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Abstract—Intracranial aneurysms are pathologic dilations of
the vessel wall, which bear the risk of rupture and of fatal
consequences for the patient. Since treatment may be accom-
panied by severe complications as well, rupture risk assessment
and thus rupture risk prediction plays an important role in
clinical research. In this work, we investigate the potential of
morphological features for rupture risk status classification in
100 intracranial aneurysms. We propose a pipeline for morpho-
logical feature extraction and rupture status classification with
subsequent feature ranking and inspection. Our classification
setup involves training separate models for each aneurysm type
(sidewall or bifurcation) with multiple learning algorithms. We
report on the classification performance of our pipeline and
examine the predictive power of each morphological parameter
towards rupture status classification. Further, we identify the
most important features for the best models and study their
marginal prediction.

Keywords-Medical Image Analysis; Intracranial Aneurysm;
Morphological Parameters; Rupture Status Classification;

I. INTRODUCTION

Intracranial aneurysms are pathologic dilations of the

intracranial vessel wall. They bear the risk of rupture and

thus subarachnoidal hemorrhages with often fatal conse-

quences for the patient. Since treatment may cause severe

complications as well, substantial research was carried out

to characterize the patient-specific rupture risk based on var-

ious parameters, including whether the aneurysm is asymp-

tomatic or symptomatic, age, gender, size and location [1].

Numerous studies identified parameters such as aspect ra-

tio, undulation index and nonsphericity index as statistically

significant to the aneurysm rupture status [2], [3]. However,

although these studies allow for a retrospective analysis, the

clinician needs further guidance in case an asymptomatic

aneurysm was detected and the rupture risk should be

determined. Therefore, we study to what extent the rupture

status can be predicted with supervised classification models

learned on morphological parameters that are available to the

clinician. We extract common parameters that were found in

other studies to correlate with rupture risk. We train separate

classifiers for each aneurysm type (sidewall or bifurcation)

using multiple learning algorithms. We juxtapose the impact

of each feature towards the best models’ predictions and

study their marginal predictions.

II. MATERIALS

Our pipeline is illustrated in Fig. 1. The preprocessing

steps comprise the segmentation and neck curve extraction

of the medical image data, which is explained in this section.

A. Data Acquisition
The presented methods were developed for a database

comprising 74 patients (age: 33-85 years, 17 male and

57 female patients) with 100 intracranial aneurysms at the

university hospital of Magdeburg, Germany. Each patient

had 3D rotational angiography on an Artis Q (Siemens

Healthineers, Forchheim, Germany) as part of the necessary

clinical work-up performed. The dataset acquisition and

the subsequent analysis steps are in accordance with the

guidelines of the local ethics committee.

B. Segmentation and Neck Curve Extraction
Aneurysms and vessels are segmented with a threshold-

based approach [4] from digital subtraction data recon-

structed from 3D rotational angiographies. Afterwards, we

extract the vessel’s centerline with the vascular modeling

toolkit (VMTK, vmtk.org) [5]. As prerequisite for feature

extraction, the aneurysm has to be delineated from the parent

vessel. For this purpose, we employ the automatic ostium

detection of Saalfeld et al. [6].

III. METHODS

With our pipeline, we extract morphological features and

learn classification models that distinguish between unrup-

tured and ruptured intracranial aneurysms.
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Figure 1. Pipeline of our presented approach: aneurysm segmentation from
raw image data as well as subsequent automatized extraction of the cen-
terline and the neck curve was carried out. Afterwards, the morphological
parameters were extracted. Classifiers were trained and evaluated based on
these parameters. Finally, feature ranking and inspection was conducted.
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Figure 2. Illustration of the extracted morphological features Hmax,
Wmax, Hortho, Wortho and Dmax (A). The angles α, β and γ are
extracted based on B1, B2 and the dome point D (B). Separating the
aneurysm from the parent vessel based on the neck curve yields AA and
VA (C). The area of the ostium and the projected ostium, i.e., AO1 and
AO2, are shown in (D), where CNC denotes the center of the neck curve.

A. Extraction of Morphological Features

For each 3D surface mesh, we obtain the neck curve,

the dome point D and the two base points B1 and B2

as described in our previous work [6]. Hence, B1 and B2

are approximated as points on the centerline with largest

distance where the rays from B1 and B2 to D are not inter-

secting the surface mesh. In Fig. 2, the extracted parameters

are illustrated, where Hmax, Wmax, Hortho, Wortho and

Dmax describe the aneurysm shape [2], [7]. The angles α
, β and γ are extracted based on B1, B2 and D, and Δαβ

denotes the absolute difference of α and β.

Separating the aneurysm from the parent vessel based

on the neck curve allows for extraction of the surface area

AA and the volume VA of the aneurysm. We provide two

measurements for the surface area of the ostium: AO1 and

AO2 (recall Fig. 2-D). The parameter AO1 denotes the

surface area of the ostium, i.e., the surface of the triangulated

ostium area obtained by connecting the neck curve points

with their mean CNC . The parameter AO2 denotes the

surface area of the neck curve when projected into a plane,

see also [6]. Hence, AO2 is extracted to obtain a comparable

parameter to other studies that often employ a cutting plane

to determine the ostium.

In case of a severely lobulated aneurysm, our method gets

stuck in a local optimum and considers only one of the

Figure 3. Illustration of a sidewall aneurysm at the side of the parent
vessel wall (left) and a bifurcation aneurysm at a vessel bifurcation (right).

multiple dome points. Although the extracted positions of

B1 and B2 could vary slightly, the neck curve extraction

can be carried out and the parameters can be extracted.

Table I provides a brief description, summary statistics

and a visualization of the distribution for each extracted pa-

rameter. Additionally, the statistical significance of multiple

parameters w.r.t. rupture risk status, including Dmax, Hmax,

Hortho, AR1, AR2, β and γ, is shown in Table I.

B. Classification & Evaluation Setup

We model our classification problem with a two-class

target feature (unruptured vs. ruptured), using the 100 sam-

ples described in subsection II-A and the 22 morphological

parameters from Table I as input features. As motivated by

the results reported by Baharoglu et al. [8], we learn distinct

models for the subset of sidewall aneurysms (SW; 9 ruptured

out of 24) and for the subset of bifurcation aneurysms (BF;

29 ruptured out of 62). See Fig. 3 for an illustration of

sidewall and bifurcation aneurysms. Further, we train our

classifiers on a combined group (ALL; 43 ruptured out of

100), which includes 14 additional samples that could not be

clearly identified as either sidewall or bifurcation aneurysms.

For classification, we employ 10 algorithms: three deci-

sion tree variants (CART [9], C4.5 [10] and its successor

C5.0), Naı̈ve Bayes (NBayes), a feed-forward neural net-

work with a single hidden layer (NNET) [11], generalized

partial least squares (GPLS) [12], random forest (RF) [13],

k-nearest neighbor classifier (KNN), support vector machine

with linear kernel (SVMLin) and gradient boosted trees

(GBT) [14]. Some of the chosen classifiers may struggle

because of the different scale of the variables or the dataset’s

high dimensionality. Therefore, we optionally engage three

preprocessing transformations to the dataset: the “range“

transformation scales the data to be within [0,1], the “z-

score” transformation subtracts the mean and divides by the

standard deviation, and the “pca” transformation performs

“z-score” and a principal component analysis and retains

only the first principal components where the cumulative

explained variance first exceeds 95 %.

We evaluate our approach using 5 times repeated 10-fold

stratified cross-validation. The classifier’s hyperparameters

are tuned by means of a grid search using accuracy (ratio

of correctly labeled samples) as quality measure.



Table I
MORPHOLOGICAL FEATURES USED FOR CLASSIFICATION, WITH MEAN VALUES x̄ AND STANDARD DEVIATION s. BOXPLOTS PROVIDE SUMMARIES OF

THE FEATURE DISTRIBUTIONS FOR UNRUPTURED (U) AND RUPTURED (R) ANEURYSMS. P-VALUES WERE DERIVED FROM A STATISTICAL ANALYSIS

USING THE NON-PARAMETRIC MANN-WHITNEY-U TEST; ∗∗ SIGNIFICANT CORRELATION (DOUBLE-SIDED) WITH p < 0.01; ∗ SIGNIFICANT

CORRELATION (DOUBLE SIDED) WITH p < 0.05.

Feature Description Status x̄± s Distribution p-value

AA Area of the aneurysm (without the ostium) Unruptured 79.40± 86.77
● ● ●●

● ●● ●●● ●●

R
U

0 100 200 300 400

0.050

[mm2] Ruptured 92.26± 74.12

VA Volume of the aneurysm [mm3] Unruptured 91.24± 151.78
● ●●

● ●● ●● ● ●●

R
U

0 200 400 600 800

0.092

Ruptured 91.72± 114.92

AO1 Area of the ostium (variant 1) [mm2] Unruptured 11.34± 7.90
●●

●●●

R
U

0 20 40 60

0.265

Ruptured 10.33± 9.56

AO2 Area of the ostium (variant 2) [mm2] Unruptured 10.45± 6.99
●●

● ●●

R
U

0 20 40

0.262

Ruptured 9.41± 8.29

Dmax Max. diameter of the aneurysm [mm] Unruptured 6.24± 2.84
●● ●

●●● ●●

R
U

5 10

0.034∗

Ruptured 7.21± 2.77

Hmax Max. height of the aneurysm [mm] Unruptured 4.74± 2.54
●●

●● ●●

R
U

3 6 9 12

0.012∗

Ruptured 5.88± 2.59

Wmax Max. width of the aneurysm perpendicular Unruptured 5.08± 2.66
●● ●

●● ●● ●

R
U

5 10

0.119

to Hmax [mm] Ruptured 5.32± 2.11

Hortho Height of the aneurysm approximated as Unruptured 4.26± 2.41 ●● ●●

R
U

3 6 9

0.030∗

length of the ray perpendicular to the Ruptured 5.17± 2.41

ostium plane starting from CNC [mm]

Wortho Max. width parallel to the projected ostium Unruptured 5.59± 2.67
● ●● ●

●● ●

R
U

5 10

0.175

plane [mm] Ruptured 5.94± 2.15

Nmax Max. NC diameter, i.e., the max. possible Unruptured 4.02± 1.49
●

●●●

R
U

3 5 7 9

0.330

distance between two NC points [mm] Ruptured 3.75± 1.25

Navg Avg. NC diameter, i.e., the mean distance Unruptured 3.51± 1.20
●

●●●

R
U

2 4 6 8

0.237

between CNC and the NC points [mm] Ruptured 3.30± 1.13

AR1 Aspect ratio: Hortho/Nmax Unruptured 1.08± 0.50 ● ●●

R
U

1 2

0.002∗∗

Ruptured 1.40± 0.56

AR2 Aspect ratio: Hortho/Navg Unruptured 1.23± 0.56
●

●●

R
U

1 2 3

0.003∗∗

Ruptured 1.60± 0.65

VCH Volume of the convex hull of the aneurysm Unruptured 100.36± 160.37
● ●● ●●

● ●● ●● ●● ●●

R
U

0 200 400 600 800

0.085

vertices [mm3] Ruptured 108.14± 129.38

ACH Area of the convex hull of the aneurysm Unruptured 92.23± 93.64
● ●● ●●

● ●● ●●● ●●

R
U

0 100 200 300 400

0.079

vertices [mm2] Ruptured 105.25± 81.15

EI Ellipticity index: 1− (18π)
1
3 V

2
3

CH/ACH Unruptured 0.27± 0.02 ●

R
U

0.26 0.30 0.34

0.323

Ruptured 0.27± 0.02

NSI Non-sphericity index: 1− (18π)
1
3 V

2
3 /A Unruptured 0.17± 0.25

●●●

●●●● ●

R
U

−1.0 −0.5 0.0 0.5

0.067

Ruptured 0.21± 0.24

UI Undulation index: 1− V
VCH

Unruptured 0.12± 0.35
●●●

●● ●●● ●

R
U

−2 −1 0 1

0.686

Ruptured 0.10± 0.39

α Min. of �DB1B2 and �DB2B1 [deg] Unruptured 54.38± 12.63
●

●

R
U

20 40 60 80

0.287

Ruptured 56.90± 11.57

β Max. of �DB1B2 and �DB2B1 [deg] Unruptured 80.70± 17.07 ● ●

R
U

75 100 125

<0.001∗∗

Ruptured 92.13± 17.29

γ Angle at D, i.e. �B1DB2 [deg] Unruptured 44.93± 19.71
R
U

25 50 75

<0.001∗∗

Ruptured 30.98± 13.68

Δαβ Abs. difference between α and β [deg] Unruptured 26.32± 22.66
●

● ●

R
U

0 25 50 75 100 125

0.078

Ruptured 35.23± 26.05



IV. RESULTS

In this section, we report on our classification results and

elaborate on the features with high model impact.

A. Rupture Status Classification

In Table II, we show the results of classification between

unruptured aneurysms (negative class) and ruptured ones

(positive class) on all samples (denoted as ALL), the subset

of sidewall aneurysms (SW) and the subset of bifurcation

aneurysms (BF). For each subset-algorithm combination, we

only show the preprocessing transformation with highest

accuracy. In addition to accuracy, we depict two other quality

measures: Cohen’s kappa and the area under the receiver op-

erating characteristic (ROC) curve. Cohen’s kappa measures

the model’s relative improvement in accuracy in comparison

with the expected accuracy of a baseline classifier that ran-

domly predicts the class label. A ROC curve is a graphical

representation that juxtaposes sensitivity (true positive rate

(TPR)) and false positive rate (FPR) for varying prediction

thresholds of a binary classifier. The area under the ROC

curve (AUC) takes values between between 0 (0 % TPR,

100 % FPR) and 1 (100 % TPR, 0 % FPR), where a random

classifier achieves an AUC of 0.5.

Table II
CLASSIFICATION PERFORMANCE FOR EACH COMBINATION OF DATA

SUBSET AND ALGORITHM. PREPR. = PREPROCESSING

TRANSFORMATION; ACC. = ACCURACY; SW/BF =
SIDEWALL/BIFURCATION SUBSET.

Subset Algorithm Prepr. Acc. Kappa AUC

GBT - .69±.15 .36±.32 .70±.02
C5.0 - .66±.16 .32±.31 .68±.04
GPLS - .66±.15 .28±.31 .69±.01
KNN range .66±.16 .27±.34 .63±.01

ALL
CART - .65±.12 .29±.26 .61±.03
NNET range .62±.13 .23±.26 .64±.03
C4.5 - .62±.15 .24±.31 .64±.03
NBayes - .61±.16 .21±.32 .58±.03
SVMLin - .60±.15 .17±.32 .56±.02
RF - .60±.12 .16±.26 .62±.01

SVMLin - .80±.24 .50±.53 .66±.12
GPLS range .79±.26 .49±.56 .73±.03
C5.0 - .78±.30 .50±.60 .83±.03
KNN pca .77±.21 .38±.49 .73±.04

SW
GBT - .77±.27 .49±.55 .68±.03
NNET range .75±.28 .42±.58 .69±.05
CART - .75±.34 .47±.66 .63±.06
RF - .74±.28 .40±.55 .69±.05
NBayes - .72±.32 .45±.59 .68±.03
C4.5 - .72±.32 .40±.61 .75±.06

GPLS center, scale .68±.16 .34±.32 .68±.02
KNN pca .66±.19 .33±.38 .68±.02
NNET center, scale .63±.18 .25±.37 .65±.02
SVMLin - .63±.17 .26±.33 .62±.04

BF
GBT - .62±.15 .24±.29 .59±.04
NBayes - .61±.19 .24±.37 .57±.03
CART - .61±.18 .22±.34 .61±.04
C4.5 - .60±.15 .21±.29 .62±.03
RF - .60±.16 .19±.32 .63±.02
C5.0 - .59±.16 .19±.32 .61±.02

GBT performs best in accuracy on ALL with 69 %,

followed by C5.0, GPLS and KNN with each 66 % (cf. Ta-

ble II). All classification algorithms work better on the

subset of SW aneurysms where SVMLin with a range

transformation yields best overall accuracy of 80 % with

an AUC of 0.66. For the BF subset, GPLS with a z-score

transformation performs best with an accuracy of 68 % and

an AUC of .68. Overall, none of the classification algorithms

outperforms all others on all three subsets.

We integrated the three best models per data subset in an

interactive web-application1, allowing the user to study how

a change in the choice of the values for a feature affects the

model confidence. The user may select a sample from the

training set, but she is also allowed to freely modify each

feature value with the respective slider widget, whereupon

the prediction confidence gets immediately updated. A hor-

izontal bar chart visualizes the supporting or contradicting

contribution of each input feature to the model’s prediction,

based on the method of Ribeiro et al. [15].

B. Model Interpretation

For interpretation of our models, we analyze the best

model of each subset. We identify the most important

features, i.e., the features that have the highest impact

on the model prediction (cf. Fig. 4). Feature importance
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Figure 4. Feature importance for the best model of each data subset.
Values are scaled up to 100 according to the highest feature importance.

scores are calculated as the sum of absolute differences

between all pairs of consecutive points of the feature’s partial

dependence plot. A partial dependence plot visualizes the

1Available at https://rbsenzaehler.shinyapps.io/RUSTiC/.



relationship between a feature f and a model’s prediction

while incorporating the average effect of the remaining

features in the model. Thus, by providing an estimation of

how the model’s prediction changes for each value of f , it

is particularly useful for interpreting the models of complex

non-parametric classification algorithms. In Fig. 5, we show

the partial dependence plots of the five most important

features of the best models per subset from Table II.

#1: γ #2: EI #3: Wmax #4: NSI #5: AO2
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Figure 5. The partial dependence plots show the marginal prediction of
the five most important variables for the best model of each data subset.

Fig. 5 illustrates the high importance of the angle γ w.r.t.

rupture status classification, since this feature is ranked #1

and #3 for the best models of ALL and BF. Although the

curves show slight variations, both models have in common

that the marginal probability of predicting the class ruptured
decreases with increasing values of γ, which means that

ruptured aneurysms tend to exhibit lower γ values (cf.

Table I). Besides γ, other features, such as EI for ALL

and SW, Wmax for ALL, AO2 and Wortho, as well as VA

and VCH for BF exhibit a considerable relevance w.r.t. the

model, as shown in Fig. 4 and 5.

V. DISCUSSION

Fig. 5 shows that there is no intersection among the top-5

features found for the sidewall aneurysms (middle subfigure)

and for bifurcation aneurysms (bottom subfigure). Although

the respective classification algorithms are different, this

result might indicate that the interdependencies between

each of those input features and the target feature follow

different patterns. This is in agreement to Baharoglu et al. [8]

who identified differences in the statistical significance of

morphological parameters w.r.t. rupture status between side-

wall and bifurcation aneurysms.
The importance scores in Fig. 4 indicate some higher-

level feature interactions. For example, although mean and

standard deviation of EI are equal for both classes (cf.

Table I), it is ranked most important in SW and 2nd most

important in ALL. Apparently, the model combines EI with

other features to generate more robust predictions.

Although the partial dependence plot clearly displays the

influence of a single feature, interaction effects between

two or more features are not represented. The decision tree

variant C5.0 achieves 66 % accuracy on all samples, just

3 % less than the best model (cf. Table II). Being more

interpretable than GBT and GPLS and just slightly less

accurate, we opt to study the model closer. In its best run,

the algorithm generates multiple classification rules instead

of a single tree. A representation of three of those class-

characteristic rules is shown in Fig. 6. The left panel shows

a rule with a high lift for unruptured samples that satisfy

the condition AR2 ≤ 1.24∧ γ > 54.16. This partition (gray

box) contains 20 unruptured and 2 ruptured samples. Thus,

the lift is 1.6, i.e., in the partition described by the rule, the

relative frequency of the class unruptured is 1.6 times higher

than in the total training set. Two rules for the class ruptured
are shown in the middle and right panel in Fig. 6 where the

interaction effects between Hortho and Wortho, as well as

between Wmax and AO2 are highlighted. Fig. 6 also indi-

cates that none of our morphological features alone would

reliably predict the rupture risk of the aneurysms. Indeed,

building a classifier with only one input feature yields a

model with 55 % accuracy at best, which is outperformed by

a classifier that predicts the majority class (57 % accuracy).

While we consider our results to be promising, there are

arguably some limitations and substantial room for improve-

ment. First, the limited sample size, in particular for the

subset of sidewall aneurysms, might lead to overfitting of the

classification models. We are keen to evaluate the robustness

of our models on a larger number of datasets. The second

limitation concerns the quality of the class label due to this

specific pathology. Samples that were labeled as unruptured

could rupture at a later moment. A further limitation is the

limited feature space: our classification models incorporate

morphological characteristics only. However, other proper-

ties, such as hemodynamic features have been identified to

be predictive as well [16], [17]. In future work, we would

like to inspect samples with high classification error. Here,

our goal is to derive descriptions of groups of aneurysms that

are hard to classify, in order to better understand the reasons

for misclassification. Further, we would like to study the

potential of deep learning on the segmented image data, e.g.,

using convolutional neural nets. More precisely, our interest

is to quantify the positive or negative impact of a careful

feature engineering step before rupture risk assessment in

comparison with a model that is learned on raw image data.

VI. CONCLUSION

In this paper, we studied the potential of morphological

parameters of intracranial aneurysms for rupture status clas-
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Figure 6. Three classification rules with high lift values extracted from C5.0 for subset ALL. The title of a subfigure displays the rule’s condition. The
class counts and lift value of the partition are given in parenthesis. Samples that satisfy the rule condition are shown as opaque points within a gray box.

sification in order to reduce risky treatments in case of low-

risk aneurysms. We found that some of the extracted param-

eters are highly predictive towards the outcome, including

the angle between the ostium’s base points γ. Although only

trained on shape, size and angle features, the performance of

our best models is promising. Thus, a natural extension of

our work includes incorporating a broader range of feature

types to further improve accuracy.
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