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Abstract. Classification of breast tumors via dynamic contrast-enhanced
magnetic resonance imaging is an important task for tumor diagnosis.
In this paper, we present an approach for automatic tumor segmen-
tation, feature generation and classification. We apply fuzzy c-means
on co-occurrence texture features to generate discriminative features for
classification. High-frequency information is removed via discrete wavelet
transform and computation is simplified via principal component analysis
before extraction. We evaluate our approach using different classification
algorithms. Our experimental results show the performances of different
classifiers with respect to sensitivity and specificity.

1 Introduction

In 2012, breast cancer was estimated in 1.7 million cases and 521,900 deaths
world wide [1]. Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) can characterize more details of breast tumors than standard MRI, through
the contrast agents (CA) motion over time. In comparison with conventional X-
ray mammography, DCE-MRI has higher sensitivity [2]. The average relative
enhancement (RE) curve of a region of interest (ROI) reflects blood vessels and
tissue permeability in this region. Based on the RE curve, Degani et al. presented
the three-time-point (3TP) method [3], which allows for automatic classification
of the RE curves. Glafler et al. [4] clustered spatially connected tumor regions
with similar 3TP classes to identify a "most suspect region” per lesion from which
CA perfusion features were derived as input for the classification of malignant
and benign breast tumors.

Data mining and machine learning have gained increasing popularity for be-
nign and malignant tumors separation. Chang et al. [5] proposed to use co-
occurrence texture features combined with kinetic curves to classify breast tu-
mor types via fuzzy clustering. Zhang et al. [6] combined discrete wavelet trans-
form (DWT) and principal component analysis (PCA) for feature extraction and
classify brain images via a neural network (NN) classifier. Zheng et al. [7] used
k-means to derive features from the membership probability of cluster that were
learned on a set of malignant and a set of benign tumors, respectively. This re-
duced set of features was used for training the support vector machines (SVM)
classifier.
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We use fuzzy c-means (FCM) to generate new texture features based on the
co-occurence matrix, and combine with Gabor square energy and Gabor mean
amplitude to improve the diagnosis in classifying breast tumors. The tumor
region is segmented with the 3TP method. We employ three classifiers with the
newly generated features and test their performance.

2 Material and Methods

2.1 Image Data

In this study, we use a collection of 282 slices of tumor images from 50 patients,
which include 141 slices of benign tumors and 141 slices of malignant tumors
(see Preim et al. [8]). All data sets were acquired with a (rather old) 1T scanner
(Philips Medical Systems) with the following parameters: matrix &~ 500 x 500
pixels, slice thickness = 3 mm, slice gap = 1.5 mm, echo time = 6 ms, number of
acquisitions = 5-6 s, total acquisition time = 300400 s. We select 25 patients of
benign tumors and 25 patients of malignant tumors from our data sets randomly.
Each patient provides one slice breast tumor image, which can reflect typical
traits of the tumor, and these 50 slices are used to establish the training sets
after features extraction. All these images have already been segmented by an
expert radiologist.

2.2 Methods

Fig. 1 shows the general steps of the presented approach, which is separated into
two parts: tumor region of interest (ROI) identification and tumor classification.
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The temporal features of the DCE-MRI data can effectively distinguish le-
sions from normal tissue. Thus, we segment the data via the 3TP method.
The 3TP method [3] provides an automatic classification of the tumor’s per-
fusion characteristics based on the RE curve. The RE is calculated with RE =
(SI. — ST)/SI x 100, where ST is the pre-contrast and S is the post-contrast
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signal intensity [2]. We extract the three time points t|, t4, t5, where ¢} is the
first time point before contrast agent injection, ¢, is 2 min after ¢] and t5 is 4
min after t5. Fig. 2 shows the RE curves classification via the 3TP method. At ¢}
the RE curve is classified into three types: slow, normal and fast. If the result is
normal or fast, the lesion areas will be identified as suspicious and be segmented.
We use 3 x 3 median filter and bilateral filter to reduce noise. Meanwhile, the
texture features have strong relationship with the size of image and the position
of lesion, therefore we use rectangular ROIs to select the regions and remove the
background.
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We use two level discrete wavelet transform (DWT) to capture the frequency
characteristics of the tumor ROIs and use principal component analysis (PCA) to
reduce the number of dimensions. We remove high-frequency detail information
and simplify computation via two level DWT and PCA. We extract 12 features,
including contrast, correlation, energy, homogeneity, mean, standard deviation,
entropy, root mean square, variance, smoothness, kurtosis, skewness, inverse dif-
ference moment, from the tumor image using the gray-level co-occurrence matrix
(GLCM) method combined with Gabor square energy and Gabor mean ampli-
tude.

In k-means clustering, each data point is assigned to exactly one cluster. We
choose its extension, FCM, where the degree of cluster membership is given as
probability. We employ FCM to extract malignant and benign tumor features
separately, as described in [7]. We extract the features from training sets and
recognize their patterns, which reflect the average distance of each feature to its
cluster centroid. After this, we measure the similarity of each feature of the test
sets and the detected patterns via FCM, which shows how well the features are
fitted. For each feature, the clustering result reflects its effectiveness in classifi-
cation. If the result is < 0.3 in both malignant and benign measurement, this
feature is considered as irrelevant and is removed.

We assess the performance of the subsequent classifiers: decision tree C4.5,
support vector machine with a linear kernel and radial basis function (RBF)
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kernel, probabilistic neural network. We use the new features sets to learn these
classifiers.

3 Results

In this section, we study the performance of the 3TP segmentation methods,
the impact of the ROI selection and the performance of different classifiers. Our
implementation is done in Matlab 2015a on a Windows 7 platform with an Intel
Core i5 CPU at 3.3GHz and 8GB memory.

Fig. 3 shows two example tumors with different traits and shapes. Fig. 3(a)
depicts a benign tumor with an irregular shape and Fig. 3(d) depicts a regular
malignant sample. Blue lines highlight the tumor boundaries. Fig. 3(b) shows
the segmented result of a benign tumor, Fig. 3(e) shows the segmented result
of a malignant tumor. Fig. 3(c) and Fig. 3(f) show the ground truth segmented
by an experienced radiologist. The average 3TP segmentation accuracy is 98.2%
for benign data and 98.3% for malignant data.

The proportion of the foreground pixel is calculated with R = N;/N;, where
N; is the number of foreground pixels, N; is the number of the whole image
pixels. Table. 1 shows the effect of the rate R on classification accuracy using
probabilistic neural network (PNN) classifier. Thus, we set the rate R to 55%—
60% for regular tumors and 50%-55% for irregular tumors, and all the lesions
are set in the center of the regions to keep the classification result more stable.

The sensitivity and specificity are as follows: the sensitivity of decision tree
C4.5, SVM with linear kernel, SVM with RBF kernel and PNN classifiers are

(e) ()

Fig. 3. Tumor segmentation result, (a) a benign tumor; (b) the segmented benign
tumor; (c¢) the ground truth of the benign tumor; (d) a malignant tumor; (e) the
segmented malignant tumor; (f) the ground truth of the malignant tumor.
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Table 1. Classification accuracy of ROI selection using PNN Classifier.

Classification accuracy (%)

Rate R < 50% 50%—55% 55%—60% > 60%
Regular Benign 87.6 90.5 93.3 94.3
tumors Malignant 98.1 94.5 94.5 92.7
Irregular Benign  86.1 91.7 94.4 94.4
tumors Malignant 98.8 97.7 95.3 93.0

57.4%, 80.9%, 79.4% and 92.2%, the specificity are 63.1%, 97.2%, 98.6% and
95.8%, respectively.

GlaBer et al. [9,10] combined the 3TP method with J4.8 decision tree to clas-
sify the breast tumors, and the correctly classified instances are approximately
67% based on the same data set we use in this work.

4 Discussion

The 3TP method takes advantage of dynamic curves, which reflect the tissue’s
pharmacokinetic characteristics or CA accumulation, to segment the suspected
regions. Although the segmentation results can be easily obtained via the 3TP
method, it is sensitive to artifacts, such as noise and tissue displacement, and
time points selection.

Compared to the results of GlaBer et al. [9,10], we achieved a higher classi-
fication accuracy by integrating texture features. The combination of pharma-
cokinetic features and features representing the tumor’s texture enable a high
accuracy even for this data with only moderate quality.

Despite the SVM having the highest accuracy in malignant tumor classifica-
tion, the PNN classifier shows the best discriminative power among these three
classifiers. Furthermore, the accuracy of classifying a tumor of benign is far below
than the accuracy of malignant. The reason is that our data sets include numer-
ous small tumors. These small tumors which can only be detected in DCE-MRI
data, are very hard to distinguish and classify, even for a human expert, and
these tumors have a substantial impact on the classification performance.

The ratio of foreground/background reflect the relationship between textural
features and lesions. However, the ratio can not exceed a value cause the rectan-
gular ROIs must include the whole lesion, and consider the diversity of data sets,
the ratio should be set in a certain range. The influence of region selection on the
classification result is shown in Table 1. Thus, we defined the size and position
of ROIs before the classification, to reduced the impact of subjectiveness from
manual region selection.

We presented a comprehensive workflow which includes feature extraction,
feature selection and classification to separate between malignant and benign
tumors in DCE-MRI data. 282 slices of tumor images, which had been confirmed
as either malignant or benign, were considered in this study. We used the 3TP
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method to segment the tumors, which provide a high accuracy. We could not
eliminate all the errors in preprocessing and registering, which have influence on
the segmentation. A total of 12 features are extracted and the invalid features are
automatically removed by FCM. We compared different classifiers and concluded
that the PNN classifier has a good performance in both benign and malignant
tumors. Although the SVM shows the highest accuracy in malignant tumor
classification, its poor stability for benign tumors does not make it suitable for
small tumors with similar textures.

One limitation of our approach is the low classification accuracy for very small
tumors. For future work, a hybrid classifier, improved segmentation methods,
and the combination of temporal informations and textural informations will be
taken into consideration. Then, the connectivity and correlation of tumors can be
described, and the accuracy of tumor segmentation will be improved. Moreover,
the combination of various features and classifiers ensemble can overcome the
disadvantage of a single classifier.
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