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Abstract: We present a mesh generation algorithm which is
able to produce smooth meshes from point clouds derived
from histological slices. In this work, the shrinkingtube mesh
generation is used on histologic images depicting pathologic
vessels. Our mesh generation is modeled after the behaviour
of a shrinkingtube. A start shape is fitted iteratively to
the point cloud. The presented algorithm was successfully
used to generate meshes of the inner and outer contour
from vessels in histologic images. While histologic slices
have a high in-plane resolution, the large slice distance and
deformations during tissue deformations are challenging for
3D model generation.
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1 Introduction

3D models from medical images are commonly used to sup-
port diagnosis and treatment decisions. Using 2D histologic
images we want to generate a 3D model for visualisation
and simulation. Several model-based algorithms for mesh
generation from medical images exist [2, 3, 4]. Frangi et al.
[3] developed an algorithm using a deformable model to de-
rive vessel models from 3D magnetic resonance angiograms.
Similar, Yim et al. [4] used a tubular deformable model
to reconstruct vessels. While providing good results, these
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Fig. 1: (a) Shrinking tube (b) during heat (c) fitted shrinking
tube [1]
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algorithms are restricted to the specific use case (imaging
modality and organ) they were designed for.
Due to several reasons, mesh generation is especially chal-
lenging when working with histologic images. The images
are very large (approximately 11,000 × 8,000 pixel) and
several artefacts can influence the tissue shape (folding, dis-
secting tissue, deformations during tissue collections). The
first problem is addressed by working with the points of the
outer contour of the tissue instead of the images. By regis-
tering the images and extracting the contour points, a point
cloud is derived. The point cloud has a very anisotropic
distribution (close points in x-y-direction, large gaps along
the z-axis) and due to the artefacts it does not correctly
represent the outer aneurysm border. Here, a process to
generate smooth meshes from noisy pathologic vessel point
clouds is described. In contrast to healthy vessels the patho-
logic vessels used here can only be roughly approximated by
a cylinder and do not allow for more detailed assumptions
to guide the model generation.
Salman et al. [5] proposed a mesh generation from point
clouds, which includes a feature selection step before the
mesh generation. The approach preserves sharp edges well
and is therefore suitable for objects with sharp edges like
buildings or technological components. Often the meshes
derived from point clouds require a post processing step to
smooth the meshes [6]. Some algorithms require extensive
preprocessing, for example the calculation of point normals
[7]. Although this preprocessing is justified, the normals
are error-prone in case of incorrect segmentations. Mostly,
a point cloud is available consisting of points which are
nearly evenly spaced over the object, for example from a
3D scan of an object. In the images the inner and outer
contour is segmented. To get a 3D point cloud of these con-
tour points, a z-coordinate based on the slide number and
distance between slides is added. Due to the high resolution
of histolgic images, the reduction to contours and point
clouds allows for a more efficient processing. Fig. 2 shows
an exemplary case of our data, a point cloud of segmented
histologic slices. Hence, the equal distribution criterion is
not fulfilled yielding a problematic result of the Poisson
surface reconstruction [8]. The ball pivoting algorithm [9]
only produces a few faces along the points of one slice and
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Fig. 2: (a) Point cloud from vessel contours (b) The result of
MeshLabs screened poisson surface reconstruction algorithm (c)
The result of MeshLabs ball pivoting algorithm, triangles are
only generated between points derived from the same slide; both
algorithms have major problems with the uneven distribution of
the points (d) The mesh generated by our shrinking tube mesh
algorithm [9].

cannot handle the large distance between points from dif-
ferent slices.
We use the knowledge of the elongated structure of vessels
to generate the 3D model. While being robust against the
challenges of histologic images (large slice-distance,artefacts
distorting the border) our algorithm does not use image
specific information and therefore can be applied to dif-
ferent histologic stainings or other image modalities. The
presented algorithm models the behaviour of a shrinking
tube., as illustrated in Fig.1 A shrinking tube is plastic tube
which can by used to isolate wires and is tightly fitted to
them by applying heat.

2 Shrinking tube mesh generation

We consider three different possibilities for the start shape:
a straight cylinder (CS), the convex hull of the point cloud
(CH) or a cylinder based on the maximum diameter of each
slice (Cmax). For Cmax, the maximum diameter of each slice
is determined. A cubic smoothing spline is fitted through
these values yielding a function f(x). Next, f(x) is rotated
around the x-axis to get a cylinder. This can be varied
by smoothing f(x) which will result in a smoother cylin-
der. The choice of the optimal start shape depends on the
point cloud and expected shape of the structure. CS results
in a smooth mesh and is able to avoid the generation of
pseudostenosis due to poor image quality or segmentation.
It is only suitable for elongated structures which can be
approximated with a cylinder, like a vessel. Cmax better
preserves the underlying structure and is better suited when
variation is expected, like plaque-ridden vessel walls. CH is
suitable for a large range of point clouds and is not limited
to cylinder-like structures. In contrast to the cylinders, the

CH is at higher risk to contain sharp edges.
The mesh is then fitted to the point cloud. This step has
three parameters. In analogy to a shrinking tube (Fig. 1),
the first two parameters are the number of time steps (iter-
ations) and the temperature (speed). The third parameter
is the influence area factor. This factor describes how many
vertices a point of the point cloud influences. In each itera-
tion, the points of the mesh are moved closer to the point
cloud. How far the mesh points are moved in direction of
the point cloud depends the temperature and the distance
of the point to the mesh. The factor for the displacement
based on the distance is calculated using a quadratic func-
tion. Small distances have only a small impact, as they are
likely noise and very large distance have a small impact
on the mesh as they are expected to be artefacts of the
segmentation. For each mesh point, the closest point of the
point cloud is determined and the mesh point is moved in
direction of this point. Then the neighbours of the mesh
point are moved in the direction of the new position of the
mesh point. This is iterative repeated for the neighbours of
the neighbours, depending on the distance from the point
cloud and the influence area factor. The start shape and the
number of vertices in the start shape have a large influence
on the resulting mesh. The results of different start shapes
are shown in Fig. 4. Using CH the fitting progress is faster.
After sufficient time steps, CS and Cmax will converge to
similar results.

3 Experiments

Next, the influence of the parameters are analysed. While
allowing for adaption to different problems and point clouds,
the algorithm has a large number of parameters and op-
timising these can be time consuming. Here we show the
results of different parameters for one point cloud. For each
vertex of the mesh the distance to the closest point of the
point cloud is calculated. The sum of these distances es-
timates the distance between mesh and point cloud. The
mesh should be close to the point cloud, therefore the added
up distance should be low. As some noise in the point cloud
is expected, the distance should be non-zero as the mesh
should be smooth. Additionally, the calculation time is
measured. Varying only the temperature (between 0 and
1), the difference between the points of the mesh and the
nearest points of the point cloud decreases as shown in Fig.
5. A larger influence area leads to a smoother, closer to the
points fitted mesh. The time needed for the shrinkingtube
mesh generation increases with the influence area factor
as shown in Fig. 5 (Experiments were run on a computer
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with an Intel i7 processor with 16GB RAM). While the
time linearly increases with the number of time steps, the
mesh does not improve linearly (Fig. 3, Fig. 5). As a result,
the optimal values for the parameters depend on the point
cloud shape, target structure and the number of vertices of
the start shape. Therefore, no general recommendation for
parameter settings can be given.
The movement of a vertex depends on the temperature
parameter and the distance from the vertex to the point
cloud. The connection between distance to the point cloud
and movement of the vertex is described by the moving
factor function. As mentioned above, a small distance (likely
noise) or a very large distance (likely artefact) should lead
to small vertex movements.

4 Discussion

The selection of the start shape has a large influence on
the produced mesh. With a higher temperature or higher
number of time steps the mesh is closer fitted to the point
cloud. The optimal fit depends on the individual application
and quality of the point cloud. The moving factor function
indirectly describes the expected noise in the point cloud
and should be chosen appropriately.
The shrinking tube mesh generation produces smooth
meshes without additional postprocessing. It can be ap-
plied to noisy segmentations. Compared to image stacks,
point clouds from contours requiere less memory. The algo-
rithm is robust against uneven distribution of points. There
is a large number of factors which influence the behaviour
and outcome of the algorithm. With enough time steps or
a high value for the temperature parameter the resulting
mesh will be tightly fitted to the point cloud.
As it was developed for medical applications, where sharp
edges rarely occur, it might not preserve these. Future work
could include an interactive mesh improvement. The algo-
rithm does make some assumptions about the relevance of
the points. The influence of the points is based on their
distance to the mesh. Finally, we were able to successfully
generate meshes from the inner and outer contour of our
histologic data yielding inner and outer vessel walls with
the presented approach.

5 Conclusion

The presented approach is suitable to generate smooth
meshes from noisy point clouds derived from histologic

Fig. 3: Increasing of calculation time with increasing influence
area.
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Fig. 4: Start shapes and behaviour: (a) Start shape: CH, (b)
corresponding result, (c) Start shape: CS, (d) corresponding
result, (e) Start shape: Cmax, (f) corresponding result.
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images. It is developed for vessels and could be transferred
to different image modalities. Several parameters influence
the result and can lead to a smoother mesh or a mesh closely
fitted to the point cloud.
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