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Abstract

Cerebral perfusion data are acquired to characterize the
regional blood supply of brain tissue. One of their ma-
jor diagnostic applications is ischemic stroke assessment.
We present a comparison of four interactive approaches
to analyzing cerebral perfusion data from ischemic stroke
patients which are based on (1) concentration-time curves
(CTC) derived from the original data, (2) parameters de-
scribing the CTC shape, (3) enhancement trends computed
in a statistical analysis, and (4) semi-quantitative perfusion
parameters derived via parametric modelling and deconvo-
lution. The comparison is carried out with regard to the
involved data pre-processing, the complexity of the interac-
tive analysis and the resulting tissue selections. It is sup-
ported by a visual analysis framework that integrates the
different approaches. The rich information content in time-
dependent 3D perfusion data is both an opportunity for im-
proved diagnosis and a challenge how to optimize the as-
sessment of such rich data. With our comparison we con-
tribute to a discussion between data-near and model-near
assessment strategies and their respective opportunities.

1. Introduction

In the U.S., stroke ranks number three among all causes
of death, when considered separately from other cardiovas-
cular diseases [5]. Of all strokes, 87% are ischemic. In the
event of an ischemic stroke, an artery supplying the brain
with blood is blocked. This leads to a death of brain cells
due to a sustained undersupply of oxygen and nutrients.

Primarily, Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) are used to asses a stroke in clin-
ical routine. Compared to CT, MRI offers a better contrast-
resolution and options to image the brain with multipara-
metric techniques in all anatomic orientations facilitating
a better detection and localization of infarctions. Hence,

we focus on MR perfusion but our concepts can be readily
transferred to CT perfusion.

The brain tissue affected by an ischemic stroke can be
classified into irreversibly damaged tissue (core) and tissue-
at-risk (penumbra). The penumbra may be salvaged by an
intervention removing the blood clot within a time window
of ≈ 6 hours after symptom onset [14]. It has been reported
as a predicator for the final infarction size [15].

In cerebral perfusion imaging, the spatio-temporal distri-
bution of a contrast agent (CA) is recorded to assess blood
volume and flow. For each voxel, a time-intensity curve
(TIC) characterizes the CA enhancement. Changes in sig-
nal intensity are often converted to changes in CA concen-
tration resulting in concentration-time curves (CTC) [12].
Perfusion parameters describing the curve shape during the
CA’s first pass through the brain tissue are derived voxel-
wise (Fig. 3). The computation of quantitative parameters
from MR perfusion is ongoing research [18]. No absolute
thresholds can yet be reliably computed for identifying is-
chemic tissue. Instead, new approaches classify tissue by
identifying common properties of signal dynamics [4], [6].

We provide an interactive alternative to these approaches
spearheaded by a feature definition component. The inter-
activity accounts for the uncertainty involved in the classi-
fication process. The user also gains a better insight into
the data by interactively changing the feature definition and
observing the updated selection result. We base the fea-
ture definition on four different inputs: (1) CTCs, (2) pa-
rameters describing the CTC shape, (3) enhancement trends
computed in a statistical analysis, and (4) semi-quantitative
perfusion parameters derived via parametric modelling and
deconvolution. We compare the approaches regarding the
involved data pre-processing, the complexity of the interac-
tive analysis and the resulting tissue selections. Our visual
analysis approach primarily addresses researchers seeking
for a better understanding of which perfusion parameters
are crucial for specific diagnostic tasks, how they are related
and how imaging parameters influence their expressiveness.



2. Related Work

Our visual analysis concept is closely related to systems
for analyzing and exploring medical multi-field data such as
[1]. In particular, we also employ the concept of integrating
a 3D visualization with multiple statistical representations,
connected by brushing facilities. Our concept has been pre-
sented in the context of perfusion data from different ap-
plication areas in [9] and is here adapted to and investigated
particularly for cerebral perfusion. In the following, we will
briefly review existing approaches to the visual analysis of
perfusion data. See [11] for a detailed survey.

Coto et al. [2] presented several investigation tools (e.g.,
scatterplot and volume rendering) for the classification and
visualization of Dynamic contrast-enhanced MRI mam-
mography data. Their approach combines brushing and
linking interaction on enhancement scatterplots with effec-
tive 3D visualization of the selected suspicious areas. Mle-
jnek et al. [7] proposed the Application Profile Flag, an intu-
itive tool for probing and annotating of temporal data. It en-
ables the visualization of spatial or temporal curves closely
connected to the rendering of the anatomic structure of the
data without removing any parts thereof.

In our previous work, statistical analysis techniques
and advanced scientific and information visualization tech-
niques have been combined in order to efficiently explore
the space of perfusion parameters [9]. In particular, a corre-
lation analysis is carried out followed by a Principal Com-
ponent Analysis in order to detect major trends. Inspired by
the work of Doleisch et al. [3], the trends as well as the orig-
inal perfusion parameters are displayed in 2D-histograms
and scatterplots and are used for brushing of relevant sub-
sets of the data. This overall strategy turned out to be useful
to discriminate different tissues in cerebral perfusion, breast
tumor perfusion and myocardial perfusion data. The com-
bination of analysis techniques with linking and brushing
has been extended with a dense visualization of TICs for all
voxels of a perfusion data set [8].

3 Method

This section starts with a description of the image data
our work is based on. Next, the crucial pre-processing steps
are described. Finally, four interactive approaches to inves-
tigating cerebral perfusion data are presented.

3.1 Image Data

We tested our visual analysis approaches based on two
perfusion studies from two patients, who both suffered from
an acute ischemic stroke. In both cases, the parietal lobe in
either of the two hemispheres was affected by a thrombosis
of the middle cerebral artery. The second study consists of
three scans acquired ≈ 2 hours after symptom onset, ≈ 4
hours later, after thrombolytical treatment (≈ 3 hours after
symptom onset), and the next day. Typical sequence pa-
rameters for the first DSC-MRI perfusion study PS and the

follow-up study PSfup (in brackets if different from PS)
are: Gradient echo planar imaging (EPI) with TR = 2000ms,
TE = 53.7ms (60.7ms), matrix =128×128, slice thickness =
6mm (5mm), slice gap = 1.02mm (1.5mm), in-plane res-
olution = 1.7×1.7mm2 (1.9×1.9mm2), number of slices =
12 (15), number of acquisitions = 40 (48), and total acqui-
sition time = 78s (94s).

3.2 Pre-Processing

Motion-correction is carried out to establish a valid inter-
pixel correspondence over time. It is essential when breath-
ing, heartbeat, patient movement, or muscle relaxation oc-
cur. A visual inspection of all four datasets showed that the
second scan PSfup(2) of the follow-up study suffered from
a severe motion artifact during the first pass of CA. Hence,
it was motion corrected in MeVisLab (www.mevislab.de),
a platform for medical image processing and visualization,
applying the algorithm developed by Rueckert et al. [13].
This algorithm combines rigid and elastic registration based
on normalized mutual information and a gradient descent
method for optimization. In a next step, all scans of PSfup

were registered to the first scan PSfup(1) using the soft-
ware RView (rview.colin-studholme.net) which employs a
rigid registration algorithm [17]. The registration supports
a concurrent analysis of all three scans. Next, the brain was
separated from the background in all datasets by means of
a statistically derived intensity threshold. Finally, the signal
intensities in all datasets were converted to changes in CA
concentration according to [12].

3.3 Four Interactive Approaches to Investigating
Cerebral Perfusion

Compared to an algorithmic analysis of perfusion data,
our interactive analysis approaches require the user to even-
tually decide which part of the tissue is ranked among in-
farcted and healthy tissue, respectively. Hence, a ranking
strategy needs to be specified. To distinguish infarcted tis-
sue, a selection was initialized and then, extended by the
user as long as the newly incorporated voxels were located
only in the hemisphere affected by the stroke. This simple
strategy is valid for investigating unilateral infarctions. In
selecting infarcted tissue, no difference was made between
the infarction core and the surrounding penumbra.

3.3.1 The Visual Analysis Framework

Our visual analysis concept is implemented in a framework
employing the SimVis (www.simvis.at) technology [3]. In
SimVis, multiple linked views are used to concurrently
show, explore, and analyze different aspects of multi-field
data. 3D views of the volume (also over time) can be used
next to several types of attribute views, e.g., parallel coordi-
nates, scatterplots or histograms. Interactive feature defini-
tion is usually performed in these attribute views (see Fig. 1
for an example). A more detailed review of the visual anal-
ysis framework can be found in [3].



3.3.2 Applying Concentration-time Curves

Muigg et al. [8] added a special attribute view to SimVis
which facilitates a dense visualization of TICs or CTCs for
all voxels of a perfusion data set (Fig. 1 (a)). Special tech-
niques are used to reduce clutter in the visualization of a
multitude of curves and dedicated brushes are employed to
define curve target shapes. Such target shapes allow for
an exploitation of expert knowledge since, e.g., clinicians
are trained to infer tissue characteristics from curve shape.
Besides the target shape, a similarity measure is applied to
match the original curves with this shape.

The infarction core and the penumbra require the defi-
nition of two target shapes, one describing (almost) no en-
hancement and one describing a delayed and diminished en-
hancement during the CA’s first pass. These shapes may to
some degree be approximated by combining multiple ver-
tical data interval brushes (timestep brushes) at different
timesteps. However, a faster and more intuitive approach is
the outlining of a target shape and the subsequent evaluation
of the similarity measure. Two variants are implemented in
SimVis. Average Distance Brushes employ the average dis-
tance between the target shape and the original curves as a
similarity measure. Gradient Sum Brushes are based on the
first derivatives of the target shape and the original curves.
They employ the curve slope as a similarity measure and
are hence, invariant to vertical translations. This property is
especially attractive for the analysis of MR perfusion data
since no standardized CA concentration values exist. The
vertical extension of the brush defines the range of accepted
values for the respective similarity measure.

Figure 1. (a) The CTCs of the entire dataset
PS are visualized. Two gradient sum brushes
(turquoise boxes) have been defined. The se-
lected curves are emphasized in red. (b) The
brushing reveals infarcted tissue in one hemi-
sphere. The tissue is colored according to
the time until the maximum CA concentration
is attained. (c) Its overall extension is illus-
trated by means of a lateral view.

In Fig. 1 (a), gradient sum brushes are defined to de-
tect the infarcted tissue in PS. The horizontal and the
slanted brush characterize the enhancement in the core and
the penumbra, respectively. Their position and horizontal
extension have been set up with respect to the location of the
first pass. Together with the vertical extension and the slope,
they have been adjusted according to the strategy described
in Sec. 3. The selection result is visualized in Fig. 1 (b)
and colored according to the time until the maximum of CA
concentration is achieved. The infarction core appears red-
dish surrounded by the yellowish penumbra. The ventricles
are also included in the selection since, similar to the core,
no CA is accumulated here. A lateral view of the brain in
Fig. 1 (c) shows the extension of the infarction zone over all
slices. Such 3D views were highly appreciated by our clin-
ical partners. Throughout the paper, the shape of the brain
is indicated as context information in all 3D views. This
is achieved by brushing the gradient magnitude computed
from the CA concentration at the first timestep. This brush-
ing has no impact on the infarction zone selection but also
effects the coloring (slight green) of the attribute views.

Since the ventricles are not part of the infarcted tissue,
they should be excluded from the selection. A subtracting
timestep brush is defined on the first timestep such that large
negative CA concentrations are excluded (see Fig. 2). These
values roughly represent the ventricles and major arteries
after conversion from signal intensity to CA concentration
(see Fig. 8(ts1)). This is founded by the conversion for-
mula [12] and the slightly higher signal intensities of the
first timestep as compared to the rest. The latter originate
from a pending steady-state condition for the MR signal.

Figure 2. (a) The selection from Fig. 1(a) is
refined such that the ventricles are excluded.
This is illustrated in (b) and (c) only for a sin-
gle slice to improve readability. In (a), the CTC
visualization is zoomed in on the first four
timesteps. The bright horizontal line repre-
sents the zero axis. A subtraction timestep
brush (purple box) is defined such that large
negative values are excluded.



3.3.3 Applying Descriptive Curve Shape Parameters

In cerebral perfusion diagnosis, parameters describing the
curve shape during the first pass are derived region- or
voxel-wise. In the following, we consider a voxel-wise
analysis. A typical CTC with a significant first pass and an
alleviated second pass of CA traversal annotated with the
essential parameters is shown in Fig. 3. See [11] for a de-
tailed description of all parameters as well as the auxiliary
variables BaseStart, CAarrival, TimeEnd, and Baseline.
The latter are used for restricting the evaluation to the CA’s
first pass and to normalize the parameter values. We refer to
the parameters which are derived directly from the CTCs as
descriptive parameters. They do not facilitate a quantitative
perfusion analysis which would require a determination of
the arterial input function (see Sec. 3.3.5). The descriptive
parameters have been computed in MeVisLab.
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Figure 3. A typical CTC in cerebral perfusion
annotated with the descriptive parameters.

For illustrating the feasibility of a concurrent analysis,
the separate scans of PSfup were integrated in a single
dataset (Fig. 4 and Fig. 6). However, for the comparison
of the visual analysis approaches in Sec. 4, each scan was
treated separately. In Fig. 4, a parallel coordinates plot is
employed to oppose all descriptive curve shape parameters.
Each vertical line represents an axis of the 7-dimensional
parameter space. Each voxel containing brain tissue is rep-
resented by a polyline whose vertices are constructed on
these axes based on the respective parameter value. To gen-
erate a selection, vertical data interval brushes can be de-
fined on each axis. In Fig. 4, first a brush was defined on
TTP such that high values were selected. Next, a subtract-
ing brush was defined on MTT to exclude outliers with a
high TTP but a small MTT . The selection result is visu-
alized in the 3D view and colored according to TTP . The
view shows the three scans of PSfup sorted by scanning or-
der. The infarction core appears reddish in (1) and (2) and
yellowish in (3). The concurrent analysis indicates that the
penumbra benefited from the thrombolytic therapy.

3.3.4 Applying Enhancement Trends

Our previous work in [9] indicated a strong information re-
dundancy in the higher dimensional space of descriptive pa-
rameters. This redundancy was resolved by a combination
of correlation and Principal Component Analysis (PCA).

Figure 4. The parallel coordinates plot con-
tains an axis for each descriptive parameter.
A brush is defined on TTP such that high val-
ues are selected. A subtracting brush is then
defined on MTT to exclude outliers with a
small MTT . The 3D view shows the follow-up
study sorted by scanning order. The selected
tissue is colored according to TTP .

The latter revealed strong enhancement trends described by
the first (pc1) and second principal component (pc2). These
two trends were successfully applied in [9] for the detec-
tion of infarcted tissue in one example from cerebral perfu-
sion (corresponding to PS). Hence, it was investigated here
whether these trends may also be observed in the scans of
PSfup. For that purpose, a correlation analysis based on all
descriptive parameters was carried out followed by an ex-
clusion of highly correlated parameters. Then, a PCA was
computed based on the reduced parameter set. See [9] for a
more detailed description of the statistical analysis.

As can be inferred from Fig. 5, the first two pcs, i.e.,
the two strongest enhancement trends, are quite consistent
across all datasets. Each bar of the plot represents a param-
eter loading, i.e., a weight for the linear combination of the
n original variables. The prominent loadings are Integral

Figure 5. Perfusion parameter loadings of the
first and second principal component (pc).



Figure 6. The scatterplot opposes the scores
of the first and the second principal compo-
nent. A brush encloses an area of low mag-
nitude and long time. The 3D view shows
the follow-up study sorted by scanning order.
The selection is colored according to TTP . It
well resembles the one obtained in Fig. 4.

and PE for pc1 and MTT and TTP for pc2. MiTR is
only included for PSfup(1−2). For the remaining datasets,
it was excluded before PCA due to its high correlations with
other parameters. Slope and DownSlope were excluded
for the same reason. On average, both pcs together account
for ≈ 87% of the variance in the data.

In order to employ the enhancement trends for a feature
definition, their respective scores are opposed in a scatter-
plot (see Fig. 6). The scores are the coordinates of the orig-
inal parameter space transformed into pc-space by a max-
imum variance rotation. The density of data values in the
plot is opacity-coded. A meaningful label for the x-axis
could be Magnitude of Enhancement with regard to pc1’s
prominent loadings. Accordingly, the y-axis could be la-
belled Time to Enhancement. A simple rectangular brush is
defined enclosing an area with a low magnitude and a long
time. The 3D view shows the three scans of PSfup sorted
by scanning order. The selection is colored according to
TTP . It well resembles the one obtained in Fig. 4.

3.3.5 Applying Semi-quantitative Parameters

In order to obtain quantitative perfusion parameters, the
arterial input function (AIF) must be determined. Then,
the descriptive parameters must be normalized to the cor-
responding parameters of the AIF. Furthermore, the CTCs
must be deconvolved with the AIF to obtain the cerebral
blood flow [10]. However, even after normalization and de-
convolution, parameter values are not yet in absolute phys-
ical units and only relative to their quantitative counterpart.
A scaling is still necessary by a factor that depends on CA
relaxivity, vascular structure, tissue density and hematocrit.

We omit this step since it is not crucial for our comparison
of visual analysis approaches. We refer to the parameters
without scaling as semi-quantitative parameters. The fol-
lowing semi-quantitative parameters are considered as es-
sential in assessing stroke [16], [20] (recall Fig. 3):

• relative Cerebral Blood Volume (rCBV): area under the
CTC normalized to the area under the AIF,

• relative Cerebral Blood Flow (rCBF): result of decon-
volving the CTC with the AIF,

• relative Mean Transit Time (rMTT): rCBV
rCBF ,

• Time To Peak (TTP)

Optionally, a gamma variate function can be fitted to
each CTC and the AIF before parameter computation. This
step is referred to as parametric modelling. The fitting com-
pensates for noisy data and reduces the effect of recircu-
lation (recall Fig. 3). However, it may fail in areas with
no distinctive CTC shape, i.e., abnormal hemodynamical
conditions. For the comparison in Sec. 4, analysis results
achieved with and without a fitting have been investigated.

The software NordicICE (www.nordicneurolab.com)
was employed for computing the semi-quantitative param-
eters. Here, the widespread standard regularized Singular
Value Decomposition [10] was chosen for deconvolution.
The AIF was computed automatically for a user-defined
subregion which was chosen such that severely diseased
vessels were not included. The parameters computed by
NordicICE are rCBV , rCBF , rMTT , and TTP . The
selection of infarcted tissue in this four-dimensional param-
eter space was carried out as described in Sec. 3.3.3.

In Fig. 7 (left), a selection based on semi-quantitative pa-
rameters whose computation involved both, fitting and de-
convolution is presented. Compared to Fig. 1(b), a consid-
erable amount of small disconnected regions exists besides
the infarction zone. In Fig. 7 (middle), the selection was
reduced to voxels where the fitting had failed. NordicICE
assigned a unique value to all parameters for these voxels.
The largest connected component represents the infarction
core and parts of the ventricles. However, small discon-
nected regions indicate the existence of more tissue with
no distinctive CTC shape. A comparison with the selection
based on parameters whose computation involved no fitting
(Fig. 7 (right)) supports this assumption.

Figure 7. Left: selection based on semi-quan-
titative parameters whose computation in-
volved fitting and deconvolution. Middle: se-
lection reduced to voxels with a failed fitting.
Right: selection achieved without a fitting.



4 Comparison

This section compares the four interactive approaches
for feature definition and their variants presented in Sec. 3.
To improve readability, we introduce abbreviations for the
approaches based on: CTCs, with (ACTCVR) and with-
out (ACTC) a removal of the ventricles, descriptive curve
shape parameters (ADP), enhancement trends (AET), and
semi-quantitative parameters, with (ASQP) and without
(ASQPNoG) a preceding gamma variate fitting. The ap-
proaches differ concerning:

• the data, on which the feature definition is based
(CTCs, descriptive curve shape parameters, pcs, semi-
quantitative parameters),

• the kind of attribute view used for feature definition
(curve view, parallel coordinate view, scatterplot), and

• the kind of applied brush (complex similarity brushes,
1D data interval brushes, 2D rectangular brushes).

Each approach was assessed with regard to the com-
plexity of pre-processing necessary to generate the data on
which the feature definition is based, and the complexity of
the definition process itself.

The conversion of signal intensities to CA concentration
[12] is demanded by all approaches. The applied formula
requires the determination of BaseStart and CAarrival
(recall Fig. 3) which can easily be accomplished by a vi-
sual inspection of the averaged TIC of the entire brain tis-
sue. No additional pre-processing is required for ACTC and
ACTCVR. ADP further demands a determination of the end
of the CA’s first pass (TimeEnd). In addition, a computa-
tion of the descriptive parameters is necessary which how-
ever, can be accomplished by simple mathematics. AET
does also require the computation of the descriptive param-
eters. Moreover, a statistical analysis of these parameters
is carried out, involving a correlation analysis, an exclusion
of highly correlated parameters and a PCA. However, each
step can be realized as a fully automatic process. ASQP and
ASQPNoG both demand an AIF determination, a parameter
computation and normalization, a deconvolution step and
optionally, a fitting with a gamma-variate function (ASQP).
While the remaining steps can be automatized, special care
should be taken in AIF determination, i.e, selecting a candi-
date region which does not include severely damaged ves-
sels. Overall, ACTC and ACTCVR pose the least demands
on pre-processing while AET, ASQPNoG and ASQP pose
the highest demands. However, most of the necessary pre-
processing can be carried out automatically.

The complexity of the feature definition process depends
on the applied attribute view and the associated brushes.
The gradient sum brushes used for ACTC and ACTCVR are
easy to set up. However, their fine-tuning requires some
experience since not only CTCs having a gradient equal to
the one of the brush are selected but a range of gradients
as defined by the vertical extension of the brush. Further-
more, not only CTCs which pass through the brush but also
vertically shifted CTCs with the wanted gradient properties

are selected. Although, this is a desired behavior, it still
poses a discrepancy between the user expectations raised by
the brush location and the selection result. Still, the gradi-
ent sum brushes provide the most intuitive way of integrat-
ing knowledge about curve shape into the feature definition.
The parallel coordinates plot used for ADP, ASQPNoG and
ASQP provides very simple 1D data interval brushes for
each coordinate axis. However, the brushing may theoreti-
cally be carried out on seven or four axes. Our practical ex-
periences indicated yet, that one brush defined on the TTP
axis delivers a good initial result which may be refined by
one or two additional (subtractive) brushes on other axes.
The scatterplot used for AET facilitates the definition of a
2D rectangular brush. For all datasets, this feature definition
process proved to be the quickest one in yielding satisfac-
tory selections.

The evaluation of all analysis approaches also included
an investigation of their individual selection results. These
were examined with respect to:

• accuracy (overlap with the “real” infarction zone),
• compactness (existence of small, disconnected regions

besides the infarction zone), and
• spurious inclusion of the ventricles.

Furthermore, all selections based on the same dataset
were compared regarding their pair-wise and overall over-
lap and the averaged CTCs of their corresponding tissue.

To assess the accuracy of a selection, it was overlaid on
the original 4D perfusion scan or the converted CA con-
centration data and inspected visually slice by slice in cine-
mode (Fig. 8). In order to generate the overlay, isocontours
were computed based on a binary mask image exported
from SimVis. The visual inspection indicated no obvious
over- or under-segmentation with neither of the feature def-
inition approaches. However, it seemed that the selections
based on ASQP contain the highest number of small discon-
nected regions besides the infarction zone (recall Fig. 7).

Figure 8. Slice of the dataset PS at three dif-
ferent timesteps with an overlaid selection re-
sult. The CA accumulation in healthy tissue
is visible at an earlier timestep (ts15) as com-
pared to the penumbral tissue (ts20).

For further investigation, the compactness of each selec-
tion was determined. First, its largest connected component
(LCC) was computed considering a 6-connected neighbor-
hood. For all selections, this resulted in a separation of



the infarction zone. Next, the percentage of voxels which
are part of the entire selection (ES) but not part of LCC
was computed. The higher the percentage, the smaller the
compactness. A peak percentage (26.8%, averaged over
all datasets) could be observed for the selections based
on ASQP. The range of percentages for the remaining ap-
proaches was 12.2%-14.7%. The considerable difference
as compared to the peak percentage confirms the observa-
tion of ASQP being the approach resulting in the highest
number of small disconnected regions.

As described in Sec. 3, the ventricles may be spuriously
included in the selection (recall Fig. 2). With non of the
parameter-based approaches, it was possible to exclude the
ventricles. Only the CTC-based analysis offered an oppor-
tunity by means of an additional subtractive timestep brush.
This suggests that a parameter-based analysis may benefit
from the integration of the original time-dependent infor-
mation. Another beneficial application which cannot be de-
scribed here in detail due to space restrictions is the han-
dling of atypical CTC shapes caused by motion artifacts.

An interesting question is to what extent the different se-
lections based on the same dataset overlap. A simple mea-
sure for this is the Dice Coefficient (DC) [19]. The values
of DC are in the range from 0 (no overlap) to 1 (identical
selections). We computed the pair-wise overlap for all se-
lections as well as their overall overlap (see Fig. 9). The
analysis shows the smallest pair-wise overlap (ø=0.69) for
all pairs including ASQP. The highest values (ø=0.93) oc-
cur for the pair ACTC and ACTCVR which can be expected
since ACTCVR is fully contained in ACTC. The remaining
pair-wise overlaps are 0.79 on average.

The overall overlap is 0.53 on average (0.55 when dis-
carding ACTCVR). Only discarding ASQP from the com-
putation leads to a considerable increase of DC (ø=0.16
compared to ø=0.06 for the remaining approaches). This is
due to the high number of small disconnected regions gen-
erated by ASQP. Evaluating the overall overlap showed that
besides a good-pair wise match, there still seem to be de-
viations across the selections. A visual inspection based on
images such as Fig. 9 indicates that a lot of these devia-
tions occur outside the infarction zone. The respective vox-
els each seem to be contained only in a small subset (< 3)
of selections. By contrast, the majority of tissue that is part
of all selections belongs to the infarction zone. However,
these aspects should be confirmed by a more quantitative
analysis. It should also be investigated to what extent the
deviations are related to the fact that the feature definition
is interactive and hence user-dependent.

Another interesting aspect in examining the parameter-
based selections is the investigation of their counterpart in
the original time-dependent perfusion data space. For that
purpose, the averaged CTC was computed for each selec-
tion together with its standard deviation at each timestep. In
Fig. 10, an error bar plot computed for dataset PS shows the
averaged CTCs of all selections together with their standard
deviations. The plot is superimposed on the filled reference
curve computed from the healthy brain hemisphere. A high

Figure 9. Visualization of the overall overlap
of six selections based on the dataset PS.
The color encodes the number of overlapping
selections for a subset of four slices.

consistency of all selections can be inferred from the aver-
aged CTCs. While their corresponding Integral/rCBV
slightly varies, their PE is always located at timestep 18
which results in a consistent TTP . The delay with regard
to the TTP of the reference curve (timestep 15) is 6 sec-
onds ((18-15)×2000ms (TR)) which is in the range of typ-
ical values for penumbral tissue. Further evidence provide
the smaller Integral/rCBV and PE values which indi-
cate diminished perfusion.
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Figure 10. Error bar plot of the averaged CTCs
corresponding to six selections based on the
same dataset. The error bars represent the
standard deviation of CA concentration per
timestep. The reference curve has been de-
rived from the healthy hemisphere.

5 Conclusion

We have presented and compared four interactive ap-
proaches to analyzing cerebral perfusion data from ischemic
stroke patients which are based on (1) CTCs, (2) parameters
describing the CTC shape, (3) enhancement trends com-
puted in a statistical analysis, and (4) semi-quantitative per-
fusion parameters derived via parametric modelling and de-
convolution with an arterial input function. The necessary
pre-processing before an analysis can be carried out varies
considerably between (1) and, e.g., (3) or (4). However,



most of the involved steps can be automatized. The feature
definition process can be intuitively accomplished in (1) by
means of CTC target shapes and a similarity measure. How-
ever, it is more complex compared to, e.g., (3) where only
a rectangular brush has to be defined in 2D space. For all
datasets, (3) proved to be the quickest approach in yielding
satisfactory results. It needs further investigation whether
this is due to the simple way of defining the brush or the eas-
ily possible differentiation of the infarction zone in the plot
or both. An advantage of (1) is the ability to remove spu-
riously included ventricles from the selection based on the
original time-dependent information. Furthermore, atypical
CTC shapes caused by motion artifacts can be handled.

To assess the accuracy of all approaches in detecting in-
farcted tissue, the selection results were superimposed on
the original data. A visual inspection indicated no obvious
over- or under-segmentation with neither of the approaches.
However, selections from (4), computed with a preceding
gamma variate fitting, contained a high number of small dis-
connected regions besides the infarction zone. This could
be traced back to a failure of the fitting in these regions due
to the lack of a distinctive curve shape. It should be fur-
ther investigated if this lack is due to local image noise or
to compromised tissue perfusion with no or very little CA
enhancement. The selections based on (1)-(3) and (4) with-
out fitting, showed a considerable pair-wise overlap for the
same dataset (ø=0.79). A voxel ranking with respect to the
number of containing selections showed that the majority of
tissue that is part of all selections belongs to the infarction
zone. Most of the small disconnected tissue regions are con-
tained only in a small subset of selections. For the compar-
ison of all selections based on the same dataset, the corre-
sponding averaged CTCs were superimposed on a reference
CTC derived from healthy tissue. A high consistency of all
selections could be inferred from this superimposition. The
described perfusion deficit and delay indicated a success-
ful inclusion of the penumbra. Compared to an algorithmic
analysis, an inherent property of our interactive approach is
an inter- and intra-user variability of some degree. Their
impact should be examined for a larger collection of data.
In addition, the possibility of differentiating between infarc-
tion core and penumbra should be further investigated.
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