in
a time-dependent dataset either have to mentally integrate

multiple images from different time steps or search for in-
teresting spatial regions by choosing different sample lo-
cations and looking at the resulting function graphs. Espe-
cially if the temporal evolution of corresponding data items,
e.g., the change of temperature within a Computational Fluid
Dynamics (CFD) cell over time, is investigated, the latter,
curve-based approach is far more effective than looking at
multiple snapshots or animations. Still the selection of re-
gions of interest, especially during data exploration and anal-
ysis, is a tedious task if no proper context information about
the overall dataset is provided.

We propose a new dense visualization approach by dis-
playing function graphs for all cells/voxels of a volumetric,
time-dependent dataset. This leads to visualizations consist-
ing of hundreds of thousands or even of millions of function
graphs, sampled at a relatively low number of time steps. Ex-
isting visualization technology for time series data has not
yet addressed such large amounts of function graphs con-
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Figure 1: The structure of the FDL tree (right) and the op-
timized blending scheme for color coding (left). The three
colors represent different levels of the FDL tree.

currently. In this paper we demonstrate our solution for this
challenging problem.

In order to improve on occlusion and cluttering prob-
lems, resulting from the huge amount of function graphs to
draw, we utilize a highly interactive four-level focus+context
method. We use data aggregation and image space meth-
ods to retain responsiveness even when interacting with
large datasets. Our approach is integrated with an inter-
active visual analysis approach of coordinated multiple
views [DGH03]. Features are specified by the user in a hier-
archical scheme which is based on individual selections and
logical combinations of them on higher levels. We allow for
smooth transitions between focus and context, based on the
concept of smooth brushing [DH02], which are represented
by degree of interest (DOI) attributions of the data. We con-
sider three different DOI values per data item and present
how this is integrated with our visual analysis approach.

In order to account for the temporal nature of the data,
we extend the brushing functionality of our framework
by function-similarity brushes which are based on a user
definable pattern. These patterns, which can be sketched
and modified interactively, are matched to the data curves,
also resulting in smooth DOI attributions. Graphical con-
text information is provided by using line integral convolu-
tion [CL93] (LIC) on a synthetic flow field which represents
the temporal evolution of each data item. We also propose
to use a binned data representation to increase the rendering
performance as well as additional image-based techniques to
further enhance the visualization.

2. Related Work
A large variety of publications deal with the visualization
and analysis of time-oriented information (see the work
of Aigner et al. [AMM∗08] for an overview). Several ap-
plications exist that allow the analysis of time-dependent
data using interactive brushing or querying techniques. Fea-
ture visualization and specification via linking and brushing
in multiple views is an integral part of the SimVis frame-
work [Dol04]. Scalar degree of interest (DOI) values from
the unit interval represent the membership with respect to
features for all data items. The values are assigned, for ex-
ample, using smooth brushing [DH02], where a linear bor-
der region is assumed between focus (DOI = 1) and context

(DOI = 0), and focus+context visualization is applied to rep-
resent features.

In order to reduce visual cluttering, Johansson et
al. [JLJC06] use high-precision density maps [WL97] in
their work on parallel coordinates that count the number of
primitives (density) that pass though each screen pixel. User-
defined transfer functions are applied that map density to
opacity values in the final output. However, the rendering of
the individual primitives into the density map can take up
to a few seconds when visualizing large data sets. Novotný
and Hauser [NH06] apply 2D bin maps as data representa-
tion mechanism in parallel coordinates in combination with
outlier detection and clustering within the maps. Depicting
the binned information allows the focus+context visualiza-
tion of large data sets showing data trends while preserving
outliers at interactive frame rates.

Konyha et al. [KMG∗06] introduce line brushes to select
a subset of function graphs out of a large number of graphs,
which intersect with a simple line segment drawn in the
view. The TimeSearcher [HS04] is an application especially
designed for the visual analysis of time series using Time
Boxes or angular query widgets. The latter are used to select
time series which have a similar slope on a sequence of time
steps (compare to angular brushing [HLD02]). Further ex-
tensions of the TimeSearcher [BAP∗05] allow for similarity-
based querying of temporal patterns. QuerySketch [Wat01]
enables the user to outline the shape of a pattern used for
querying directly in the view. Inspired by this technique,
QueryLines [RLL∗05] allows the graphical specification of
approximate queries, where soft constraints and preferences
are used for fuzzy pattern description and ranking of the
query results, respectively.

Our approach combines several of the previously men-
tioned methods in a novel way and introduces additional
functionality for the definition and visualization of tempo-
ral features using multiple linked views.
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Figure 2: Two different color blending approaches (combin-
ing red representing doid , green dois, and yellow doic) are
illustrated. The top-left triangle of each side shows our com-
positing scheme using αs, αd , and αc whereas the lower-
right parts apply standard alpha compositing using dois,
doid , and doic as weights. Note that especially along the
diagonal and the borders a brownish tint is introduced by
standard alpha compositing because of color mixing.
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Figure 3: The first stage of our rendering pipeline rasterizes parallelograms (each representing multiple function graph seg-
ments) and generates multiple output images which are used by the post processing stage. Here different image based algorithms
are applied in order to create three different effects (shading, coloring, and LIC), which are combined in the compositing stage.

3. Four-Levels of Focus+Context
Generally a feature within a dataset can be defined as a sub-
set of data items which meet multiple criteria specified by
the user. The framework, into which our approach has been
incorporated, provides different linked views (such as his-
tograms, scatterplots or the proposed function graph visual-
ization) that can be used to specify a DOI function represent-
ing one such feature criterion. In order to specify multiple
features, which themselves are defined by multiple criteria,
we use a Feature Definition Language (FDL) tree [DGH03]
(see figure 1 (right)). It consists of three levels and is orga-
nized as disjunctive normal form. The DOI functions of leaf
nodes, the feature criteria, are combined into DOI functions
representing features by applying a fuzzy "AND" operation
(all criteria have to be valid for a data item in order to belong
to a feature). Features themselves are combined into feature
sets by using a fuzzy "OR" operation.

In order to analyze the influence of the criterion specified
within one view on its containing feature and feature set we
propose to visualize the respective DOI functions. Figure 3
(right) shows an example where CFD simulation data has
been used. For each cell temperature is plotted over time.
Coloring is used to visualize whether a data item is selected
only in the current view (yellow), in the containing feature
(red), in the containing feature set (green) or not selected
at all (grey). The problem of properly blending these three
smooth DOI functions with a context representation is tack-
led by our four-level compositing scheme (i.e., three focus
plus one context level) which is discussed in the context of
the proposed function graph visualization in the remainder
of this section.

3.1. The Four-Level Compositing Scheme
The three different DOI functions which have to be visual-
ized for each data item in the context of a current view are
semantically related to each other: The DOI representing a
feature criterion (doic) directly reflects selections within the
current view. No other parts of the FDL tree (related to other
views) are considered. The DOI within a feature (doid) is al-
ways less than or equal to doic (since doid is an AND com-

bination of doic values as shown in figure 1). Contrarily, the
DOI of the feature set (dois) is always greater or equal than
every contained doid (due to the OR combination). In order
to properly express the contribution of each DOI, we order
them based on their influence. The dois is the top level col-
lection of individual features defined in their respective doid .
Thus doid is visualized above dois. This allows the user to
discriminate between the feature containing the current view
and all remaining features in the common feature set (com-
pare red and green regions in figure 3 (right)). In order to
provide additional information about the feature criterion de-
fined in the current view doic is visualized behind doid and
dois.

If colors are blended together to represent the different
smooth DOIs it is crucial that as few color mixing as possi-
ble occurs in order to allow for straight forward interpreta-
tion [Bre99]. Thus simple alpha blending, using the different
DOIs as coefficients, has not been used (the color mixing re-
sulting from directly using the DOIs as weights is illustrated
in the two lower-right triangles in figure 2). Instead we use
repeated alpha blending with the following weights:

αc = max(doic−dois,0) αs = dois−doid αd = doid (1)

These weights avoid the introduction of additional tints as
shown in the upper-left triangles in figure 2 because they
avoid adding colors if they represent only redundant infor-
mation. For example adding the color assigned to the con-
taining feature set if its DOI function is equal to the cur-
rent feature’s is redundant (no other features contribute to
the definition of the feature set). Thus we focus on the dif-
ference between dois and doid which indicates that other fea-
tures than the current one contribute to the containing feature
set.

The order in which the alpha blending is performed is
based on the already mentioned influence of each DOI re-
sulting in blending doid over dois over doic over a context
representation, each using their respective alpha value (αc,
αs, αd). This is illustrated in figure 1 (left) using colors
which are applied throughout the remainder of this paper.

c© The Eurographics Association and Blackwell Publishing 2008.
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3.2. Visualizing Binned Curves
Since the SimVis framework is dealing with relatively large
datasets (e.g. 500K time series) we are using an aggregated
data representation to interactively visualize a function over
time for each sample in our function graph visualization. As
proposed by Novotný and Hauser [NH06] in the context of
parallel coordinates we split the time series data into seg-
ments between two consecutive time steps. Each of these
segments (see figure 4 left) can be represented by a fre-
quency binmap (see figure 4 right) which basically is a 2D
histogram. The data values of the two adjacent time steps
are used as axes and each bin stores the number of function
graphs passing through. It is important to note that the ap-
proach proposed by Novotný and Hauser did only use one
binmap to store frequency information. Since we have to vi-
sualize three additional scalar values we introduce additional
DOI binmaps. Because the DOI functions can vary over time
it is necessary to use six additional DOI binmaps per seg-
ment: two for each of the three DOI functions, representing
their aggregated values at the left and the right timestep of
the segment.

In order to properly reconstruct the original curves and
to apply the proposed four-level focus+context compositing
method to coloring and an adapted line integral convolution
(LIC) approach, we use the rendering pipeline presented in
figure 3.

Parallelogram Rasterization: In this first pipeline stage the
frequency representation stored in the individual binmaps is
translated back into the time/attribute domain. We rasterize
one parallelogram for each bin of the binmaps which con-
tains at least one entry (see figure 4 for the underlying ge-
ometry). Since the data from two consecutive time steps is
often highly correlated only a small fraction of the bins has
to be visualized (for example only 2.1% of the 256× 256
bins per time segment have to be displayed for the simula-
tion dataset shown in figure 3).

Each such parallelogram has to represent different proper-
ties of the underlying frequency data which are accumulated
per image pixel by additive blending and multiple floating
point precision render targets. These properties include the
number of function graphs c within a bin as shown in sub-
figure "count" of figure 3. High luminance indicates a large
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Figure 4: This figure illustrates the duality between bins in
a binmap and function graph segments in the corresponding
function graph space.

number of function graphs passing through a pixel. Addi-
tional properties are the averaged DOI values multiplied by
c in order to account for the fact that each parallelogram rep-
resents a different number of function graph segments. The
averaged DOI values are fetched from the DOI binmaps and
interpolated linearly across the parallelograms. This enables
us to visualize the DOI (which often varies over time) for in-
dividual sample points along the function graph. Sub-figure
"DOI" of figure 3 shows the accumulated DOIs (each color
channel representing one of doic, doid or dois).

Besides the frequency and DOI information we propose
to include the temporal evolution of the data into our visu-
alization by applying a flow visualization technique (LIC)
to a vector field which represents temporal trends. This vec-
tor field is created by accumulating the normalized direction
vectors d = |(yi+1− yi, ti+1− ti)| of the parallelograms per
image pixel. Here yi and yi+1 are the scalar data values repre-
sented by the parallelogram at timestep i and i+1 and ti and
ti+1 are the corresponding points in time. As mentioned pre-
viously we accumulate d · c in order to account for the num-
ber of function graphs represented by a parallelogram. Since
we treat the three different DOI attributes and the context
separately we propose to additionally accumulate d ·dois · c,
d ·doid · c, and d ·doic · c as shown in sub-figures "Context",
"Set", "Feature", and "Crit." of figure 3 (here the direction
is mapped to the red and green color channels). This allows
us to blend between these four different vector fields when
applying LIC in order to visualize the temporal evolution of
the overall data and the selected subsets represented by the
DOI functions separately.

The results of this first stage are eight images con-
taining accumulated information about all function graphs:
C(x,y) the number of function graphs through pixel (x,y),
DOIs(x,y), DOId(x,y), and DOIc(x,y) the average DOI
of all function graphs, and D(x,y), Ds(x,y), Dd(x,y), and
Dc(x,y) storing the average direction of all function graphs
through pixel (x,y) weighted by the respective DOI.

Post Processing: The post-processing stage first performs
simple transformations on some images: C(x,y) = C(x,y) ·
s + t, DOIs(x,y) = DOIs(x,y)γ, DOId(x,y) = DOId(x,y)γ,
and DOIc(x,y) = DOIc(x,y)γ. The scale factor s and offset
t can be used to linearly modify the brightness of the result
visualizations whereas γ is used to enhance the contrast of
the DOI attributations in order to highlight selected outliers.

Based on these transformed images three different out-
puts are computed which are weighted and combined in
the compositing stage. First the images C(x,y), DOIs(x,y),
DOId(x,y), and DOIc(x,y) are interpreted as height fields.
Thus a diffuse lighting contribution can be computed using
a directional light source above the height fields. The first
output image, as depicted in figure 5 (a), represents the min-
imum of all four lighting contributions. This is similar to
basic edge enhancement which allows the user to recognize
sharp boundaries of trends in the four underlying images.

c© The Eurographics Association and Blackwell Publishing 2008.
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The consecutive outputs are based on our four-level fo-
cus+context compositing scheme. Figure 5 (b) shows the
result of applying the compositing to four color values as
already indicated in figure 1. Additionally the result color
is modulated by C(x,y) in order to account for function
graph density. The final output shown in figure 5 (c) is also
based on our compositing approach. But instead of com-
positing colors on a pixel per pixel basis we blend the differ-
ent direction fields D(x,y), Ds(x,y), Dd(x,y), and Dc(x,y)
using the corresponding (transformed) DOI images. This
synthetic vector field represents the overall evolution of all
function graphs over time with special focus on the three
DOI layers (thus trends in selected regions always over-
ride trends visible in the context). In order to visualize this
field we apply line integral convolution by sampling from
a low and a high frequency noise texture along Euler in-
terpolated streamlets. The final values which are accumu-
lated along the streamlets are a linear combination of the
high and low frequency samples (sh and sl) based on λ =
max(DOIs(x,y),DOId(x,y),DOIc(x,y)):

s = sh ·λ+ sl(1−λ) (2)

Thus regions with high DOI values are displayed using finer
noise whereas low DOI regions are represented by coarser
noise as shown in figure 5 (c).

Compositing: As implied by its name this step combines
the three images (shading is, coloring ic, and LIC il) based
on three weights (ws, wc, and wl respectively) resulting in a
visualization as shown in figure 3. The blending is performed
according to this equation:

(isws +(1−ws)) · (icwc +(1−wc)) · (ilwl +(1−wl)) (3)

We chose to modulate all images with each other in order to
retain a maximum amount of contrast whereas the different
weights allow for an easy adjustment of the influence of sin-
gle post processing effects. Since only the contribution from
ic contains color information (is and il contain luminance
values) the resulting color is just attenuated (not distorted).

(b)

coarse noise

fine noise(a) (c)

Figure 5: Cutout images from figure 3. Shading (a) is used
to emphasize "edges" in the DOI and frequency images
whereas the application of our compositing scheme trans-
lates the three different DOI attributations into easily recog-
nizable colors (b). Additionally LIC is applied to a flow field
representing the average function graph directions (c).

(a) (b)

Figure 6: This figure shows brushing results based on two
different similarity measures. In (a) no data transformation
is used whereas in (b) a gradient based distance is evaluated
which is invariant to vertical translation.

The result images in this paper have been generated with set-
tings of ws = 0.7, wc = 1, and wl = 0.7.

3.3. Brushing
When analyzing a large number of function graphs it is of-
ten necessary to compare them against a certain pattern. For
example, the user may be interested in functions showing a
sudden rise at some point in time with subsequent stabiliza-
tion. Such queries can to some degree be approximated by
combining multiple vertical interval selections at different
positions within the domain (as also supported by our frame-
work). However, brushing function graphs by roughly out-
lining a target function and evaluating the distances proved
to be faster and more intuitive for many tasks and offers
more options like considering average distances or ignor-
ing vertical offsets. Basically, various ways of defining the
target function are conceivable (e.g. analytical). In our case,
the target is specified by linearly interpolating between an
arbitrary number of control points (ti, yi) with ti being a dis-
crete time-step and yi the according value in the data domain.
After defining the target function, the basic steps generally
necessary for evaluating the brush are a transformation of the
sampled raw data, an aggregation of differences, and finally
applying one (or two for smooth brushing) threshold(s) to
obtain the degree-of-interest values.

As an (optional) first step, different transformations may
be applied prior to evaluation. Without transformation, sim-
ilarities are computed on the raw data values with respect to
the absolute position of the target function (see figure 6 (a)).
However, it is often desirable to account for task- and data-
specific issues like offset translation, magnitude scaling, lin-
ear trends removal or noise reduction [KK02]. Disregarding
constant offsets is particularly necessary in many cases, as
the computed distances can otherwise become meaningless
for measuring (subjective) similarity [KK02]. We propose
two different ways of accounting for vertical offset transla-
tion (horizontal offsets are prohibitively expensive to deter-
mine for interactively brushing up to millions of function
graphs): The first approach, shown in figure 6 (b), is based
on computing the first derivative of the target function and
all function graphs of the dataset, i.e., considering gradients
rather than the raw data values themselves (e.g. estimated
by forward differences or central differences). While this is
comparatively fast because the transformation and the sub-
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sequent aggregation can be done within one pass through
the data, it is susceptible to noise. To account for this, the
second approach seeks to align two functions on each other
before comparing them by subtracting the average Y-value
within the common interval [T1,T2]. For a function f (t), this
value is given by (

∫ T2
T1

f (t)dt)/(T2− T1) . This approach is
more stable, but may still be distorted by very strong "out-
liers" within the sample points and needs an own pass for
computing the average value per function graph.

As the next step, the difference function d(t) = | f̂ (t)−
ĝ(t)| is computed for each transformed function graph f̂ (t)
with ĝ(t) denoting the transformed goal function and aggre-
gated within the common interval [T1,T2]. Among others,
useful aggregations are the absolute maximum of d(t) and
the average distance (

∫ T2
T1

d(t)dt)/(T2 − T1). Note that dis-
tances computed this way have the same scaling as the Y
range and are independent of the scaling of the time domain.
For function graphs given by discrete, unequally sampled
points, it is important to weight the distances by the size of
the according sample intervals when summing them up.

The final step is computing degree of interest (DOI) val-
ues from the distances by applying one (for binary brushing)
or two (for smooth brushing) threshold(s). The latter case as
used in our approach is illustrated in figure 7. As for the dis-
tance values, thresholds are specified in the value range of
the function.

Interaction is very important for function-similarity
brushes: After defining a target function by setting initial
control points, further points can be added, existing ones
can be modified or removed, and it is also possible to drag
around the whole function. Adapting the thresholds is usu-
ally necessary and conveys a feeling at which gradient the
similarity is changing for various regions. The evaluation is
executed in parallel to interaction (i.e., threaded), which pre-
vents disturbing delays and provides visual feedback as soon
as possible.

4. Case Study Perfusion Data
Perfusion data are dynamic medical image data which char-
acterize the regional blood flow in human tissue. They are
acquired for example for tumor detection and classification
in the female breast or to diagnose an acute ischemic stroke.
We discuss two application examples based on datasets from
Magnetic Resonance (MR) perfusion imaging. The distribu-
tion of contrast agents (CA) is registered to assess tissue
kinetics (breast tumor diagnosis) and blood flow (ischemic

DOI

0

1

focus

context

distanceb
1

b
2

Figure 7: Computing smooth DOI values based on distance
values by linearly interpolating between two thresholds.

I

t(s)

I

t(s)
(a) (b)

Figure 8: (a) Time-intensity curves (TICs) typical for con-
trast agent accumulation in breast tissue. The continuous
gentle inclination of the blue curve is characteristic for
healthy tissue. The green and red curves are suspicious due
to their high early enhancement. The red curve is especially
suspicious because of its subsequent rapid wash-out, which
is typical for malignant tumors. (b) TICs typical for contrast
agent accumulation in the gray matter of the brain. The blue
curve shows normal brain perfusion whereas the green and
red curves show decreased and delayed perfusion around an
infarction.

stroke diagnosis). The CA is injected intravenously and its
distribution is measured by a repeated acquisition of subse-
quent images covering the volume of interest. The CA pro-
vides signal changes in the acquired 4D data (3D+time). For
each image voxel, a time-intensity curve (TIC) characterizes
the CA enhancement (see figure 8). Clinicians are trained to
infer tissue characteristics from the shape of these curves.
The function graph visualization presented here allows the
clinician to define a curve pattern and a similarity measure.
Latter is applied to match the original TICs with this pat-
tern. To our knowledge, this represents a new approach for
the analysis of perfusion data. Existing approaches base the
feature detection either on percental enhancement between
two time-steps [CGB∗05], or on so-called perfusion param-
eters derived from the TICs [ODH∗07].

4.1. Breast Tumor Diagnosis
The process of CA enhancement in a tumor can be described
by the diffusion of tracer particles from the inside of blood
vessels into the extravascular space and vice versa before it
becomes excreted in the kidneys. The permeability of the
vessel walls and the extracellular volume fraction determine
the amplitude and the shape of the TIC. TICs which show
a high early enhancement (wash-in) followed by a rapid
wash-out, i.e., a significant decrease of signal intensity after-
wards, are especially suspicious (see figure 8 (a), red curve).
Less suspicious are curves showing a plateau later on (green
curve), or regions that continue to enhance (blue curve). This
is typically observed in benign tumors. The major diagnos-
tic task is to confirm or reject the hypothesis of a tumor
being malignant. For more details on tumor perfusion, see
Heywang-Köbrunner et al. [HKVHK97].

The dataset analyzed in the following was acquired to ex-
amine a suspicious region in the right mamma which had
been detected during conventional mammography. As a pre-
processing step, the original data has been cropped to restrict
the analysis to relevant breast tissue. The resulting dataset
matrix is: 458 x 204, slice distance: 3 mm, number of slices:
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Figure 9: A feature set containing two different features has been defined in two function graph visualizations. In (a), a smooth
similarity brush (blue) has been defined such that tissue with no significant signal enhancement is selected in the first feature
(shown in its 3D context in the inlet). In (b), a similarity brush has been used to specify a second feature representing tissue
exhibiting reduced and delayed perfusion. Candidate areas of this tissue at risk are revealed around the core (inlet). In (c)
and (d) the overall feature set is visualized. The color is modified according to the time it takes until the maximum amount of
contrast agent is delivered for a particular voxel (TTP).

26 (overall 2.429K voxels), temporal resolution: 6 measure-
ments in 10 min. According to the accompanying diagnos-
tic report, the patient suffered from a probably malignant
structure (Slarge) close to the thoracic wall and a smaller
satellite lesion (Ssmall). The detection of the two structures
and the verification of the reported findings are illustrated
in figure 10. In order to select data items exhibiting a tem-
poral pattern typical for malignant tissue a similarity brush
using our gradient based measure is defined in a function
graph view (a). As a result of this feature definition, Slarge
and Ssmall are revealed in a linked 3D visualization (b). The
shape of the breast is indicated as context information.

4.2. Ischemic Stroke Diagnosis
In contrast to leaky vessels in malignant tumors, micro-
vessels in normal brain tissue do not leak as a result of the
blood brain barrier. Consequently, there is no enhancement
in the extracellular volume. Instead, we observe the "first-
pass" of the CA through the vessel components. In case of

(b)

S
lo
p
e

low

high

S
small

S
large

(a)

Figure 10: Detection of suspicious structures in breast tu-
mor diagnosis. In our function graph visualization (a), a
smooth similarity brush (blue) has been defined that resem-
bles a curve pattern which is typical for malignant tumors.
The resulting selection is visualized in the context of the en-
tire right mamma in (b). Two suspicious structures Slarge and
Ssmall are revealed. The color indicates the accumulation
speed during the early phase of the contrast agent passage
(Slope).

an ischemic stroke, the existence and the extent of "tissue at
risk" surrounding the core of the stroke has to be evaluated
immediately after the infarction. "Tissue at risk" is charac-
terized by reduced and delayed perfusion (figure 8 (b)). Sur-
gical and chemical interventions may salvage at least parts
of the "tissue at risk" [dBF97].

The second dataset has been acquired immediately after
an acute stroke. The dataset matrix is: 128 x 128, slice dis-
tance: 7 mm, number of slices: 12, temporal resolution: 40
measurements in 40 sec. According to the accompanying di-
agnostic report, the patient suffered from an infarction in the
right hemisphere (which appears left in each view of fig-
ure 9). The detection of the infarction core and the surround-
ing "tissue at risk" is illustrated in figure 9. We have speci-
fied a feature set containing two features, the infarction core
(a) and "tissue at risk" (b), by using two different function
graph views and similarity brushes. Each view shows lo-
cally selected data (red) in combination with curves selected
in the overall feature set (green). This allows for easy com-
parison of both features. Our LIC based approach helps to
convey general temporal trends in the context (grey) as well
as in the selected regions (colored). The inlets of (a) and (b)
each show the respective feature in their spatial context. The
color is modified according to the time it takes until the max-
imum amount of CA is delivered for a particular voxel, the
so-called Time to Peak (TTP). Candidate areas for "tissue
at risk" appear yellowish (medium TTP values) whereas the
infarction core is colored red. In order to visualize the extent
of the infarction, the overall feature set is shown in (c) and
(d).

Our observations in this section could be successfully val-
idated with results from Oeltze et al. [ODH∗07] where the
same datasets have been examined.

c© The Eurographics Association and Blackwell Publishing 2008.
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5. Conclusions and Future Work
We have presented an approach which effectively handles
hundreds of thousands or even millions of function graphs
interactively. A novel four-level focus+context method is
used to blend both color and directional information accord-
ing to the degree of interest specified in the various layers.
The directional information is derived from the average ori-
entation of function graphs through each pixel allowing for
an effective visualization (by applying LIC) of large trends
for the whole dataset as well as in regions selected by the
user. We propose different smooth brushing techniques al-
lowing for fast and intuitive selection of temporal trends
based on user definable target functions. Additionally shad-
ing is used to indicate strong variation in the function graph
density. In order to show the usefulness of our method, it has
been successfully applied to medical perfusion data.

For future work we would like to abandon the necessity
to explicitly rasterize a parallelogram for each bin within a
binmap. Instead we plan to utilize the duality between a bin-
map and its corresponding segment by sampling along a line
in the binmap to accumulate all bins which affect one pixel.
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