
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. Y, MARCH 2005 1

Visualization of Vasculature with Convolution
Surfaces: Method, Validation and Evaluation

Steffen Oeltze and Bernhard Preim

Abstract— We present a method for visualizing vasculature
based on clinical CT- or MR data. The vessel skeleton as well as
the diameter information per voxel serve as input. Our method
adheres to these data, while producing smooth transitions at
branchings and closed, rounded ends by means of convolution
surfaces. We examine the filter design with respect to irritating
bulges, unwanted blending and the correct visualization of the
vessel diameter. The method has been applied to a large variety of
anatomic trees. We discuss the validation of the method by means
of a comparison to other visualization methods. Surface distance
measures are carried out to perform a quantitative validation.
Furthermore, we present the evaluation of the method which has
been accomplished on the basis of a survey by 11 radiologists
and surgeons.

Index Terms— vessel visualization, convolution surfaces, im-
plicit modeling, vessel reconstruction method.

I. I NTRODUCTION

I N medical education as well as in therapy planning, the
visualization of vasculature is crucial. It is desirable that

the topology of vascular trees can be correctly inferred from
the visualization. Moreover, the curvature and the diminution
of the diameter towards the periphery should be depicted cor-
rectly. Traditional methods of medical volume visualization,
such as direct volume rendering, threshold-based isosurface
rendering, or MIP are not well-suited for the above-mentioned
goals. Due to image noise and the limited resolution of com-
puted tomography (CT) or magnetic resonance imaging (MRI)
conventional methods produce noisy 3d visualizations. Also,
the visual separation of contrast-enhanced vascular structures
and other high-intensity structures, such as bones, might be
very difficult. Artifacts and discontinuities in the visualization
distract the viewer. For educational purposes and therapy
planning, vascular structures should be reconstructed based
on the radiological data and some model assumptions as
to the shape of vasculature (Gerig et al. [1]). Furthermore,
reconstructed visualizations are useful in the vessel analysis
stage because segmentation errors become obvious.

We describe a new method for vessel visualization which
originates from implicit modeling. This method produces
smooth surfaces even at endpoints and branchings. The vessel
skeleton serves as the input for the visualization process. It is
represented as a directed graph [2]. Edges of this graph are
approximated by line segments connecting adjacent voxels.
Each segment is described by its two endpoints and one
associated radius (the radius of the largest circle completely
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enclosed by the segmentation result), respectively. The visual-
ization method applied here is based onconvolution surfaces
introduced by Bloomenthal and Shoemake [3]. As a difference
to previous applications of convolution surfaces we shall
faithfully represent the radius distribution given by the vessel
analysis.

We investigate surface distances between our visualization
and other visualization methods. In particular, we compare
isosurface renderings of the vessel segmentation result with
convolution surfaces. An evaluation with 11 experienced med-
ical doctors suggests that our method is especially useful for
close-up views.

Fig. 1. Close-ups of a liver vessel tree generated by isosurface rendering,
concatenation of truncated cones [4] and convolution surfaces (from left to
right).

II. PRIOR AND RELATED WORK

Following the pioneering work of Gerig et al. (recall [1])
several attempts have been made to develop special visualiza-
tion techniques for vascular trees. Our visualization technique
is based on the model assumption that cross sections of
non-pathologic vessels have a circular shape, as discussed
in [5]. Masutani et al. fitted cylinders along the skeleton to
visualize vascular structures. The drawback of this method
is that discontinuities at branchings arise where cylinders
with different diameters coincide. A special problem, the
visualization of cerebral structures, has been tackled by Puig
et al. [6]. She modeled typical bifurcations and pathologic
situations and fitted these models to the patient specific data
at hand. The focus of her work is on the geometric continuity
and on realistic shading.

In [4] a vessel visualization pipeline has been introduced.
The skeleton and the local vessel diameter determined in the
image analysis stage are smoothed with a (121) binomial filter.
Special care is taken at branchings to weight the incident
branches. In the mapping step, truncated cones are used to
represent the diminutions of the vessel diameter faithfully.
However, the fitting of primitives along the skeleton does
not generate smooth transitions between vessel segments at
branchings. In [7], branchings are treated separately to avoid
rendering discontinuities and the construction of structures
inside the geometric model. Along straight parts, a vessel
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segment is approximated by four quadrilateral patches. The
method is based on the iterative refinement of a rough, initially
constructed base mesh by means of subdivision surfaces.

An advanced method for vessel visualization isCurved
Planar Reformation(CPR) [8]. Given the vessel skeleton, a
curved plane is generated by moving a line - aligned parallel
to the horizontal axis of the viewing plane - along the skeleton.
A 2d-image of the vessel is eventually obtained by flattening
the curved plane and displaying all voxels located close to it.
A comprehensive survey of methods for vessel visualization
is given in [9].

A. Reconstruction of Vessels for Interaction

Not much effort was spent so far on the exploration of
vascular structures. The exploration is crucial because vascular
trees are often complex. Facilities to restrict the visualization
are essential to support the understanding. In [10] vessels have
been segmented and analyzed in order to selectively hide them.
The subdivision of vessels by placing and moving balloons
with the goal to interact with such parts of vascular structures
is described in [11].

III. M ODELING OF TREE-LIKE STRUCTURES WITH

IMPLICIT SURFACES

Implicit surfaces offer an alternative to explicitly con-
structing the surface of an object by a set of polygons or
parametric patches. They describe the surface by an equation
which is often more compact than its parametric counterpart.
Especially in modeling smooth, deformable objects, implicit
surfaces unfold their full strength. James F. Blinn introduced
implicit surfaces in computer graphics. He developedBlobby
Moleculesto visualize electron density fields [12].

A. Implicit Surfaces: a Brief Introduction

A classical example for an implicit equation is the descrip-
tion of a sphere with radiusr: x2 + y2 + z2 − r2 = 0. This
formula represents all pointsp(x,y,z)in space which are on the
surface of a sphere with radiusr. Furthermore, it facilitates
point classification by simply checking the sign of the resulting
scalar value. WithF (p) = x2 + y2 + z2 and Iso = r2 the
equation of a sphere can be generalized as Eq. 1:

F (p)− Iso = 0 (1)

F (p) is called thescalar field functionbecause a scalar
value may be computed for each pointp. Iso denotes the
isovalue for generating anisosurfacewhich represents the
surface where the implicit equation is zero.

The scalar field function employed for modeling ’blobs’
[12] is given in Eq. 2:

F (p) = be−σ‖c−p‖2 (2)

where c is the center of an electron. Eq. 2 describes a
Gaussian bump centered atc, having heightb and standard
deviationσ. In order to create more complex objects, several

blobs might be specified whose scalar fields overlap if close
enough. Then the scalar value atp can be calculated as Eq. 3:

F (p) =
∑

i

bie
−σi‖ci−p‖2 (3)

Note that only scalar fields around point primitives were
considered so far.

B. Convolution Surfaces

Bloomenthal and Shoemake extended the concept to skele-
tal primitives of theoretically any kind, e.g. line segments,
polygons, or planar curves [3]. This enhancement overcomes
a major drawback of point primitives namely their deficiency
in describing flat surfaces and smooth generalized cylinders.
They introduceconvolution surfacesto model the surface of
an object around its skeleton. In the following,S denotes a
skeleton ands refers to a single point on the skeleton.

With convolution surfacesthe scalar value is calculated
according to Eq. 4:

F (p) = f(S, p) =
∫

S

(
e

(
−‖s−p‖2

2

))
ds (4)

where f(S, p) is the convolution of a skeleton with a
three-dimensional Gaussian filter. In contrast to other implicit
surfaces, the value is computed consideringall points of the
skeleton by integration. The resulting surface does not show
creases and is bulge-free for non-branching skeletons.

Convolution surfaces utilize a concept which is well known
from signal processing namely the modification of a signal
by a filter. For a Gaussian filter function with height1 and
standard deviation1/2, Eq. 4 may be rewritten as

F (p) = f(S, p) = (h⊗ S)(p) (5)

whereS is the signal,h is the filter function and⊗ denotes
the convolution operator. For the visualization of vasculature,
the vessel skeleton corresponds to the signal. The selected
filter function should smooth this signal and thereby letting
high frequencies gently drop off in the neighborhood. The
resulting field around the skeleton corresponds to the scalar
field mentioned earlier. By constructing an isosurface through
this field the convolution surface is formed.

For the understanding of bulge-free blending it is necessary
to elaborate on the superposition property of convolution:

h⊗ (S1 + S2) = (h⊗ S1) + (h⊗ S2) (6)

This guarantees that two abutting segments produce the
same convolution as does their union [13]. Furthermore,
superposition has an impact on implementation issues and the
modeling process. It permits the convolution of a complex
object primitive by primitive in an arbitrary order instead of
considering the skeleton as a whole.
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C. Filter Selection

An appropriate filter function should be continuous and
monotonic. Furthermore, it should have finite support (or be
negligible beyond a certain distance), and exhibit zero or
near zero gradient at this distance. These requirements restrict
the filter selection to low-pass filters, such as the Gaussian.
Numerous other kernels have been published. [14] includes an
analysis of widespread functions with respect to computational
complexity and the types of modelling primitive. For the
visualization of vasculature each of the surveyed kernels is
applicable. However, the scope of eligible filter functions is
strongly reduced when a given radius distribution should be
faithfully represented.

Initially, the convolution surface along a line segment has
a fixed radius. In [14], the creation of a surface that resem-
bles a tapered cylinder by using linear profiling functions is
described. The use of Bezier curves with two control points
for representing linear radius distributions is introduced in
[15]. Both methods are convenient when interactive radius
modification is required. However, they are inadequate for
modeling surfaces that exactly converge against a given radius.
As far as we know, solely in [13] and [16] approaches have
been published that concentrate on this problem.

In [13] a Gaussian function is utilized for convolution:

h(p) = e−d(p,S)2ω, ω = ln 2, d(p, S) > 0 (7)

whereω is referred to as thewidth coefficientwhich equals
1/(2σ2). The distance between pointp and the line segment
skeletonS is denoted byd(p, S).

In [16] the use of two other filter functions is discussed
with regard to the correct representation of a linear radius dis-
tribution. However, both the suggested inverse cubic function
(1/d(p, S)3) as well as an alternative function (r2/d(p, S)2,
where r equals the varying radius along the line segment)
decrease more slowly to near zero compared to the Gaussian.

Discussion: Computational speed determined our choice
of a filter function. By definition of the convolution surface
(Eq. 4), the entire skeleton needs to be considered when
calculating the scalar value at a pointp. For the visualization
of vascular structures this means a prohibitively high compu-
tational effort. To improve the performance, we will restrict
the computation of the scalar field using bounding volumes
along line segments. The tightness of a suitable bounding
volume strongly depends on the filter function (in particular
on the distance from the center to where the function value
is negligible). We choose the Gaussian because it drops much
faster to zero than the other two kernels discussed in [16]. It
therefore allows tight bounding volumes and fast computation.
In [17], the filter selection is discussed in more detail.

D. Correct Representation of the Radius Distribution

According to [13], the computation of the convolution
integral in Eq. 4 may be simplified by separating it into the
product of theintegration filterand thedistance filter. Whereas
the first term requires solving a one-dimensional integral the
second is simply a single evaluation of the kernel:

h(p) = e−(d(p,H))2ω, (8)

where d(p, H) is the distance between pointp and its pro-
jection H on the line which proceeds through the considered
line segment (ifp is near the end of the segment,H might be
beyond the segment). The separation of the computation into
two filters is crucial for the evaluation of the implicit function.
Instead of the 3d integration (Eq. 4) we have to solve a 1d
integral which can be precomputed and stored in a lookup
table. We use the same lookup table as [13] with 10000 entries.

For adapting the radius of the resulting convolution surface,
d(p, H) is divided by radiusr(H). The latter is determined
with linear interpolation between the radii at the segment
endpoints. In order to let the convolution surface converge
against a desired radius, an appropriate isovalue and a width
coefficient ω must be selected. Bloomenthal employed an
isovalue of 1/2 so as to let the convolution surface pass
through the segment endpoints. Now, let us consider the
convolution surface of a sufficiently long cylinder and a point
p which is located exactly on the surface and in the middle
of it. Here, the integration filter equals 1 since the kernel
is fully subtended by the segment. With the constraint that
d(p, H) = r(H) for point p on the convolution surface it
follows from Eq. 1 and Eq. 8:

e−(r(H)/r(H))2ω − 1/2 = e−ω − 1/2 = 0 (9)

Thus,ω = ln 2 ≈ 0.6931.

IV. B LENDING

The creation of smooth transitions between simple objects,
forming a complex organic shape, is a strength of implicit
surfaces. Here, so-calledblendsare used instead of parametric
free-form surfaces. For convolution surfaces, blending corre-
sponds to an integration of the filter along the skeleton. At the
skeleton joints, the scalar fields of adjacent primitives overlap.
The convolution surface constructed through the resulting
field forms a smooth envelope of the underlying joint. In an
implementation, each primitive may be convolved separately
due to the superposition property of convolution. Blending
may also have negative effects for a faithful visualization of
anatomic tree structures which are discussed in the following.

A. Blending Strength at Branchings

With the initial filter design in [13], the transitions at
branchings were very smooth but deviated strongly from the
skeleton. Discussions with an experienced radiologist showed
that this is undesirable and may even hamper the interpretation
of the topology. We propose a narrower filter kernel which
results in a surface which tracks the skeleton more faithfully.

B. Unwanted Blending

For precise modeling of complex shapes it is essential
to control the blending between certain parts of the object.
Concerning vascular structures, segments whose skeleton is
not connected should not blend with each other. In [18] a
restricted blending graphwas suggested to overcome this
problem. Unfortunately, this solution does not ensureC1

continuity of the shape. As an alternative,local convolution
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was introduced [19]. This concept is based on defining a
portion of the skeleton for computing the scalar value at a
certain point in space. It prevents blending even between small
folds of the skeleton and facilitates the generation of aC1-
continuous shape.

C. Bulging

Convolution surfaces are bulge-free for non-branching line
segment skeletons due to the superposition property of con-
volution. However, as shown in [13], they do exhibit bulges
at branchings. This effect is disturbing for the visualization
of vascular structures since a bulge might be easily mistaken
for a pathological variation, e.g. an aneurysm. Even though
our visualization method is not targeted at supporting vascular
diagnostics, we shall minimize this drawback.

D. Consequences

As a consequence of our analysis of different filters we
choose the Gaussian [13] for the convolution. However, we
suggest a modification to reduce the blending strength at
branchings. Employing the altered filter function has an impact
not only on the blending strength but also on unwanted
blending as well as on bulging. Furthermore, with the modified
filter function the polygonization of scalar fields might be
accelerated by means of tighter bounding volumes.

V. V ISUALIZATION OF ANATOMIC TREE STRUCTURES

WITH CONVOLUTION SURFACES

In this section we describe how a modification ofω allows
to solve the blending problems. We then and discuss a prepro-
cessing of the data in order to reduce the effort to compute the
convolution surface. The same vessel analysis results which
have been used in [4] are the input for our method. We also
employ the binomial filtering to smooth the vessel skeleton
and diameter.

A. Filter Modification

We carefully evaluated differentω values and found that
a value of ω = 5ln(2) is suitable to considerably reduce
the undesired effects such as unwanted blending and bulging
(see Sec. VII-C). Note, thatω has been increased with the
effect that the filter function is narrower. In order to correctly
represent the radius distribution along a line segment, a
recalculation of the isovalue is required. Under consideration
of our newω value the isovalue (Iso) is evaluated as follows:

F (p) = e−(r(H)/r(H))25 ln 2 − Iso = e−5 ln 2 − Iso = 0 (10)

Hence,Iso = 1/32 = 0.03125.
To evaluate our filter function, we employ a simple skeleton

with a trifurcation (4 coinciding branches). In anatomic tree
structures, we never found more branches coinciding. In Fig. 2
it is illustrated how the blending strength is reduced for the
simple skeleton. Also, the bulging problem is avoided with
the modified filter function (see Fig. 3). To study unwanted
blending, we use an S-shaped skeleton with 3 mm distance
between the horizontal lines. The radius was increased until the

problem occurred. With the original filter, unwanted blending
appeared for a radius of 1.07 mm, whereas with the modifiedω
value, it appeared at 1.37 mm. The ratio between the distance
of the convolution surfaces and the distance of the centerlines
determines the occurrence of unwanted blending. With the
modified ω value, we could reduce the ratio from 29% (see
Fig. 4 (left)) to 9% (see Fig. 4 (right)).

Fig. 2. Transition at branching, left: convolved with original filter function
(ω = ln(2)), right: convolved with modified filter (ω = 5ln(2)). The
semitransparent visualization reveals the underlying skeleton. Note that the
original filter was designed to let the convolution surface pass through the
segment endpoints. With the modified filter the surface tracks the skeleton
more closely.

Fig. 3. Side view of the branching in Fig. 2. The bulging problem (left) is
considerably reduced with the modified filter (right).

Fig. 4. Unwanted blending. Distance between the horizontal branches of the
S-shapes is 3 mm. The radius of all branches is 1.07 mm. Unwanted blending
(left) is considerably reduced with the narrower filter (right).

B. Computational Complexity

For the construction of the convolution surface it is nec-
essary to evaluate the scalar value at numerous points in
space. Each of these computations requires considering the
whole tree. By contrast to previous applications of convolution
surfaces with small to moderate-sized structures, vascular trees
may well have more than 1000 branchings.

In order to accelerate the computation, we determine the
significant range of thescalar field (SSF) about each line
segment. For a pointp located outside this range,F (p) is
smaller than a given thresholdT . We require the first three
decimal places ofF (p) to equal0 (T = 0.001). For storing
the SSF, a partitioning of space is necessary. The voxel grid of
the underlying data may be used as a basis for the partitioning.

The preprocessing proceeds as follows: While iterating over
all line segments, a cylindrical bounding volume (CBV) is
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constructed. The cylindrical shape of the bounding volume
allows to closely approximate the shape of the convolution
surface and the underlying scalar field. The radius of the
CBV is based on the SSF which in turn is determined by
the maximum radius along the line segment multiplied by a
factor fac. The latter is computed with respect to the width
of the convolution filter. The width influences the extension
of the SSF. Although, the modified Gaussian from Sec. V-
A has infinite support, it exhibits values close to zero for
points beyond a certain distance from the center. This distance
corresponds tofac and is adapted toT :

e−x2ω < T (11)

e−fac25 ln 2 < 0.001 (12)

Thus, a factor offac = 1.5 is adequate for enclosing the SSF.
The CBV is then employed to identify those voxels contained
in the SSF of the current line segment (see Fig. 5). This in-
formation is used during surface construction for determining
the line segments with a significant influence on p.

Fig. 5. Axes-aligned bounding boxes (left) and cylindrical bounding volumes
(right) for an artificial tree (right)

More details of the acceleration are described in [17]. As a
result, the use of the CBV accelerates the whole computation
by two orders of magnitude (factor 100-200).

VI. EXPLORATION OF VASCULATURE

It is often desirable to restrict the visualization of anatomic
tree structures or to focus it on certain subtrees. For example,
in tumor surgery, vessel segments around the tumor are more
important than more distant parts. In general, surgeons would
like to know which vessel segments must be reconstructed,
if they have to be cut. The vessel analysis results allow for
interactions to support such visualization goals. Based on the
branching graph, vessel segments which depend on a user-
selected branch might be highlighted or removed from the
visualization. Using a region-selection (called lasso selection),
an arbitrary subset of vessels might be selected based on their
position in the viewport. Instead of completely removing the
selected edges it is often useful to show them less focused
using gray colors and/transparency (see Fig. 6). Since convo-
lution surfaces do not produce polygons inside the vessel tree
a semitransparent visualization without artifacts is enabled.

VII. VALIDATION

A crucial aspect for any visualization technique which is
intended for clinical use is its validation. The underlying data
(vessel centerline and local vessel diameter) are generated with
the vessel segmentation and skeletonization method described

Fig. 6. Lasso selection and defocused visualization of the selected vessel
segments. Inside the semitransparent vessels the centerline is presented.
( c©Eurographics 2004, [17])

in [2]. The validation of these methods is beyond the scope
of this paper. With respect to the visualization of the data the
validation should answer the following questions:

• Are (small) branches of the tree structure suppressed in
the visualization (false negatives)?

• Are there occurrences of small branches which are not
represented in the data (false positives)?

• Are there occurrences where separate branches appear as
one branch?

• Is the constriction of the vessel diameter represented
correctly?

These questions are relevant since the implicit modeling
approach is more prone to such visualization errors than
explicit methods where graphics primitives are explicitly fitted
along the skeleton.

A. Qualitative Validation

We choose two different methods to answer the above
questions: first we analyzed the visualization of artificial data
with different branching types (e.g. with a trifurcation) and
second we compared the implicit method with the method
developed by Hahn et al. [4]. We refer to the first approach
as convolution surface (CS)-visualization and to the latter one
as truncated cone (TC)-visualization.

The tests with artificial data showed that unwanted effects
could be strongly reduced. The unwanted blending problem
may occur in rare cases. The comparison of both methods
(Fig. 7) reveals a good correspondence. The TC-visualization
produces longer branches at the leafs of the vessel tree. This
is due to the construction where a half sphere is added at the
end of segments.

In order to further study the accuracy of our method, we
compare it with an isosurface visualization of the vessel
segmentation result. Differences between the segmentation
result and the CS-visualization can be expected because:

• the vessel diameter which guides the CS is the diameter
of the incircle 1 - therefore the CS underestimates the

1The diameter of the incircle is the only value which can be reliably defined
also near branchings and at strongly bended vessel segments.
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Fig. 7. TC and CS are combined for a qualitative validation. The CS are
rendered as wire-frame while the results of the other method are shaded.
The comparison of both surfaces reveals a good correspondence. The inset
illustrates that the CS forms smooth transitions which diverge slightly from
the TC at branchings.

segmentation result,
• the skeleton and the vessel diameter have been smoothed

and
• small side branches have been suppressed (pruning)

during skeleton enhancement by taking into account the
length of a side branch relative to the branch at the next
higher level of hierarchy [4].2

B. Quantitative Validation

Over and above the visual inspection, a quantitative analysis
is needed to judge whether the underlying data (centerline and
local diameter) are faithfully represented. We chose to analyze
the distances between surfaces constructed by isosurface ren-
dering of the segmentation result, TC- and CS-visualization.
Distance measures are most relevant here because these visu-
alizations are often used to assess distances (e.g. from a lesion
to a vessel).

The software platform AMIRA (c© Indeed - Visual Con-
cepts GmbH, Berlin) is applied to perform a quantitative sur-
face comparison. We compare the CS with both the isosurface
and the TC. For constructing the CSω is set to5ln(2) (recall
Sect. V-A). A comparison is realized such that for each vertex
of one surface the unsigned distance to the closest point on
the other surface is computed. From the histogram of these
values the following statistical measures are calculated:

• mean distance (Ø)
• standard deviation from the mean distance (σ)
• root mean square distance (Rms)
• minimum distance (Min)
• maximum distance (Max)
• median of the distance (Med)
• area deviation (Area): percentage of distance values that

deviate more than a given threshold
Since distance measures between two surfaces are non-

symmetric, AMIRA supports a two-sided comparison. How-
ever, the computation of measures in direction from isosurface

2The amount of pruning is adjusted with caution to make sure that only
discretization artifacts are avoided.

to CS distorts the overall result. Due to pruning of tiny vessel
segments during skeletonization [4] these parts are missing in
the CS. For some vertices of the isosurface no points exist
within a small range on the CS. Hence, this comparison is
disregarded as well as the comparison from TC to CS. While
with the TC-visualization polygons are constructed inside the
model at branchings the CS is hollow. Hence, for vertices of
the inner polygons no corresponding points exist on the CS.

The averaged results of a quantitative comparison between
the surfaces of 10 different vascular trees based on CT of
the human liver are presented in Table I. We chose half
the diagonal voxel size (V oxDiag2) as the threshold for
computing the area deviation (last column in Table I). Boxplots
illustrating the distribution of measured distances for each
dataset are presented in Fig. 8.

TABLE I

AVERAGED RESULTS OF THE QUANTITATIVE COMPARISON OF SURFACES

BASED ON 10 DIFFERENT DATASETS. MEASURES WERE COMPUTED FROM

CS TO ISOSURFACE(ISO) AND FROM CS TO TC. ALL LENGTH MEASURES

ARE IN mm WHEREASAREA IS MEASURED IN%.

Ø σ Rms Min Max Med Area

CS→Iso 0.37 0.32 0.49 0 3.21 0.29 8.74
CS→TC 0.09 0.11 0.14 0 1.13 0.05 0.56
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Fig. 8. Boxplots of the distance measures (in mm) carried out for a
comparison of CS and Isosurface based on 10 vascular trees. Each box has
lines at the lower quartile, median, and upper quartile values. The whiskers
extend from each end of the box to show the extent of the rest of the data.
Their length equals the inter-quartile range multiplied by1.5.
The upper value within each text box represents the percentage of data values
beyond the ends of the whiskers. The lower value is the maximum distance.
Thick lines indicate theV oxDiag2 values. Note that each upper quartile is
consistently below its corresponding value.

With an average of0.37mm, deviations between CS and
isosurface are below a typical value forV oxDiag2. Note,
also the average area overlap of91.26% which refers to the
respective value ofV oxDiag2. It could be observed that
high deviations (> 3mm) occur in all datasets only close
to the root of the vessel tree as illustrated in Fig. 9. This
effect is negligible because the root does not pertain to the
intrahepatic vessel system and is therefore of less interest
for surgery planning. Inside the vascular trees even distance
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measurements are reliable with the CS. The median of the
deviation is belowV oxDiag2 for each considered dataset.
The deviations along the whole vessel tree are to be expected
since the CS constantly underestimates the segmentation result
as described in Sect. VII-A. It could be further ascertained that
smoothing the vessel skeleton has a negligibly small effect on
the measurements. The CS based on their corresponding non-
smoothed skeletons yielded almost the same results. Pruning of
small side branches has no effect since the surface comparison
is only accomplished from CS to isosurface and not vice versa.

Fig. 9. Intensity-coded visualization of the deviation from CS to isosurface.
Each vertex of the CS is assigned an intensity with respect to the corre-
sponding distance. The legend represents the correlation between intensity
and magnitude of the deviation. A high intensity indicates a high deviation.
The strongest deviations occur at the root of the vessel tree as depicted in the
inset showing the superimposed isosurface in wire-frame mode.

As could be expected, there is a better correspondence
between the two model-based approaches (TC- and CS-
visualization). More than99% of the directional distances are
below V oxDiag2. The average maximum deviation between
CS and TC is1.13mm, which is less than a typical diagonal
voxel size. The low deviations indicate that strong blending,
unwanted blending and bulging are effectively avoided. The
CS represents the vessel skeleton and diameter as faithful as
the TC. The computational results reveal that the deviation
from CS to TC ranges from0mm up to 1.13mm. Minor
deviations are observed at branchings which results from the
smooth transitions of the CS (Fig. 10). These naturally diverge
slightly from the discontinuous transitions of the polygonal
model built according to the TC-visualization. Along straight
parts of the vessel tree no deviations can be noticed. The
highest deviations occur at the vessel ends since the TC-
visualization produces longer branches at the leafs of the
vessel tree (recall Sect. VII-A).

With respect to the four questions at the beginning of this
section, the qualitative and the quantitative validation indicate
that none of the problems discussed actually occurs.

C. Determination of the width coefficient

The accuracy of the CS-visualization strongly depends onω.
Therefore, within the validation we also investigated the effect
of differentω values. In order to define an appropriate default
value, we created several CS, based on the same vascular tree,

Fig. 10. Intensity-coded visualization of the deviation from CS to TC. Minor
deviations may be observed at the branchings. The strongest deviations occur
at the vessel ends as illustrated in the inset. Here, the superimposed truncated
cones caped by a hemisphere are rendered in wire-frame mode.

with multiples of the originalω value. Then, we carried out
a surface comparison (see Sec. VII-B) between each CS and
the TC which served as a reference model (see Fig. 11).
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Fig. 11. Influence of varyingω on surface distances between the respective
CS and the TC based on one vascular tree. Mean (diamonds), median (bars)
and standard deviation (vertical lines) of the distance measures (in mm) hardly
decrease for values higher thanω = 5 ln 2.

We found that with an increasingω value, the distances
between the CS and the TC decrease on average. This can
be expected since increasingω reduces the blending strength.
However, withω > 10 ln 2 the effect of smoothing is almost
leveled and the resulting surface exhibits creases at branchings
(see Fig. 12, right). We choseω = 5 ln 2 as default value
since mean, median and standard deviation hardly decrease
for higher values. The difference between the mean deviation
usingω = 5 ln 2 andω = 30 ln 2 is only 0.03mm.

VIII. E VALUATION

To evaluate the benefit of the CS-visualization, we prepared
a survey in order to compare it to other visualization methods.
For this purpose a collection of visualization results was
rated by six experienced surgeons and five radiologists (1
woman, 10 men). All participants in the study had experience



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. Y, MARCH 2005

Fig. 12. Influence of varyingω on the blending strength at branchings. The
close-ups of the trifurcation from Fig. 2 where generated usingω = 2 ln 2,
ω = 5 ln 2 andω = 30 ln 2 (from left to right). Withω = 2 ln 2 the blending
strength is barely reduced. Usingω = 30 ln 2 the surface exhibits creases at
the skeleton joint. Highlights were set to emphasize the creases.

with 3d visualizations and in particular with the visualization
developed by [4].

The collection represented three liver vessel trees from CT
data and consisted of 10 images per tree: one context view for
better orientation showing the tree within the liver lobe and
three different close-ups generated by isosurface rendering,
TC- and CS-visualization, respectively. The viewing direction
as well as all other visual parameters are identical (Fig. 1).

The evaluation focussed on close-up views because these
are relevant for therapy and surgery planning. The evaluation
criteria were:

• clarity of the visualization,
• comprehensibility of spatial relations,
• similarity to intraoperative views
• and visual quality.
For each criterion users were asked to rate from 1 (un-

satisfactory) to 5 (excellent). The results are summarized in
Table II.

TABLE II

SUBJECTIVE COMPARISON OF VESSEL VISUALIZATION BY ISOSURFACE

RENDERING (ISO), TC AND CS. ØDENOTES THE MEAN VALUE AND σ

REPRESENTS THE STANDARD DEVIATION. VALUATIONS RANGE FROM

1(UNSATISFACTORY) TO 5 (EXCELLENT).

Clarity Comprehen- Similarity to Visual
sibility intraoperative views quality

(n=11) (n=11) (n=8) (n=11)

Ø σ Ø σ Ø σ Ø σ

Iso 1.8 0.69 1.9 0.85 1.6 0.7 1.7 0.69
TC 3.7 0.84 3.9 0.86 3.5 0.9 3.8 0.71
CS 4.1 0.87 4.1 0.89 4.0 0.89 4.2 0.76

Three radiologists could not compare the visualization re-
sults with intraoperative views and therefore left this field
blank. Within the evaluation, the CS consistently achieves the
best results, although the difference to TC is statistically not
significant. Above all the similarity to intraoperative views
(column 3) and the visual quality (column 4) has been em-
phasized by doctors under discussion.

Furthermore, the results in Table II argue for the reconstruc-
tion of a vessel model from the segmented data. The model-
based visualization (rows 2 and 3) clearly outperforms the
direct visualization by isosurface rendering.

IX. RESULTS

The CS-visualization has been applied to 25 clinical datasets
so far. In Fig. 13 we compare the visual quality of the CS-

visualization with the TC-visualization. Other examples for the
visual quality of the visualization can be seen in Fig. 14-15.
The visualizations do not exhibit any of the unwanted effects.
We carefully examined the surfaces near branchings and
noted that geometric continuity was achieved for all kinds of
branchings and branching angles. The surfaces are terminated
at leafs of the anatomic trees with a rounded appearance which
is a consequence of the construction method.

Fig. 13. Close-up of a visualization with truncated cones with artifacts
along the seams (left). Smooth visualization with implicit functions of the
same dataset (right).

Fig. 14. Visualization of cerebral blood vessels derived from a clinical MR
angiography with 149 edges.

Fig. 15. Visualization of a bronchial tree derived from a clinical CT dataset
with 1504 edges.

To give an idea of the complexity of the resulting geometry
and the setup time, we present some results in Table III.
The setup time includes the preprocessing step. The first row
corresponds to a portal vein tree of low complexity. The two
middle rows represent the datasets shown in Fig. 14 and 15.
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The last row in Table III represents a complex anatomic tree
from a corrosion cast. Interactive frame rates (>24 fps) were
achieved with the first three models (rows 1-3).

TABLE III

PERFORMANCE MEASUREMENTS FOR ANATOMIC TREE STRUCTURES

CARRIED OUT ON A PENTIUM 4 CPU 3.2GHZ SYSTEM WITH 1024MB

RAM.

edges triangles (*1000) setup time (s)
CS Cones CS Cones

136 125 55 6.14 0.11
149 253 74 8.12 0.12
1504 1,126 599 53.24 1.30
3461 2,366 907 52.01 2.11

X. CONCLUSION

We have presented a method for visualizing vascular tree
structures which adheres to the underlying data (skeleton and
local vessel diameter), while producing smooth transitions at
branchings. The method is based on convolution surfaces, a
variant of implicit surfaces. The filter design has been fine-
tuned to prevent irritating bulges and to represent the course
of the vessel diameter faithfully. The width of the Gauss filter
turned out to be the essential parameter to accomplish our
visualization goals. With a preprocessing step which computes
bounding volumes we can efficiently compute the convolution
surface even for large vascular trees.

We compared the CS-visualization with the TC-
visualization and could show the superior visual quality.
We analyzed the surface differences between the methods
with respect to the precision and come to the conclusion that
the CS-visualization faithfully represents the underlying data.
The quantitative validation indicated that the convolution
surfaces deviate less thanV oxDiag2 for almost the whole
dataset. The directional distances between convolution surface
and isosurface rendering of the segmentation result are larger,
but still below a typical value forV oxDiag2.
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