
International Journal of Computer Assisted Radiology and Surgery (2020) 15:99–107
https://doi.org/10.1007/s11548-019-02083-0

ORIG INAL ART ICLE

Interactive exploration of a 3D intracranial aneurysmwall model
extracted from histologic slices

Annika Niemann1 · Simon Weigand2 · Thomas Hoffmann3 ·Martin Skalej4 · Riikka Tulamo5 · Bernhard Preim1 ·
Sylvia Saalfeld1,3

Received: 30 July 2019 / Accepted: 18 October 2019 / Published online: 8 November 2019
© CARS 2019

Abstract
Purpose Currently no detailed in vivo imaging of the intracranial vessel wall exists. Ex vivo histologic images can provide
information about the intracranial aneurysm (IA) wall composition that is useful for the understanding of IA development
and rupture risk. For a 3D analysis, the 2D histologic slices must be incorporated in a 3D model which can be used for a
spatial evaluation of the IA’s morphology, including analysis of the IA neck.
Methods In 2D images of histologic slices, differentwall layersweremanually segmented and a 3Dmodelwas generated. The
nuclei were automatically detected and classified as round or elongated, and a neural network-based wall type classification
was performed. The information was combined in a software prototype visualization providing a unique view of the wall
characteristics of an IA and allowing interactive exploration. Furthermore, the heterogeneity (as variance of the wall thickness)
of the wall was evaluated.
Result A 3D model correctly representing the histologic data was reconstructed. The visualization integrating wall informa-
tion was perceived as useful by a medical expert. The classification produces a plausible result.
Conclusion The usage of histologic images allows to create a 3D model with new information about the aneurysm wall. The
model provides information about the wall thickness, its heterogeneity and, when performed on cadaveric samples, includes
information about the transition between IA neck and sac.
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Introduction

The development of intracranial aneurysms (IAs) and the
processes which lead to aneurysm rupture are still partially
unknown. Different clinical parameters were found to influ-
ence the rupture risk, e.g. IA shape, size, location and patient
age [1,2]. In this work, a 3D model of an IA from the ante-
rior cerebral artery is generated based on histologic images
to investigate the IA at the cellular level. Usually, 3D mod-
els of IAs are extracted from digital subtraction angiography
(DSA) which is considered as a gold standard for IAs [3]. In
clinical research, these models are employed for shape anal-
ysis and approximation of haemodynamics for rupture risk
prediction [4].
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Several studies exist on the development and remodelling
of the IA wall and its role in aneurysm rupture. Costalat
et al. [5] observed that wall tissue from unruptured IAs
was more rigid than the tissue of ruptured ones based on
material removed during surgical clipping. They did not
find a correlation between wall thickness and rupture risk.
Likewise Kataoka et al. [6] stated that the wall structures
of ruptured and unruptured aneurysms differ. They found
endothelial damage and an inflammatory cell invasion in
ruptured IAs and introduced a wall structure score which
was correlated with the score for inflammatory cell inva-
sion. Frösen et al. [7] analysed IA tissue resected during
surgery and found it was nearly intact at the neck and
showed increasing degrees of degeneration (decrease in num-
ber of mural cells, mainly smooth muscle cells and wall
thinning) in the direction of the dome. Frösen et al. [7]
identified different wall types (endothelialized wall with lin-
early organized smooth muscle cells (SMC), thickened wall
with disorganized SMC, hypocellular wall with either inti-
mal hyperplasia or organizing luminal thrombosis and an
extremely thin thrombosis-linedhypocellularwall) occurring
in IAs. These wall types reflect changes in the aneurysmwall
preceding aneurysm rupture. Histologic images show that
complement system activation is correlated with aneurysm
rupture [8]. Marbacher et al. [9] studied saccular, surgically
created abdominal aortic aneurysms in rats and concluded
that decellularization of the aneurysm wall increased neu-
trophil accumulation, wall inflammation and wall fragility
and was associated with aneurysm growth.

While the reconstruction of a 3D model from histologic
images is a new approach in IA research, histologic images
were used for 3D models in other fields. Chakravarty et al.
[10] used a manually segmented histologic data set, applied
affine registration to the slices and created a brain atlas of
the basal ganglia and the thalamus. Krauth et al. [11] used
global affine registration and a B-spline controlled elastic
deformation for the extraction of a brain atlas of the thala-
mic structures based on histologic data from several brains.
A reference volume was created from one stack of histologic
images and smoothed using surface nets. Can et al. [12] used
a rigid registration formanually segmented histologic images
of rhesus macaque monkeys’ brains. They compared 3D his-
tologic section images and MR images.

Upon wall identification itself, the analysis of cell nuclei
can provide additional information about pathologic wall
regions. The detection of nuclei in histologic images can
be solved in different ways. Glaßer et al. [13] separated the
nuclei from the background using Otsu’s method. Addition-
ally, they calculated the elongation, thickness and area of the
nuclei and applied an agglomerative hierarchical clustering.
Hafiane et al. [14] used fuzzy c-meanswith spatial constraints
and active contours to detect nuclei in histologic images of

colon cancer. Chen et al. [15] as well as Sirinukunwattana et
al. [16] solved nuclei detection problems with deep learning.

We provide a 3D model and interactive analysis tool of
the 3D IA wall and include nuclei representation.

Materials andmethods

Post-mortem intracranial aneurysm

The data set used in this work is an IA from a human cadaver
with a ruptured aneurysm at the anterior cerebral artery. It
was acquired in cooperation with the Forensic institute of
the university hospital Magdeburg with approval of the local
ethics committee. After embedding the aneurysm in paraf-
fin, it was sliced axially to the aneurysm sac into 2-µm-thick
slices with a microtome. The slices were 100µm apart. They
were haemotoxylin and eosin (H&E) stained. As the slices
are very thin, the problem of overlapping nuclei within one
slice is avoided which simplifies the nuclei detection. Two
consecutive slices were placed on a slide. The slides were
scanned using a Hamamatsu Nanozoomer (Hamamatsu Pho-
tonics, Hamamatsu, Japan). The images had a resolution of
0.92µm per pixel and approx. 11,000 × 8000 pixels. See
also [13,17] for more information about the imaging.

Model generation

The steps of our pipeline are illustrated inFig. 1 and explained
in the following.

Preprocessing The first step was to convert the ndpi files
obtained by the scanner to tiff files using a tool from Der-
oulers et al. [18]. One file contains two slices. To get one
file per slice, the images are cut parallel to the y axis. To cut
the images, the samples are detected using Otsu’s method
[19] and an offset is added to the x expansion of the detected
object before cutting the image. Images, where the automatic
detection and cutting were problematic due to impurities,
were manually processed.

Segmentation The vessel wall of larger arteries consists
of three layers: adventitia, media and intima. The layers are
separated by the external elastic membrane (between adven-
titia and media) and the internal elastic membrane (between
media and intima) (seeFig. 2). Each layer consists of different
cell types. Endothelial cells are found in the intima, smooth
muscle cells in the media and stromal cells in the adventitia.
During aneurysm development, the aneurysm wall changes
and the layers become less distinguishable. However, often
the histology still allows the identification of the inner,medial
and outer (adventitial) parts of the wall.
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Wall analysis
- Wall thickness
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Interactive Visualization
- Wall properties (colour-scale, histograms)
- Cell nuclei (blue)
- Wall classification (gray values)
 - Individual models

Wall type classification

Nuclei detection & classificationDigitalized histologic data

Fig. 1 Pipeline of the proposed method to construct a 3D IA model from 2D histology

A manual segmentation by a medical expert was done
using MeVisLab 2.8.1 (MeVis Medical Solutions AG, Bre-
men, Germany) [20]. The contours were exported as xml
files. In MATLAB 2018b (MathWorks, Nattic, USA), the
contours were loaded and adjusted to match the coordinate
system of the images. As shown in Fig. 2, the three layers of
the IA are described by four contours: the inner contour (C1),
the border between intimal and medial parts (C2), the bor-
der between medial and adventitial parts (C3) and the outer
contour (C4).

Mesh generation Working with just the contours for the
postprocessing instead of the histologic images significantly
reduces the calculation time. The contours are resampled to
have an equal number of points. The registration is limited to
linear transformation without scaling to avoid invalid alter-
nations of the contour or the wall thickness. To account for
subsequent slices comprising the IA or a combination of the
IA and its parent vessel, the contours’ length was evaluated.
In case of a significant difference in the length of two con-
secutive contours, the focus in registration was set on the
aneurysm part (the part of the right side of the image, respec-
tively, contour).

Since we obtained parallel contours with an equal num-
ber of points and a much better in plane resolution than the
distance between the slices, approaches like Poisson surface

reconstruction did not yield satisfying results. Therefore, we
directly triangulate the contours by connecting neighbouring
points with their corresponding points of the next contour.
Hence, the corresponding point of an arbitrary point of the
first contour is defined as closest point on the subsequent
contour. The corresponding points (points with correspond-
ing indices) of two consecutive contours are connected. The
contours can be sorted in a clockwise or a counterclockwise
direction. After calculating the triangulation between two
contours, one contour might be flipped, if that minimizes the
length of the sum of all triangle edges.

This process is repeated for all four contours (C1–C4),
resulting in fourmeshes (M1–M4) describing the three layers
of the aneurysm. The mesh is smoothed with a manually
Laplacian smoothing using Sculptris (Pixologic Sculptris).

Wall analysis

From the four meshes, the thickness of the whole aneurysm
wall as well as the thickness of each wall part is calculated.
The wall thickness of the aneurysm wall is calculated for
each vertex of the outer aneurysm mesh (M4) and approx-
imated as the distance between the point on M4 and the
closest point of the inner mesh (M1). The thickness of the
wall layers is calculated similar: thickness of the intima as
distance between M1 and M2, thickness of the media as
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Fig. 2 Schematic illustration of the extracted contours (C1–C4) of a
normal artery and corresponding surface meshes (M1–M4) of an IA.
The segmentation of the layers might be problematic in some IAs due
to changes in the vessel wall occurring during aneurysm development.

Yellow area: myointimal hyperplasia/organized thrombus, dark red area
inside IA: possible fresh thrombus (the IA used in this work did not have
a fresh thrombus)

distance betweenM2 andM3 and the thickness of the adven-
titia as distance between M3 and M4. Due to changes in the
aneurysmwall at some parts, the layers could only be approx-
imated by using the neighboured slices. This might lead to
slightly less precise calculations of the wall thickness of sin-
gle layers compared to the calculation of the thickness of the
whole aneurysm wall. Additional areas, where the overall
wall thickness largely varies, are determined. For each vertex,
its local neighbourhood is analysed and the standard varia-
tion of the corresponding wall thickness values is extracted.
The size of the neighbourhood is determined such that 1%
of the total vertex amount is considered.

Nuclei detection In the histologic images, the nuclei are
detected and classified as round or elongated using the hier-
archical clustering algorithm from Glaßer et al. [13].

Wall classification Our wall classification is adapted from
Frösen et al. [7]. Based on 66 IAs (24 unruptured and 42
ruptured), they defined four tissue groups in IAs which are
associated with different rupture tendencies. Type A has lin-
early organized smooth muscle cells, type B has a thickened
wall with disorganized, proliferating smooth muscle cells,
type C consists of a thick wall, decellularized of former
myointimal hyperplasia or an organized thrombus and type
D is extremely thin and decellularized with an organized

luminal thrombus [7]. A feed-forward neural net was trained
using MATLAB and used to classify patches of the histo-
logic images into four groups. The neural net consists of 15
layers, including several convolution, batch normalization,
ReLU and pooling layers (see Fig. 3). The initial learn rate is
0.01 and is adapted using Adam [21]. The network was able
to classify the patches of the aneurysm wall into four classes
with an accuracy of 51.22%.

Visualization

Requirements The main interest in aneurysm analyses is
the risk of aneurysm rupture. Therefore, the visualization
should show information about the aneurysm and its wall
which are suspected to be related to rupture, like suspicious
deformations, blebs, wall thickness and fine wall structure.
Furthermore, information about the nuclei and the wall type
classification should be incorporated in the visualization.

Graphical user interface The interface is split into two parts:
on the left side, the 3D model is displayed, and on the right
side, a histogram and the histologic image are shown (see
Fig. 5). In the 3D overview, the mesh M3 is colour-coded
to highlight either the thin parts of media and intima or
the thick parts of media and intima, depending on the user
selection. The thickness of the adventitia is shown by adding
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Fig. 3 Architecture of the neural net used to classify the aneurysm
wall, visualized with MATLAB [MathWorks, MATLAB (2018b)].
1 ‘imageinput’—image input 500 × 500 × 1 images with zero
centre normalization. 2 ‘conv_1’ Convolution—8 3 × 3 × 1 con-
volutions with stride [1 1] and padding ‘same’. 3 ‘batchnorm_1’
Batch Normalization—batch normalization with 8 channels. 4 ‘relu_1’
ReLU—ReLU. 5 ‘maxpool_1’ Max Pooling—2× 2 max pooling with
stride [2 2] and padding [0 0 0 0]. 6 ‘conv_2’ Convolution—16 3×3×8
convolutions with stride [1 1] and padding ‘same’. 7 ’batchnorm_2’

BatchNormalization—batch normalizationwith 16 channels. 8 ‘relu_2’
ReLU—ReLU. 9 ‘maxpool_2’ Max Pooling—2 × 2 max pooling
with stride [2 2] and padding [0 0 0 0]. 10 ‘conv_3’ Convolution—
32 3 × 3 × 16 convolutions with stride [1 1] and padding ‘same’.
11 ‘batchnorm_3’ Batch Normalization—batch normalization with 32
channels. 12 ‘relu_3’ ReLU—ReLU. 13 ‘fc’ Fully Connected—5 fully
connected layers. 14 ‘softmax’ Softmax—softmax. 15 ‘classoutput’—
classification output

M4 as a semi-transparent layer around M3 (see Fig. 5). On
M4, the wall type classification is transparently displayed
with a grey colour map. Wall parts with a higher rupture
tendency according to the classification have a lighter grey
tone and a lower rupture tendency is displayed as a darker
grey. The lighter grey allows a good perception of the under-
lying colour-coded surface, thus helping to focus on the
wall at areas with a higher tendency to rupture. The user
can choose additional information to be displayed in the 3D
model. Glyphs displaying the round nuclei can be added; see
Fig. 4. The glyphs are blue balls representing the number of
nuclei in that area with their size. Heterogeneous wall parts,
here defined as wall parts with a high variance in wall thick-
ness, are shown using small histograms around the 3Dmodel.
One histogram shows the distribution of the wall thickness
around the current point, and the other three show especially
heterogeneous parts. For these histograms, the corresponding
areas on the 3Dmodel are displayed with markers on the sur-
face. The marker colour and the colour of the histogram axis
match.

Instead of the overview model, the user can select only
one of the four surface models (M1–M4) and colour-coding
of the wall thickness of the selected aneurysm layer is shown
accordingly; see Fig. 6. The model allows the user to select
one point from a model to examine the measurements, e.g.
wall thickness, from that point only. Afterwards, the cor-
responding histologic image is loaded and displayed in the
GUI; see bottom right of Fig. 5. A circle marks the corre-
sponding area in the histologic image to the selected point.
Due to the smoothing of the model, small variations are

induced, and therefore, the circular area rather than a pre-
cise location is shown.

We also provide a histogram-based wall thickness selec-
tion.On the upper right side, a histogramof thewall thickness
is displayed. The user may select one or more histograms
(histogram of whole aneurysm wall thickness, thickness of
adventitia, thickness of media or thickness of intima) to be
displayed. In the histogram, the user can interactively select
one or more bars. Then, the corresponding areas with these
wall thicknesses are highlighted in the 3D model; recall
Fig. 4.

Results

Since we do not have access to an additional imaging of
the intracranial aneurysm or its wall, it was not possible to
make a quantitative comparison with another model based
on in vivo or ex vivo imaging. The generated 3D models
and the resulting wall thickness were evaluated by using the
user interface and the described point selection to compare
the model with the corresponding image data. The model
seems to correctly reproduce the aneurysm as shown in the
histologic image data.

Due to the limited data, a quantitative evaluation of the
wall classification would not be suitable. The result of the
neural net is plausible, as the classification shows a lower
rupture risk towards theparent vessel and ahigher rupture risk
in the direction of the aneurysm dome. Aneurysms normally
rupture at the dome (83–84%) and only 2% at the neck [8].
Therefore, the results fit the expectations.
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Fig. 4 Interactive exploration of the wall of the intracranial aneurysm.
Left: 3D model and nuclei at selected positions. Centre: Local his-
tograms (x axis: wall thickness, y axis: number of vertices) showing the

distribution of the local wall thickness. Right: Histogram-based selec-
tion of wall thickness (bottom right) and corresponding highlighting of
affected areas (top right)

Fig. 5 Graphical user interface to explore the wall thickness of a cere-
bral aneurysm: left: overview visualization showing wall thickness and
wall classification, right: histogram of wall thickness and histologic

image; black rectangle: zoomed in view of surface; circle on histologic
image: origin of selected point

Discussion

We presented our tool to a medical expert yielding an overall
positive feedback. Shewas interested in seeing a 3Dmodel of
the histologic data and particular liked the histogram-based
selection of areas with a certain wall thickness. She com-

mented that, while being interesting, the areas analysed with
regard to wall heterogeneity could be larger and she would
like to see further analysis of the wall and the cells occurring
inside.

Despite the small data set for the wall classification, the
neural net produces a plausible result. Due to the small
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Fig. 6 Models M1, M2, M3 and M4 (from left to right) representing the aneurysm wall. The white area in M3 is a particularly thick wall part. The
colour scale is consistent over all four views for an easy comparison of different wall layers

amount of data, we cannot present statistical significant and
meaningful results. When analysing first trends, then we can
state that the aneurysm dome is correlated with a higher rup-
ture risk than the neckor the parent vessel. This suggested that
deep learning for IA wall classification might be a suitable
approach if a sufficient number of examples are available.
The results might be further improved by combining the clas-
sification of smaller patches to classify larger areas. While
here every part of the presentedmodelwas classified, the clas-
sification has been created and is currently only researched
for the aneurysm dome and not the aneurysm neck or the
parent vessel. Additional research is necessary to analyse
changes in the neck area and parent vessel.

The segmentation of different IA layers is arguable. Vessel
wall changes occur during IA development yielding less dis-
tinguishable layers. In particular, IAs existing over a longer
period undergo wall remodelling that may fade out the gen-
eral artery wall layers and a more general approach based
on inner and outer vessel walls might be required. Although
we were able to approximate a distinction between these lay-
ers, this might not be possible for more advanced IAs. In the
future, instead of these layers, a division of the aneurysm
wall as described might be necessary [5,6,8,9].

The data set presented in this work is special as it includes
both the aneurysm dome and the neck. Compared to the
resection of aneurysm domes during surgical intervention,
the collection of whole aneurysms from cadavers is more
complex and rarely done. In particular, the analysis of the
aneurysm neck and parent vessel can only be carried out
ex vivo. However, the histologic images of this data set did
not show a thrombus. As a thrombus might be found in an
IA, future analysis and visualization should take this into
account.

The analysis of the nuclei is more restricted than the anal-
ysis of whole cells. This work focused on round nuclei which
provide limited information about the cellular composition

of the wall. Future wall analysis should be more comprehen-
sive and use whole cells with cell-specific histologic markers
instead of focusing on the nuclei in order to enable verifica-
tion between different cell types.

In this model, the wall thickness and aneurysm shape are
influenced by the generation of the image data. A slight
deformation of the aneurysm could occur during the pro-
cessing. Fixation and preparation of pathologic sections may
further induce potential bias due to the loss of water during
the processes. In the previous work, we observed a statisti-
cally significant bias for the ex vivomeasurements of healthy
intracranial vessel wall diameters when comparing histology
and intravascular imaging [17]. However, there was a negli-
gible shrinkage of fibrotic tissue and plaques, assumedly due
to the already reduced water content of these pathologies.
During the processing, small parts of the tissue at the inner
and outer borders start to separate from the rest of the tissue.
This complicates the correct segmentation of the aneurysm
contour and could lead to small inaccuracies in the segmen-
tation and the model. Thus, the current methodology leaves
room for an error in measuring the wall thickness. However,
currently this is one of the few methods enabling the mea-
surement of the wall thickness of the IA samples ex vivo.

Currently the IA wall thickness cannot be evaluated reli-
ably by CT or MR imaging in vivo due to relatively low
resolution in comparison with the thin wall of an aneurysm.
Besides histologic images, the usage of optical coherence
tomography data for IA wall thickness visualization is
promising [13]. Another alternative for ex vivo analysis of
wall composition is multiphoton microscopy as employed
by Robertson et al. [22]. They combined it with mechanical
testing of the samples, including measurement of the wall
thickness at five positions using micro-callipers. The study
used IA domes resected during surgical clipping.

Part of the current IA research relies on simulations
which aim at finding parameters associated with aneurysm
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rupture [23]. In the future, the 3D model of an aneurysm
described here could be used to simulate the blood flow
including mechanical properties for fluid–structure interac-
tions to provide further insight in aneurysm rupture and the
influence of the patient-specific aneurysm wall thickness on
the intra-aneurysmal blood flow. Finally, a 3D model incor-
porating the extracted histologic information could increase
the understanding of the aneurysm pathology and thus help
with IA diagnostics and treatment in the future.

Conclusion

This work presents a virtual 3Dmodel of an IA from the ante-
rior cerebral artery and its differentwall layerswhich is based
on histologic image data. This is the first human 3D model
of a complete IA from histologic image data. The model
based on a cadaveric sample includes the patient-specificwall
thickness and shows the aneurysm as well as the transition
between the aneurysm sac and the parent vessel. Embedded
in our visual exploration software tool, an interactive analysis
of the aneurysm and its heterogeneity is available.
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