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Abstract

We present a method for visualizing anatomic tree structures, such as vasculature and bronchial trees based on
clinical CT- or MR data. The vessel skeleton as well as the diameter information per voxel serve as input. Our
method adheres to these data, while producing smooth transitions at branchings and closed, rounded ends by
means of convolution surfaces. We discuss the filter design with respect to irritating bulges, unwanted blending
and the correct visualization of the vessel diameter. Similar to related work our method is based on the assumption
of a circular cross-section of vasculature. In contrast to other authors we employ implicit surfaces to achieve high
quality visualization. The method has been applied to a large variety of anatomic trees and produces good results.
The time to construct a geometric model is reduced by means of different bounding volumes and careful choice of
parameters for polygonization.

1. Introduction

In medical education as well as in therapy planning, the vi-
sualization of tree-like structures is crucial. It is desirable
that spatial relations, in particular the topology of nerves or
vascular trees, can be correctly inferred from the visualiza-
tion. Moreover, the curvature, the depth relations, and the
diminution of the diameter towards the periphery should be
depicted correctly. Traditional methods of medical volume
visualization, such as direct volume rendering, threshold-
based isosurface rendering, or maximum intensity projection
are not well-suited for the above-mentioned goals. Due to
image noise and the limited resolution of computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) conven-
tional methods produce noisy 3d visualizations. Also, the
visual separation of contrast-enhanced vascular structures
and other high-intensity structures, such as bones, might be
very difficult. Artifacts and discontinuities in the visualiza-
tion distract the viewer. For educational purposes and ther-
apy planning, vascular structures should be reconstructed
based on the radiological data of that patient and some
model assumptions as to the shape of vasculature (Gerig et
al. [GKS∗93]).
We describe a new method for vessel visualization which
originates from implicit modeling. This method uniformly

handles anatomic trees with different types of branchings
and produces smooth surfaces even at endpoints and branch-
ings. The vessel skeleton serves as the input for the visualiza-
tion process. It is represented as a directed graph [SPSP02].
Edges of this graph are approximated by line segments con-
necting adjacent voxels. Each segment is described by its
two endpoints and one associated radius (the radius of the
largest circle completely enclosed by the segmentation re-
sult), respectively. Usually, these graphs represent tree struc-
tures in a mathematical sense. However, our method does
not rely on this property. The visualization method applied
here is based onConvolution Surfacesintroduced by Bloo-
menthal and Shoemake [BS91]. As a difference to previous
applications of convolution surfaces we shall faithfully rep-
resent the radius distribution given by the vessel analysis and
we shall employ large datasets (>10K line segments).

2. Prior and Related Work

Following the pioneering work of Gerig et al. (recall
[GKS∗93]) several attempts have been made to develop spe-
cial visualization techniques for anatomic tree structures in
general and vascular trees in particular. Our visualization
technique is based on the model assumption that cross sec-
tions of non-pathologic vessels have a circular shape, as dis-
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cussed in [MMD96]. Masutani et al. fitted cylinders along
the skeleton to visualize vascular structures. The drawback
of this method is that discontinuities at branchings arise
where cylinders with different diameters coincide. A special
problem, the visualization of cerebral structures, has been
tackled by Puig et al. [PTN97]. She modeled typical bifu-
ractions and pathologic situations, such as aneurysms and
stenosis, and fitted these models to the patient specific data
at hand. The focus of her work is on the geometric continuity
and on realistic shading.
In [HPSP01] a vessel visualization pipeline has been in-
troduced. The skeleton and the local vessel diameter de-
termined in the image analysis stage are smoothed with a
[121] binomial filter. Special care is taken at branchings to
weight the incident branches. In the mapping step truncated
cones are used to represent the diminutions of the vessel di-
ameter faithfully. However, the fitting of primitives to one
another does not generate smooth transitions between ves-
sel segments at branchings. In [FFKW02], branchings are
treated separately to avoid rendering discontinuities and the
construction of objectionable structures inside the geomet-
ric model. Along straight parts, a vessel segment is approx-
imated by four quadrilateral patches. The method is based
on the iterative refinement of a rough, initially constructed
basic mesh by means of subdivision surfaces. The smooth-
ness of the final model is dependent on the iteration depth of
the refinement step. A comprehensive survey of methods for
vessel visualization is given in [BFLC].

3. Modeling of Tree-like Structures with Implicit
Surfaces

Implicit surfaces offer an alternative to explicitly construct-
ing the surface of an object by a set of polygons or paramet-
ric patches. They describe the surface by an equation which
is often more compact than its parametric counterpart. Es-
pecially in modeling smooth, deformable objects, implicit
surfaces unfold their full strength. James F. Blinn introduced
implicit surfaces in computer graphics. He developedBlobby
Moleculesto visualize electron density fields [Bli82].

3.1. Implicit Surfaces: a Brief Introduction

A classical example for an implicit equation is the descrip-
tion of a sphere with radiusr: x2 + y2 + z2− r2 = 0. This
formula may be used to represent all pointsp(x,y,z)in space
which are on the surface of a sphere with radiusr. Further-
more, it facilitates point classification by simply checking
the sign of the resulting scalar value. According to [OM95],
the above equation can be rewritten as Eq. 1:

F(p)− Iso= 0 (1)

F(p) is called thescalar field functionbecause a scalar
value may be computed for each pointp. Iso denotes the
isovaluefor generating anisosurfacewhich represents the

surface where the implicit equation is zero. Naturally, the
surface also depends onF whose variation results in diverse
scalar fields around a point. In order to create more complex
objects, several points might be specified whose scalar fields
overlap if close enough.

The scalar field function employed for modeling ’blobs’
[Bli82] is given in Eq. 2:

F(p) = be−σd2

(2)

whered =
√

x2 +y2 +z2 is the Euclidean distance be-
tween pointp and the center of the source of energy. Eq.
2 describes a Gaussian bump centered atd, having height
b and standard deviationσ. For several energy sources, the
scalar value atp can be calculated as Eq. 3:

F(p) = ∑
i

bie
−σid

2
i (3)

Other popular field functions were presented
in [NHK∗85] (Metaballs) and [WMW86a] (Soft Ob-
jects). Note that only scalar fields around point primitives
were considered so far.

3.2. Convolution Surfaces

Bloomenthal and Shoemake extended the concept to skeletal
primitives of theoretically any kind, e.g. line segments, poly-
gons, or planar curves [BS91]. This enhancement overcomes
a major drawback of point primitives namely their deficiency
in describing flat surfaces and smooth generalized cylinders.
They proposeDistance SurfacesandConvolution Surfaces
to model the surface of an object around its skeleton; these
are described below. In the following,S denotes a skeleton
ands refers to a single point on the skeleton.

Distance Surfacesdemonstrate one way to generate an
implicit surface. Unfortunately, depending on the blending
function distance surfaces exhibit bulges or creases where
two skeletons form an entity. This effect is undesirable for
the faithful visualization of anatomic trees.

Convolution Surfacesavoid bulges and creases for non-
branching skeletal structures. The scalar value is calculated
according to Eq. 4:

F(p) = f (S, p) =
∫

S

e

(
−‖s−p‖2

2

)ds (4)

wheref (S, p) is the convolution of a skeleton with a three-
dimensional Gaussian filter. In contrast to distance surfaces,
the value is computed consideringall points of the skeleton
by integration. The resulting surface does not show creases
and is bulge-free for non-branching skeletons. Since our
method is based on convolution surfaces we present more
detail in the following.

Convolution surfaces utilize a concept which is well
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known from signal processing namely the modification of
a signal by a filter. For a Gaussian filter function with height
1 and standard deviation 1/2 Eq. 4 may be rewritten as

F(p) = f (S, p) = (h⊗S)(p) (5)

whereSis the signal,h is the filter function and⊗ denotes
the convolution operator. For the visualization of vascula-
ture, the vessel skeleton corresponds to the signal. The con-
stitutive idea is to smooth this signal and thereby letting high
frequencies gently drop off in the neighborhood. The result-
ing field around the skeleton corresponds to the scalar field
mentioned earlier. By constructing an isosurface through this
field the convolution surface is formed.

For the understanding of bulge-free blending it is neces-
sary to elaborate on the superposition property of convolu-
tion:

h⊗ (S1 +S2) = (h⊗S1)+(h⊗S2) (6)

This guarantees, for example, that two abutting,
collinear segments [...] produce the same convolu-
tion as does the single segment that is their union.
[Blo95]

Furthermore, superposition has an impact on implemen-
tation issues and the modeling process. It permits the convo-
lution of a complex object primitive by primitive in an arbi-
trary order instead of considering the skeleton as a whole.

3.3. Filter Selection

According to [She98], an appropriate filter function should
be continuous and monotonic. Furthermore, it should have
finite support (or be negligible beyond a certain distance),
and exhibit zero or near zero gradient at this distance. These
requirements restrict the filter selection to low-pass filters.
The Gaussian is a prime example for such filter functions.
[She98] includes an analysis of the most widespread func-
tions with respect to computational complexity and the types
of modeling primitive for which a closed-form integral solu-
tion may be obtained. For convolving a line segment each of
the surveyed kernels is applicable. However, the scope of eli-
gible filter functions is strongly reduced when a convolution
surface should faithfully represent a given radius distribu-
tion. As elucidated below, only three kernels were examined
with respect to this problem.

Initially, the convolution surface along a line segment has
a fixed radius. In [She98], the creation of a surface that re-
sembles a tapered cylinder by using linear profiling func-
tions is described. The use of Bezier curves with two con-
trol points for representing linear radius distributions is in-
troduced in [JTFP01]. Both methods are convenient when
interactive radius modification is required. However, they
are inadequate for modeling surfaces that exactly converge
against a given radius. As far as we know, solely in [Blo95]

and [HAC03] approaches have been published that concen-
trate on this problem.

In [Blo95] a Gaussian function is utilized for convolution
(see Fig. 1(a)).

h(p) = e−d2ω, ω = ln2, d > 0 (7)

ω is known as thewidth coefficientand equals 1/(2σ2),
whereσ is the standard deviation.

In [HAC03] two other methods are published to correctly
represent a linear radius distribution. The first approach uti-
lizes the kernel (see Fig. 1(b))

h(p) =
1

d(p,H)3 (8)

whered(p,H) is the minimal distance between pointp and
the line which proceeds through the considered line segment
(if p is near the end of the segment,H might be beyond the
segment).

This kernel delivers a good and computationally fast ap-
proximate solution. A mathematically more exact approach
is presented using the new filter function (see Fig. 1(c),
wherer(H) = 1)

h(p) =
r(H)2

d(p,H)2 (9)

Here, the radius is integrated into the kernel before con-
volution which maintains the good properties of convolu-
tion surfaces, e.g. their invariance under skeleton subdivi-
sion [HAC03].

3.3.1. Discussion

Computational speed determined our choice of a filter func-
tion. By definition of the convolution surface (Eq. 4), the
entire skeleton needs to be considered when calculating the
scalar value at a pointp. For the visualization of vascular
structures this means a prohibitively high computational ef-
fort. To improve the performance, we will restrict the com-
putation of the scalar field using bounding volumes along
line segments. The tightness of a bounding volume is heav-
ily dependent on the filter function, in particular on the dis-
tance from the center where the function value is neglible.
We choose the Gaussian because it drops much faster to zero
than the other two kernels (Fig. 1).

3.4. Correct Representation of the Radius Distribution

According to [Blo95], the computation of the convolution
integral in Eq. 4 may be simplified by separating it into the
product of anintegration filterand adistance filter. Whereas
the first term requires solving a one-dimensional integral the
second is simply a single evaluation of the kernel:

h(p) = e−(d(p,H))2ω (10)
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Figure 1: Filter functions for convolution surfaces,
(a): Gaussian [Blo95], (b) 1/d(p,H)3 and
(c) r2/d(p,H)2, r = 1 as used in [HAC03]

The separation of the computation into two filters is cru-
cial for the evaluation of the implicit function. Instead of the
three-dimensional integration (Eq. 4) we have to solve a one-
dimensional integral which can be precomputed and stored
in a lookup table. We use the same lookup table as [Blo95]
with 10000 entries.

For adapting the radius of the resulting convolution sur-
face,d(p,H) is divided by radiusr(H). r(H) is determined
with linear interpolation between the radii at the segment
endpoints.

In order to let the convolution surface converge against a
desired radius, appropriate iso-values and width coefficients
ω must be selected. Bloomenthal employed an isovalue of
1/2 so as to let the convolution surface pass through the seg-
ment endpoints. Now, let us consider the convolution surface
of a sufficiently long cylinder and a pointp which is located
exactly on the surface and in the middle of it. Here, the in-
tegration filter equals 1 since the kernel is fully subtended
by the segment. With the constraint thatd(p,H) = r(H) for
point p on the convolution surface it follows:

F(p) = e−(r(H)/r(H))2ω−1/2 = e−ω−1/2 = 0 (11)

Thus,ω = ln2≈ 0.6931.

4. Blending

The ability to create smooth transitions between simple ob-
jects intending to form a complex organic shape is a strength
of implicit surfaces. Here, so-calledblendsare used instead
of parametric free-form surfaces.
For convolution surfaces, blending corresponds to an inte-
gration of the filter along the entire skeleton. At the skeleton
joints, the scalar fields of adjacent primitives overlap. The
convolution surface constructed through the resulting field
forms a smooth envelope of the underlying joint. In an im-
plementation, each primitive may be convolved separately
due to the superposition property of convolution. Blending
may also have negative effects for a faithful visualization of

anatomic tree structures which are discussed in the follow-
ing.

4.1. Blending Strength at Branchings

With the initial filter design in [Blo95], the transitions at
branchings were very smooth but deviated strongly from the
skeleton (see Fig. 2 (middle)). Discussions with an experi-
enced radiologist showed that this is undesirable and in some
cases the interpretation of the topology is even hampered.
We propose a narrower filter kernel which results in a sur-
face which tracks the skeleton more faithfully.

Figure 2: Blending strength, left: skeleton, middle: high
blending strength, right: reduced blending strength

4.2. Unwanted Blending

For precise modeling of complex shapes it is essential
to control the blending between certain parts of the ob-
ject. Concerning vascular structures, vessel segments whose
skeleton is not connected should not blend with each other.
In [OM93] the use of arestricted blending graphwas sug-
gested to overcome this problem. Based on the topology of
the given skeleton, primitives are classified into blending-
groups of the following types: all primitives blendable, all
primitives unblendable, blendable and unblendable primi-
tives. Unfortunately, this solution does not ensureC1 con-
tinuity of the shape. A more recent approach [AJC02] intro-
duceslocal convolution. This concept is based on defining
a restricted skeleton range for computing the scalar value at
a certain point in space. It prevents blending even between
small folds of the skeleton.

4.3. Bulging

Convolution surfaces are bulge-free for non-branching line
segment skeletons due to the superposition property of con-
volution. However, as shown in [Blo95], they do exhibit
bulges at branchings (see Fig.3). This effect is disturb-
ing for the visualization of vascular structures since a bulge
might be easily mistaken for a pathological variation, e.g. an
aneurysm. Even though our visualization method is not tar-
geted at supporting vascular diagnostics, we shall minimize
this drawback. In [Blo97], two methods are described that
address the bulging problem.

• combination surfaceswhich are an interpolation be-
tweenunion surface(distance surface with the maximum-
operator as a blending function) and convolution surface.
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Combination surfaces combine the advantages of union
surface (bulge-free along convex parts) and convolution
surfaces (crease-free along concave parts).

• The use of two dimensional skeletal elements, e.g. poly-
gons is suggested.

Combination surfaces tend to produce artefacts, however,
if branchings are very close to each other. Problems also oc-
cur if the normals of coinciding branches differ strongly. The
use of two-dimensional skeletal elements eliminates bulges.
However, the convolution of a polygon is computationally
much more expensive.

Figure 3: Bulging problem, left: skeleton, middle: convolu-
tion surface, right: Bulge at the branching in horizontal view

4.4. Consequences

As a consequence of our analysis of different filters we
choose the Gaussian [Blo95] for the convolution. However,
we suggest a modification of the original kernel to reduce the
blending strength at branchings. Employing the altered fil-
ter function has an impact not only on the blending strength
but also on the unwanted blending problem as well as the
bulging problem. Furthermore, the modified filter function
the polygonization of scalar fields might be accelerated by
means of tighter bounding volumes. These aspects are dis-
cussed in Sect. 5.

5. Visualization of Anatomic Tree Structures with
Convolution Surfaces

In this section we describe how a modified width coefficient
allows to solve the blending problems. We go on and discuss
a preprocessing of the data in order to reduce the effort to
compute the convolution surface. The same vessel analysis
results same which have been used in [HPSP01] are the in-
put for our method. We also employ the binomial filtering to
smooth the vessel skeleton and diameter.

5.1. Filter Modification

We carefully evaluated different width coefficients using a
variety of datasets and found that a value of 5ln(2) is suit-
able to prevent the undesired effects such as unwanted blend-
ing and bulging. Note, that the width coefficient has been
increased with the effect that the filter function is narrower
(see Fig. 4). In order to correctly represent the radius distri-
bution along a line segment, a recalculation of the isovalue is

required. Under consideration of our new width coefficient
the isovalue (Iso) is evaluated as follows:

F(p) = e−(r(H)/r(H))25 ln2− Iso= e−5 ln2− Iso= 0 (12)

Hence,Iso= 1/32= 0.03125.

Figure 4: Original Gaussian function (d) from Bloomenthal
compared to the modified version of our method (e).

To evaluate our filter function, we employ a simple skele-
ton with a trifurcation (4 coinciding branches). In anatomic
tree structures, we never found more branches coinciding.
In Fig. 5 it is illustrated how the blending strength is re-
duced for the simple skeleton. Also, the bulging problem
is avoided with the modified filter function (see Fig.6). To
study unwanted blending, we use an S-shaped skeleton with
3 mm distance between the horizontal lines. The radius was
increased until the problem occurred. With the original fil-
ter, unwanted blending appeared for a radius of 1.07 mm,
whereas with the modified width coefficient, it appeared at
1.37 mm. The ratio between the distance of the convolution
surfaces and the distance of the centerlines determines the
occurrence of unwanted blending. With the modified width
coefficient, we could reduce the ratio from 29% (see Fig.7
(left)) to 9% (see Fig.7 (right)).

Figure 5: Transition at branching, left: skeleton, middle:
convolved with original filter, right: convolved with modified
filter

5.2. Computational Complexity

For the construction of the convolution surface it is neces-
sary that for every point in space the scalar value can be eval-
uated. Per definition of the convolution surface this perma-
nently requires considering the whole tree which is very un-
satisfying with respect to the computation time. By contrast
to previous applications of convolution surfaces with small
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Figure 6: Side view to skeleton used in Fig.5. The bulging
problem (left) is avoided with the modified filter (right).

Figure 7: Unwanted blending, Distance between the
branches of the S-shapes is 3 mm. The radius of all branches
is 1.07 mm in the upper row and 1.37 in the lower row. Un-
wanted blending (left) is considerably reduced with the nar-
rower filter (right).

to moderate-sized structures we want to display anatomic
trees with more than 1000 branchings.

In order to accelerate the computation, we determine
which line segments have a significant influence on a point
and neglect the small influence of the remaining segments.
For this purpose, a partitioning of space is necessary. We
employ the voxel grid from the underlying data as a basis
for the partitioning. This strategy has two advantages:

• We partition the space with the same resolution as the un-
derlying data.

• All computations are simple to carry out because the
skeletonization result is represented in voxel coordinates.

Our preprocessing proceeds as follows: We iterate over all
line segments and construct a cylindrical bounding volume
(CBV). The cylindrical shape of the bounding volume allows
to closely approximate the shape of the convolution surfaces.
The radius of the CBV is twice the maximum radius along
the line segment.

The CBV is later employed to check for a voxel the in-
clusion in a CBV. Only those voxels which pass the test are
influenced by the current line segment (see Fig.9). For the
realization of the CBV-test we have to solve two problems:

• to efficiently check whether a point (the center of a voxel)
is inside a cylinder, and

• to restrict the voxels which undergo the inclusion test.

Concerning the first problem, an implicit description of a
cylinder is appropriate for a fast and easy test of inclusion.
With respect to the second problem, for each line segment
an axis-aligned bounding box (AABB) is computed in voxel
coordinates (see Fig.8). The test of inclusion in the CBV is
performed (only) for all voxels inside the AABB of the cur-
rent line segment (see Fig.9). The preprocessing results in
a list with entries of the form< voxel_id, line_segments>
representing which line segments have an influence on the
voxel uniquely specified byvoxel_id. The use of the CBV
accelerates the whole computation by two orders of magni-
tude (factor 100-200).

Figure 8: Axes-aligned bounding boxes (left) and cylindri-
cal bounding volumes (right) for an artificial tree (right)

Figure 9: Voxel selection for a single line segment. Green
spheres mark midpoints of voxels which are within the AABB
of this segment. Dark green spheres mark midpoints of vox-
els which passed the cylindrical bounding volume test.

5.3. Construction of a Geometric Model

For the visualization of the vascular structures the convo-
lution surface is transformed into a triangle mesh. We de-
veloped an object-oriented version of theImplicit Polygo-
nizer [Blo94].

The implicit polygonizer partitions the space surround-
ing the surface based on a continuation scheme presented
in [WMW86b]. An initial cube is centered at an arbitrary
point on the convolution surface. We use the root in our tree
data structure as seed point for computing the position of the
initial cube. The size of the cube is derived from the voxel
size in the underlying data to reflect the resolution of the
data. As a typical example, for a voxel size of 0.7x0.7x3 mm,
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we choose 0.7 mm as size of the cube. Thus we can ensure
that all parts of the anatomic tree structure are considered.

Initially, we have to determine two pointsp1 andp2 with
f (p1) > 0 and f (p2) < 0. The first point is simply our seed
point which belongs to the skeleton and is therefore inside
the surface. To findp2 (outside and with negative value of
f ), we evaluate the implicit functionf in the neighborhood
of p1. According to [Blo94] random numbers within a grow-
ing neighborhood are employed for this search. The zero-
crossing off represents a pointpsur f on our surface which
is determined by binary subdivision betweenp1 and p2 f.
The initial cube is translated so that it is centered around
psur f . The stop criterion for the binary subdivision has a
critical influence on the overall performance. Bloomenthal
suggests to terminate after 10 iterations. For our purpose, it
turns out that 3 iterations are sufficient. With this criterion
and regarding thatf is monotonic we can ensure that the er-
ror is at most 1/8 of the size of the cube (usually about 0.1
mm).

For the evaluation off we employ the data structure gen-
erated in the preprocessing step (recall Sect. 5.2). We de-
termine which voxel the currently evaluated point belongs
to and then look up which line segments influence it. The
evaluation off is accelerated using a lookup table for the
integration filter (recall Sect. 3.4).

In the next stage,f is evaluated for all vertices of a cube
and those faces consisting of vertices with opposite polarity
are determined. Continuation proceeds by generating new
cubes (with the same size) across any such face; this process
is repeated until the surface is closed (for each cube an adja-
cent cube with respect to the 6-neighborhood is generated).

In order to avoid ambiguity cases, we employ the strat-
egy described in [Blo94]. The polygonization process usu-
ally results in a global list of coordinates, normals and in-
dices. We modified the data structures so that a separate list
of indices for coordinates and normals is maintained for each
edge. With this edge-related information interaction facili-
ties based on the branching graph are feasible.

6. Exploration of Vasculature

In educational settings as well as in therapy planning sys-
tems it is often desirable to restrict the visualization of
anatomic tree structures or to focus it on certain subtrees.
For example, in tumor surgery, vessel segments around the
tumor are more important than more distant parts. In gen-
eral, surgeons would like to know which vessel segments
must be reconstructed, if they have to be cut (those with a
diameter above 5 mm). The vessel analysis results allow for
interactions to support such visualization goals. Based on the
branching graph, vessel segments which depend on a user-
selected branch might be highlighted or removed from the
visualization. Using a region-selection (called lasso selec-
tion), an arbitrary subset of vessels might be selected based

on their position in the viewport. Instead of completely re-
moving the selected edges it is often useful to show them less
focused using gray colors and/transparency (see Fig.10).

Figure 10: Lasso selection and defocused visualization of
the selected vessel segments. Inside the semitransparent ves-
sels the centerline is presented.

7. Validation

A crucial aspect for any visualization technique which is in-
tended for clinical use is its validation. We carefully vali-
dated the segmentation and skeletonization approach which
produces the underlying tree data (skeleton and vessel diam-
eter, see [SPSP02]). With respect to the visualization of these
data the validation should answer the following questions:

• Are (small) branches of the tree structure suppressed in
the visualization (false negatives)?

• Are there occurrences of small branches which are not
represented in the data (false positives)?

• Are there occurrences where separate branches appear as
one branch?

• Is the constriction of the vessel diameter represented cor-
rectly?

These questions are relevant since the implicit modeling
approach is more prone to such visualization errors than ex-
plicit methods where graphics primitives are explicitly fit-
ted along the skeleton. We choose two different methods
to answer the above questions: first we analyzed the visual-
ization of artificial data with different branching types (e.g.
with a trifurcation) and second we compared the implicit
method with the method previously developed by Hahn et
al. [HPSP01]. The tests with artificial data showed that un-
wanted effects could be strongly reduced. The unwanted
blending problem may occur in rare cases.

The comparison of both methods (Fig.11 and Fig.12)
reveals a good correspondence. The method by Hahn et al.
produces longer branches at the leafs of the vessel tree. This
is due to the construction where a half sphere is generated at
the end of segments.

In order to further study the accuracy of our method, we
compare it with an isosurface visualization of the vessel seg-
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Figure 11: The visualization method described by Hahn
et al. [HPSP01] (concatenated truncated cones) and our
method are combined. The convolution surfaces are ren-
dered as wire-frame while the results of the other method
are shaded.

Figure 12: A close-up of the visualization from Fig:11

mentation result (the validation of the segmentation is be-
yond the scope of this paper). Differences between the seg-
mentation result and the implicit surface visualization can be
expected because:

• the vessel diameter which guides the convolution surface
is the diameter of the incircle - therefore the convolution
surface underestimates the segmentation result and

• the skeleton and the vessel diameter have been smoothed.

In Fig. ?? a comparison is shown. With respect to the four
questions at the beginning of this section, we have evidence
that none of the problems discussed actually occurs.

Over and above the visual inspection, a quantitative anal-
ysis is desirable. For this purpose, the convolution surface is
transformed to a voxel representationV_conv. Based on this
representation, measures can be derived which characterize
the overlap of both sets of voxels or the distance between
the contours. As a first attempt, we determined the similarity
index [ZDMP94] between the segmentation result and con-
volution surface according to Eq.13 and yielded a value of
0.88. This measure defines the volume overlap and is 1.0 if
both sets are identical. The difference between both sets can

be explained again with the use of the incircle - all voxels
from V_convare contained inV_seg. The quantitative val-
idation, however, has to be extended to more datasets and
other measures, in particular the Hausdorf-metric.

2 |Vi ∩Vj |
|Vi |+ |Vj |

(13)

Figure 13: The convolution surface is completely enclosed
by the visualization of the vessel segmentation result.

8. Results

Our method has been applied to 10 clinical datasets so far.
In Fig. 14we compare the visual quality of our method with
another state-of-the-art technique (recall [HPSP01]).

Other examples for the visual quality of the visualization
can be seen in Fig.15-17. The visualizations do not exhibit
any of the unwanted effects. We carefully examined the sur-
faces near branchings and noted that geometric continuity
was achieved for all kinds of branchings and branching an-
gles. The surfaces are terminated at leafs of the anatomic
trees with a rounded appearance which is a consequence of
the construction method. An example of a realistic scenario
for our method is shown in Fig.18 where the vessel visu-
alization is embedded in the visualization of surrounding
structures. We used a Pentium 4 CPU 3.06GHz, 1024MB
RAM, ATI Radeon 9600.

Figure 14: Close-up of a visualization with truncated cones
with artifacts along the seams. Smooth visualization with im-
plicit functions of the same dataset.

To give an idea of the complexity of the resulting geome-
try and the timings involved in the computation, we present
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Figure 15: Visualization of the portal vein derived from a
clinical CT data set with 136 edges.

Figure 16: Visualization of cerebral blood vessels derived
from a clinical MR angiography with 149 edges.

some results in Table 1. The setup time includes the pre-
processing step. The first three lines represent the datasets
shown in Fig.15-17. The last line in Table 1 represents a
complex anatomic tree from a corrosion cast. Due to the size
of this model, the Open Inventor optimization failed which
explains the low frame rate in the last row.

Figure 17: Visualization of a bronchial tree derived from a
clinical CT dataset with 1504 edges.

Figure 18: Visualization of vascular structures with other
intrahepatic structures for liver surgery planning.

edges line segments triangles setup time (s) fps

136 1,652 124,884 7.5 64.0

149 2,623 252,836 9.8 42.8

1504 18,333 1,125,540 65.4 14.6

3461 23,973 2,366,008 65.0 1.8

Table 1: Performance measurements for anatomic tree
structures

9. Conclusions

We have presented a method for visualizing anatomic tree
structures, such as vasculature and bronchial trees, which ad-
heres to the underlying data (skeleton and local vessel diam-
eter), while producing smooth transitions at branchings. The
method is based on convolution surfaces, a variant of im-
plicit surfaces. The filter design has been fine-tuned to pre-
vent irritating bulges and to represent the course of the vessel
diameter faithfully. The width of the Gauss filter turned out
to be the essential parameter to accomplish our visualization
goals. With a preprocessing step which computes bounding
volumes we can efficiently compute the convolution surface
even for large vascular and bronchial trees.

We applied the method to a large number of vessel trees.
The unwanted blending problem is not completely solved;
however, it did not occur in clinical data. We compared
our new method with another state of the art technique (re-
call [HPSP01]) and could show the superior visual quality.
We analyzed the differences between the methods with re-
spect to the precision and come to the conclusion that the
new method is at least as close to the underlying data than
the method by Hahn et al. There is room for improvement
concerning the efficiency of the method. With an adaptive
refinement approach it should be possible to reduce the time
to polygonize the scalar field.
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