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Evaluation of Streamline Clustering Techniques
for Blood Flow Data

Steffen Oeltze, Dirk J. Lehmann, Holger Theisel, Bernhard Preim

Abstract—Understanding the hemodynamics of blood flow in vascular pathologies such as aneurysms is essential for both their
diagnosis and treatment. Computational fluid dynamics (CFD) simulations of blood flow based on patient-individual data are performed
to better understand aneurysm initiation and progression and for predicting treatment success. A CFD simulation results in a complex,
multiparameter dataset comprising scalar as well as vectorial data attributes. For its comprehensive investigation, the contained flow
information is often visualized by a highly dense and cluttered set of integral curves colored according to one of the attributes.
We aim at a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by grouping similar curves
and computing group representatives. In this work, we lay the foundations by evaluating different clustering techniques for grouping
curves. We evaluate Spectral Clustering and four versions of Agglomerative Hierarchical Clustering. Both are particularly suited since
they can be based on inter-curve distances rendering the construction of feature vectors unnecessary. Our work focuses on steady-
state simulations of blood flow in intracranial aneurysms and the visualization by means of streamlines. Our results indicate that
Spectral Clustering as well as Agglomerative Hierarchical Clustering with average link or Ward’s method as proximity measure generate
meaningful groups of similar streamlines.

F

1 INTRODUCTION

I NTRACRANIAL aneurysms, also referred to as cerebral
or brain aneurysms, represent a pathologic balloon like

dilation of cerebral vasculature due to a weakness of the
arterial wall. They occur with a prevalence of about 2% in
Western Europe [1]. They bear a high risk for the patient,
since their rupture is associated with a mortality rate of ≈ 50%.
In recent research, CFD simulations, which generate patient-
specific hemodynamic data, are employed in assessing the
risk of aneurysm rupture [2], [3], [4] and in predicting the
success of different treatment options, e.g., stenting [5], [6],
[7]. The results of these simulations are highly complex,
multiparameter datasets comprising several scalar as well as
vectorial attributes. For their comprehensive investigation, the
contained flow information is often visualized by a dense
and cluttered set of integral curves colored according to one
of the attributes, e.g., velocity magnitude or pressure. The
underlying blood flow pattern is then investigated by CFD
engineers via manually reducing visual clutter in a tedious
iterative procedure of selectively hiding and showing curves.

We aim at a fully automatic approach for reducing visual
clutter and exposing characteristic structures of the flow by
grouping curves and computing group representatives. In this
work, we lay the foundation by comparing different clustering
techniques for grouping. We investigate Spectral Clustering
and four versions of Agglomerative Hierarchical Clustering:
single link, complete link, average link, and Ward’s method.
Spectral Clustering and Agglomerative Hierarchical Clustering
are particularly suited in this context since they can be based
on inter-curve distances rendering the construction of feature
vectors unnecessary. They have been applied before to the
clustering of streamlines, e.g., in engineering or climate data
[8], [9], [10], and for the grouping of fibers tracts extracted
from Diffusion Tensor Imaging data [11], [12]. In our work,

we focus on steady-state simulations of blood flow and its
visualization by means of streamlines. It has been shown that
major aspects of aneurysmal hemodynamics may be inferred
from steady flow, which is faster and easier to compute than
pulsatile flow [13].

In the clustering of blood flow, the number of clusters
in unknown. Hence, we extend each clustering technique by
a state-of-the-art method, which automatically determines a
reasonable number. We apply all techniques to ten datasets
and systematically investigate the results. This investigation
identifies one method for automatically determining a rea-
sonable number of clusters k as particularly reliable. Hence,
all techniques are reapplied but this time based on k. In
each clustering result, a unique cluster label is assigned to
each streamline. Since no ground truth exist in the form of
external labels, e.g., created by an expert, we evaluate the
results by means of selected internal cluster indices. The
evaluation indicates that three of the tested techniques generate
meaningful groups of streamlines.

2 TECHNICAL BACKGROUND

This section familiarizes the reader with the hemodynamic
data generation pipeline, starting with the acquisition of patient
image data and ending with a CFD simulation of blood flow.
The pipeline has been described in detail by Gasteiger et
al. [14] and is briefly summarized in the following. In the first
step, image data of the aneurysm morphology including the
vasculature in the close surrounding is acquired, e.g., by 3D
rotational angiography. Next, the aneurysm and the surround-
ing vasculature are segmented. Thresholding techniques are
feasible due to the high vessel-to-tissue contrast. Afterwards,
a surface mesh is reconstructed from the segmentation result
by Marching Cubes. The resulting mesh is then optimized with
respect to mesh quality [15]. Then, the ostium is extracted as
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Fig. 1. Morphological features of a saccular cerebral
aneurysm and subdivision of the surrounding vascular
domain.

an anatomical landmark (Fig. 1) [16]. It is frequently used by
domain experts to explore the flow into the aneurysm, e.g.,
by seeding streamlines there [17]. Finally, a volume mesh is
required in order to perform the numerical simulation. All
volume meshes have been generated based on the surface
meshes using the commercial tool ANSYS IcemCFD (Ansys
Inc., Canonsburg, PA, U.S.). The obtained grid quality has
been carefully checked and maintained within the optimal
range as needed for a successful computation. The generated
body-fitting meshes involve up to 13,500,000 finite volume
cells (tetrahedra).

Fluid flow simulations have been performed using the com-
mercial software ANSYS Fluent 12 (Ansys Inc., Canonsburg,
PA, U.S.). This code solves the governing equations of a fluid
flow problem discretized using the finite volume method. The
numerical simulation retains steady state computations using a
Newtonian description with constant density and viscosity for
the blood. The Reynolds numbers are in the laminar regime,
proving that laminar solution is acceptable here. At the inlet
of the computational domain a fully developed velocity profile
is prescribed. The vessel walls are considered rigid during the
computation. A standard, no-slip boundary condition is applied
at all contact points with surfaces including the vessels. At
all the outlets traction-free conditions have been employed.
Computations are carried out in parallel using up to eight
Linux computing cores (2.1 GHz AMD Opteron 64-bit dual-
quad processors). For the finest mesh considered in this study,
19.5 GB of computer memory are needed for the accurate
double-precision simulation.

3 RELATED WORK
The huge variety of flow visualization techniques has been
categorized by Post et al. [18] into direct, texture-based,
geometric, and feature-based techniques. Salzbrunn et al. [19]
added the class of partition-based flow visualization into which
our work fits best. Partition-based techniques decompose a
flow field based on vector values, integral curve properties or
contained features. We briefly recapitulate approaches that are
closely related to our work in the sense that they partition
the flow based on integral curves. Some of the approaches use
representatives to reduce visual clutter and highlight important
flow structures. We classify the approaches into user-defined
partitioning as well as automatic partitioning.

3.1 User-guided Integral Curve Clustering
The approaches in this class investigate the vector field by
stream- or pathlines and decompose the set of lines according
to a user-defined behavior. Salzbrunn and Scheuermann [20]
proposed combined Boolean predicates based on predefined
scalar quantities which determine for each streamline whether
it has a desired property or not. Predicates on pathlines have
recently been applied to the visual analysis of measured blood
flow in aortic aneurysms [21]. A residence time predicate
has been used as a tool for assessing the risk of blood clot
development. Shi et al. [22] proposed a set of local and global
attributes, e.g., curvature and Lyapunov exponent, which are
computed for pathlines and the resulting scalar fields are
inspected using a visual analytics approach. Pobitzer et al. [23]
recently demonstrated for five different datasets the application
of a statistics-based dimension reduction to the set of attributes
in order to detect relevant, independent attributes. Two other
approaches let the user specify interesting integral curves or
curve parts in the observation space instead of the attribute
space. In [24], a new concept is presented for virtually probing
measured cardiovascular flow avoiding a tedious segmentation
of the vessels. Streamlines and pathlines may be seeded from
the probing geometry for inspecting the flow. Gasteiger et
al. [14] employ a lens metaphor for generating focus-and-
context visualizations. Streamline parts may be highlighted or
attenuated inside the lens depending on the specific application
task.

3.2 Automatic Integral Curve Clustering
Our work is strongly related to this class of approaches,
which automatically cluster the set of integral curves into
meaningful groups. The approaches differ by the algorithm
that is applied for grouping and by the similarity measure
steering which curves should be grouped. Bidmon et al. [25]
propose a specialized algorithm for clustering the paths of
solvent molecules in molecular dynamics simulations. The
applied similarity measure considers dynamic attributes of
the molecules as well as their pathways. An entropy-based
streamline seeding strategy is followed by a two-step k-
means clustering in [26]. The first step considers only the
coordinates of the endpoints and the midpoint of each stream-
line to generate a coarse clustering. This is then refined by
considering vector and shape properties in the second step.
In both steps, Euclidean distance is applied as a similarity
measure. Representatives for the clusters are computed by
determining the streamlines that are closest to the centroids
computed by k-means. They are visualized by streamtapes
rendered in an illustrative fashion. In [8], Agglomerative
Hierarchical Clustering (AHC) with average link has been
used for grouping streamlines and pathlines. The authors put
special emphasis on a new similarity measure that facilitates an
interactive, cluster-based exploration of flow with streamline
seeding rakes (standard point-wise Euclidean distance tests are
computationally expensive and prevent such interactivity). The
resulting streamlines may be pruned on a per-cluster basis by
thresholding the new similarity measure. A saliency-guided
streamline seeding is followed by AHC with single link in
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[10]. Since single link is prone to the chaining-effect and
outliers, the resulting clustering tree requires a subsequent top-
down balancing. Instead of showing lines as representatives
that are close to cluster centroids, the cluster boundaries are
extracted and boundary streamlines are displayed. Rössl and
Theisel [9] discuss the theory of a spectral embedding of
streamlines. They demonstrate Spectral Clustering (SC) in the
embedding space and compare various similarity measures in
this process. The clustering result is visualized by coloring
all streamlines according to their cluster ID. Very similar
to the clustering of integral curves is the clustering of fiber
tracts extracted from diffusion tensor MRI (DTI) data. Rössl
and Theisel adopt their tested similarity measures from this
domain. White matter fiber tracts are partitioned by means of
specialized SC approaches in [12] and [27]. Three methods for
determining cluster representatives are tested in [28]. Moberts
et al. compare AHC with different links and different similarity
measures for clustering fiber tracts [11]. A new similarity
measure for fiber tracts in conjunction with AHC using single
link is introduced in [29].

Our literature review identifies AHC and SC as the most
widely used algorithms for automatically clustering integral
curves and fiber tracts. Hence, we evaluate both techniques in
the context of blood flow. In this process, we extend both
techniques by a state-of-the-art approach for estimating a
meaningful number of clusters.

4 INPUT FOR STREAMLINE CLUSTERING

In this section, we provide details on streamline generation,
their properties and on the definition of streamline similarity.

4.1 Streamline Generation
The input for the streamline generation is the volume mesh
from the simulation (Sec. 2). The mesh is represented as an
unstructured grid composed of tetrahedral cells. A vector is
stored at each cell point. Before the streamlines are generated,
the mesh is manually cropped such that it contains only the
aneurysm and the so-called near-vessel domain (Fig. 1). This
is inspired by the work of Cebral et al. and Shojima et al.
[17] and [30]. It enables us to focus the analysis on the
aneurysm. The expressiveness of the clustering is strongly
improved by this procedure. Assume that the similarity of
streamlines is computed based on their geometry. It is very
likely that streamlines follow a similar course in the inflow
region and they may also follow a similar course in an outflow
region. However, depending on where they enter the aneurysm,
their course may strongly differ inside. If the far-vessel domain
was now also considered in clustering, this effect would have
less impact.

In order to assess the in- and outflow of the aneurysm,
we seed streamlines at the ostium. The ostium is given as
a triangle mesh. The mesh has been optimized for streamline
seeding such that its vertices are homogeneously distributed
[16]. Thus, the under- and overrepresentation of flow parts
is avoided. The number of vertices is a parameter of the
meshing algorithm. It is adjusted until the resulting surface
well resembles the original vessel wall. Furthermore, it has

been visually validated that the chosen number of vertices
leads to streamlines that capture all relevant flow structures. If
this was not the case, the meshing was repeated creating the
doubled number of vertices. Since this was a subjective and
time-consuming process, we rather used a higher number of
vertices.

Streamlines have then been generated using the free soft-
ware ParaView (Kitware, Clifton Park, NY, U.S.). A 5th order
Runge-Kutta method has been employed with an integration
step size that is automatically adjusted according to an esti-
mated error. The integration has been carried out on the flow
field in backward and forward direction. The resulting two
streamlines have then been merged such that a linear traversal
of the vertices from start to end is possible.

4.2 Streamline Properties and Similarity

The generated streamlines differ in their number of points
as well as in their length. The number of points depends
on the integration step size which is constantly updated by
the employed algorithm. While it has an impact on the
computational time of inter-streamline similarity calculation, it
does not influence the similarity itself. In contrast, streamline
length has a strong impact. Two streamlines may follow a
very similar course for a long time but then, one of them
is terminated. In most similarity measures, a much higher
weight is assigned now to the difference in length then to
the similarity over a long run. In all our datasets, a few lines
follow a course very similar to a large set of neighboring lines
but are considerably shorter. They occur close to the vessel
wall due to early termination of the integration. We consider
them as incomplete rather than incorrect data entities. Instead
of separating them, the clustering should group them with the
streamlines having a similar course.

The determination of streamline similarity is a prerequisite
for streamline clustering. Similarity if often expressed by a
distance measure. The choice of a measure depends on the
application. General requirements are that it must be positive-
definite and symmetric. A valid example in the context of
streamlines is the Hausdorff distance which is based on
streamline geometry. However, this distance is very sensitive to
streamline length, since it outputs the maximum of point-wise
distances [9]. A less sensitive measure referred to as mean of
closest point distances (MCPD) is proposed in [31]:

dM(si,s j) = mean(dm(si,s j),dm(s j,si)) (1)
with dm(si,s j) = meanpl∈si min

pk∈s j
‖pk− pl‖

MCPD has been successfully employed for clustering fiber
tracts and streamlines [11], [10], [9]. Hence, we adopted
MCPD and applied it to blood flow clustering. Initial tests
showed good results but also revealed that MCPD is still
too sensitive to differences in streamline length, in particular
when being used with versions of Agglomerative Hierarchical
Clustering that are sensitive to outliers (Tab. 1). Very small-
sized, outlier-corrupted clusters are generated whose represen-
tatives cause a distorted flow summary visualization. In order
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to further reduce the sensitivity of MCPD to length, we replace
the outer mean in Equation 1 by a minimum computation:

dM(si,s j) = min(dm(si,s j),dm(s j,si)) (2)
with dm(si,s j) = meanpl∈si min

pk∈s j
‖pk− pl‖

If two lines follow a very similar course and then, one is
terminated while the other one continuous, the distance from
the shorter line to the longer one is now chosen as their inter-
streamline distance. This results in a high similarity increasing
the chance of being grouped together.

5 STREAMLINE CLUSTERING TECHNIQUES

Our literature review in Section 3 identified Agglomerative
Hierarchical Clustering and Spectral Clustering as the most
widely used algorithms for automatically clustering integral
curves and fiber tracts. One reason is their ability to cluster
data based on distances without the previous definition of
feature vectors. Other popular algorithms, such as k-means,
require the definition of a feature space. The space may be
spanned by the line point coordinates which however, requires
a resampling of the lines to a uniform number of points.
An alternative way is to derive features, e.g., curvature or
length, from the lines. Nevertheless, this requires an additional
description of spatial similarity or dissimilarity for instance by
combining features and coordinates. Each streamline would
then be represented by a feature vector comprising coordinates
and possibly derived features.

In the following, we describe Agglomerative Hierarchical
Clustering and Spectral Clustering. Since the number of
clusters is unknown in blood flow data, we combine each
algorithm with a state-of-the-art technique for automatically
computing a reasonable number of clusters. This computation
helps us in providing a good initial visual summary of the
flow, it aims at a more standardized comparison of the flow
in a stented and an untreated aneurysm, and it supports a
categorization of a large database of aneurysms that is planned
for the future.

5.1 Agglomerative Hierarchical Clustering
The following explanation of Agglomerative Hierarchical
Clustering (AHC) is based on [32]. The algorithm starts with
each streamline as a cluster and then, repeatedly merges the
two closest clusters until a single cluster remains. The merge
step relies on a distance matrix M and a measure of cluster
proximity. In our case, the squared, symmetric distance ma-
trix contains all pair-wise inter-streamline distances computed
according to Equation 2. Various cluster proximity measures
have been published among which single link, complete link,
average link, and Ward’s method are the most popular ones.
In single link, the proximity of two clusters is defined as the
minimum distance between any two points in the different
clusters. This approach can handle clusters of arbitrary shape,
it tolerates considerable differences in cluster size but it is sen-
sitive to outliers. Furthermore, it is infamous for the chaining
effect leading to clusters containing very dissimilar elements

which are connected by a chain of similar elements via some
transitive relationship. In complete link, the proximity of two
clusters is computed as the maximum distance between any
two points in the different clusters. Complete link is less
susceptible to outliers but tends to break large clusters and it
favors globular cluster shapes. Average link is an intermediate
approach between single and complete link. It also strives for
globular compact clusters [33]. Here, the proximity of two
clusters is defined as the average proximity between pairs
of points in the different clusters. Ward’s method aims at
minimizing the total within-cluster variance. It defines the
proximity of two clusters as the sum of squared distances
between any two points in the different clusters (SSE: sum
of squared errors). Due to the SSE-based proximity, Ward’s
methods favors globular cluster shapes. It was shown to prefer
clusters with similar size and to be robust against outliers in
the context of 2D curves [34].

In summary, all versions of AHC lack a global objective
function that shall be optimized. Instead, they decide locally
which clusters should be merged. The merging decisions can-
not be undone such that bad decisions, i.e., involving outliers,
are propagated throughout the entire clustering process. A
strength of AHC is the ability to rapidly generate results
based on different numbers of clusters by simply cutting
the cluster tree at different levels. Furthermore, it is non-
parametric except for the choice of a proximity measure. Both
strengths explain its frequent use in applications where the
“correct” number of clusters is unknown. In such a case, the
user often sequentially browses through the different levels.
Visually comparing clustering results based on neighboring
levels is simplified by the locally restricted change (split or
merge). The bottleneck of AHC in terms of time complexity
is the computation of the distance matrix which often requires
a vast number of Euclidean distance tests.

5.1.1 Number of Clusters

Salvador and Chan propose a method for automatically com-
puting the number of clusters in hierarchical clustering algo-
rithms [35]. Their L-method is based on detecting the knee or
elbow in a graph that opposes the number of clusters and a
cluster evaluation metric (Fig. 2). Using the knee, which is
defined as the point of maximum curvature of the graph, is
well-known. The L-method detects it by finding the two lines
that best fit the evaluation graph and then, uses the number
of clusters that is closest to their point of intersection. It is
obvious that the location of the knee depends of the shape
of the graph which again depends on the number of tested
cluster numbers. Hence, using a full evaluation graph, which
ranges from two clusters to the number of data elements, is
recommended. Starting with the full graph, the L-method is
carried out iteratively on a decreasing focus region until the
current knee location is equal to or larger than the previous
location. What is left is the definition of an evaluation measure
for constructing the graph. We follow the recommendations of
Salvador and Chan who suggest to use the metric employed
by the clustering algorithm. Hence, we apply the proximity
measure used by the different link versions. Furthermore, they
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Fig. 2. L-method for automatically computing a reliable
number of clusters.

suggest to base the evaluation not on the entire dataset but only
on the two clusters that are involved in the current merge step.

5.2 Spectral Clustering
Our explanation of Spectral Clustering (SC) is based on [36]
and [37]. SC has become popular in recent years since it
often outperforms traditional clustering algorithms such as
k-means. One of the key advantages of SC is that it can
handle arbitrary cluster shapes. It is called spectral because
the spectrum of a matrix, i.e. its eigenvalues, plays a central
role. The main idea of SC is to map the original data to
a new space (spectral embedding) where each data entity,
e.g., each streamline, is represented as a point (Fig. 3). Key
features of the mapping are the preservation of local distance
relations between nearby data entities and the enhancement of
the data’s cluster properties. Enhancement here refers to an im-
proved cluster separability making the subsequent application
of standard clustering algorithms feasible. In the following,
we briefly overview our implementation of SC and then, we
explain some algorithmic details as well as modifications and
extensions to the algorithm. We use the terms distance and
difference interchangeably, since difference is often expressed
by distance. Streamlines serve as our working example.

5.2.1 Graph Partitioning Problem
We have implemented SC as a graph partitioning problem [36]
and modified it according to [38]. Streamlines may be repre-
sented by a weighted, fully-connected, undirected graph. The

(a) (b)

Fig. 3. (a) Spectral Clustering of streamlines in a basilar
tip aneurysm. (b) Spectral embedding of the lines. The
first three largest eigenvectors are shown.

nodes of the graph are the streamlines and the edge weights
are computed according to a symmetric difference measure.
In order for the next steps to work, the edge weights must
be transformed from difference to affinity such that similar
streamlines have a high and dissimilar a low pairwise affinity.
Then, the graph shall be partitioned into two subgraphs. Shi
and Malik propose to use a normalized cut which minimizes
the sum of weights of the edges that need to be removed (cut)
and at the same time balances the sum of edge weights of
the partitions. Unfortunately, solving this problem is NP hard.
However, they show that a relaxed version of this problem
may be solved by spectral graph partitioning using graph
Laplacians.

Let us treat the dataset S with n streamlines as a graph
and define a number of clusters k. (1) In a first step, the n×
n distance matrix M is constructed by defining a symmetric
distance measure, e.g., according to Equation 2, and applying
it in a pairwise fashion to the streamlines in S. (2) Based
on M, the n× n weighted adjacency matrix of the graph is
constructed by applying a function f to the entries of M that
gives high values in case of small differences and converges
to 0 for high differences. The resulting matrix W is referred
to as affinity matrix. As a function, the Gaussian similarity
function is used:

f (mi j) = f (m ji) = exp(−(mi j)
2/(2σ

2)) (3)

The parameter σ controls the width of the function thereby
steering how rapidly the affinity falls off and is mostly user-
defined. (3) Next, a n× n diagonal degree matrix D is
constructed with each diagonal entry dii being the degree of
the node that represents streamline i in the graph. The degree
is simply computed as the sum of weights of the edges incident
to the node. (4) Now, the normalized graph Laplacian L is
computed (see [37] for other variants of graph Laplacians):

L = I−D−1W (4)

with I being the identity matrix. (5) Then, the eigenvectors
and eigenvalues of L are computed by its eigendecomposition.
The eigenvectors corresponding to the smallest k eigenvalues
are then used for clustering. (6) Let U be the n× k matrix
that contains the k eigenvectors as columns. Each row i of U
then represents the coordinates of a point that corresponds to
streamline i in the new space spanned by the eigenvectors. The
process of mapping the streamline to a point in Rk is referred
to as spectral embedding (Fig. 3(b)). It has been discussed in
[37] that this mapping is useful due to properties of graph
Laplacians which induce an enhancement of the clustering
properties of the data. (7) In the new spectral embedding space,
clusters can be trivially detected, e.g., by applying k-means.

5.2.2 Local Scaling and Number of Clusters
The discussed algorithm has two user-defined parameters:
σ (Eq. 3) and the number of clusters k. For their automatic
computation, we adopt and modify the techniques presented
by Zelnik-Manor and Perona [38]. They argue in favor of a
local determination of σ instead of computing a global value.
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The reason is that global values only work well if all clusters
are of the same density. Since we cannot guarantee this for
the streamlines, we adopt their local scaling. Here, a local
σi is computed for each streamline i based on the difference
between i and its N’th neighbor. The Gaussian similarity
function from Equation 3 then changes to:

f (mi j) = f (m ji) = exp(−(mi j)
2/(σiσ j)) (5)

A value of N = 7 has been reported by [38] to give good
clustering results. However, our initial experiments indicated
that in our case N must be set individually for each dataset.
When experimenting with very fine samplings of the ostium
surface for streamline generation, we observed a too coarse
or too detailed clustering. With an increasing density of
streamlines their local neighborhood contains an increasing
number of very similar streamlines, i.e., with short streamline-
to-streamline distance. According to Equation 5, this leads to
very small values in the denominator which in turn results
in affinities close to zero. However, the number of neighbors
of a data entity with an affinity significantly larger than zero
should not be “too small” for SC to work properly [37]. In
tests based on ten datasets, we identified setting N to 5% of
the streamline count as giving satisfactory and stable results
with regard to an increasing ostium sampling.

Zelnik-Manor and Perona suggest an approach for automati-
cally computing the number of clusters k. Instead of specifying
k, the user is asked to provide a range of possible values for
k. The algorithm then iterates over the range and determines
the optimal value. The optimization is based on finding and
grading the optimal rotation between the set of the first k
largest eigenvectors of L and the canonical coordinate system.
In [38], another graph Laplacian than the variant shown in
Equation 4 is used [39]. However, we employ this variant
since it is less likely to produce undesired artifacts [37]. Since
finding the optimal rotation involves the largest eigenvectors
of L, we need to change its definition (Eq. 4) to:

L = D−1W (6)

5.2.3 Summary and Comparison
In summary, SC strives for an optimal partitioning from
a global perspective while hierarchical clustering aims at
making good local decisions. SC can handle arbitrary cluster
shapes. It is biased towards clusters of similar size due to
the balancing of edge weights in the graph cutting. On the
other hand, this property makes it robust against outliers which
was acknowledged in the context of fiber tract length [29].
Our implementation of SC is parameter-free except for the
range of possible numbers of clusters. Since the algorithm
computes all clusterings within this range during optimiza-
tion, the user could also interactively browse the suboptimal
results. However, visually detecting changes is harder than in
hierarchical clustering since they may not be restricted to a
local region. An advantage of SC using local scaling over
hierarchical clustering is its consideration of local changes in
cluster density. This may be particularly useful if streamlines
are seeded with a non-uniform density, e.g., a higher density

near to the aneurysm wall. As for hierarchical clustering, the
bottleneck in terms of time complexity is the computation
of the distance matrix. Table 1 compares both clustering
algorithms with respect to important capabilities.

Capability Spectral Agglomerative Hierarchical Clustering
Clustering Single Complete Average Ward

Shape + + − − −
Size o + − o o

Outlier + − o o +

TABLE 1
Capabilities of Agglomerative Hierarchical Clustering and
Spectral Clustering to handle arbitrarily-shaped clusters,

clusters of significantly different size, and outliers.

6 EVALUATION OF STREAMLINE CLUSTERING
TECHNIQUES

We evaluate Spectral Clustering (SC) and four versions of
Agglomerative Hierarchical Clustering (AHC) based on ten
datasets. Important dataset characteristics, the respective auto-
matically computed number of clusters and the time for com-
puting this number are listed in Table 2. Note that all timings
include the clustering itself since it is part of determining the
optimal number of clusters.

AHC and SC including the computation of inter-streamline
distances are implemented in MATLAB (MathWorks, Natick,
MA, U.S.). Source code of the L-method is provided by
Athanassios Zagouras as part of MATLAB Central’s file
exchange [40]. Source code for the local scaling and the
automatic determination of the cluster number by means of
eigenvector rotation is provided by Zelnik-Manor and Perona
[41]. The computation of distances between streamlines has
been parallelized to work on multi-core architectures by means
of MATLAB’s Parallel Computing Toolbox. The entire code
is exported as a shared library which may then be accessed
from standard C++ code.

Dataset Characteristics: Two different types of saccular
aneurysms are represented by the datasets: side-wall and
basilar tip aneurysms. The datasets of the Virtual Intracranial
Stenting Challenges (VISC) in 2009 and 2010 comprise virtu-
ally stented aneurysms (NF = Neuroform stent, SK = SILK
stent). The aneurysms in the remaining datasets have not been
stented virtually. The 4th column of the table lists the number
of generated streamlines and the 5th column lists the average
number of streamline points. Although the same ostium mesh
has been used for the untreated and the stented case of
VISC 2009, their line numbers differ slightly. This is due to
the integration during streamline generation, which failed to
start at a few different vertices. For the datasets of VISC 2009
and VISC 2010, we employed a very fine-grained sampling
of the ostium leading to a high number of lines. However, the
streamlines of VISC10 NF L and VISC10 SK L have been
generated using the initial sampling since the stent positioning
therein has proven to be less beneficial for the patient [42].
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Dataset Characteristics Number of Clusters (k) Time for Computing Number of Clusters [s]
No. Dataset Aneurysm # Lines # Points (ø) Single Complete Average Ward sc Single Complete Average Ward SC

1 MD side-wall 1816 190 3 10 6 10 9 285 260 264 247 14
2 HB basilar tip 1178 348 39 5 10 7 8 121 114 120 116 7
3 PS basilar tip 1158 310 9 5 9 9 11 121 112 131 110 6
4 VISC09 side-wall 2254 505 8 6 10 9 6 457 371 390 358 20
5 VISC09 SK 2207 249 49 8 8 3 7 344 335 354 336 20
6 VISC10

basilar tip

2929 265 15 10 6 5 8 606 609 615 620 41
7 VISC10 NF R 2923 275 3 8 7 7 8 598 600 629 615 40
8 VISC10 NF L 1153 283 14 6 7 9 15 116 109 119 108 7
9 VISC10 SK R 2891 234 9 6 4 3 12 719 582 613 588 40
10 VISC10 SK L 1138 212 3 9 5 6 9 123 108 110 104 10

TABLE 2
Datasets used in evaluating Agglomerative Hierarchical Clustering (four versions) and Spectral Clustering (SC).

Dataset characteristics, the automatically computed number of clusters, and the time for computing this number are
listed. Cell colors indicate whether k is unacceptable (red), inadequate (yellow), or appropriate (green).

6.1 Number of Clusters

In this section, we investigate which clustering technique, in
conjunction with its method for automatically determining a
number of clusters k, consistently returns a reliable k. The
columns 6 to 10 of Table 2 show the values of k that have
been automatically computed using a given search range. All
AHC versions employed a range of k = [2,#lines]. In SC, we
empirically determined a range of k = [4,20] to be sufficient
for detecting the relevant flow structures in the ten datasets.
The numbers of clusters of each dataset are fairly different
across the algorithms. Consistencies rarely occur and show no
pattern. Strong deviations are observed mostly for AHC with
single link. In order to determine the algorithm that computes
the most reliable k for each dataset, we carefully inspected
the clustering results. A reliable k should lead to clusters
characterized by:

• low intra-cluster streamline variance (high cohesion), and
• high inter-cluster streamline variance (high separation).

To fulfill these requirements, the number of clusters must
not be too small leading to a low cohesion due to the
aggregation of significantly different streamlines. Further, it
should not be too high resulting in a low separation due
to similar streamlines in different clusters. We put special
emphasis on a high cohesion since in a flow summary visu-
alization based on one representative per cluster missing flow
features are less tolerable than overrepresented ones. In order
assess the reliability of a number of clusters, we concurrently
employed three different approaches. All streamlines were
colored according to cluster ID and the possibility to hide and
show individual clusters was added (Fig. 3(a)). This facilitates
a coarse assessment of cohesion and separation. Further, the
visualization could be restricted to streamlines having a dis-
tance larger than an interactively adjustable threshold to their
cluster representative (Fig. 4(a)). If many of such streamlines
together represent an additional flow structure, the cohesion
is poor and k is too small. For instance, the transparent green
lines in Figure 4(a) indicate a swirl which is missing from the
visualization via representatives. In order to further support the
assessment of cohesion and separation, the distance matrix M
is sorted according to cluster ID and displayed as a colored
image (Fig. 4(b)). The cluster borders are indicated by overlaid

lines. For well-separated clusters with a good cohesion, the
reordered matrix should have a block diagonal structure. In
other words, distances inside clusters should be small (dark
colors) and distances outside clusters should be high (bright
colors). The matrix view indicates whether a value for k is too
small (bright colors inside diagonal blocks) or too high (dark
colors outside diagonal blocks as for the two upper leftmost
clusters in Figure 4(b)).

Besides searching for a reliable value of k, we reviewed all
clustering results with respect to the issues which have been
discussed in the context of AHC (Sec. 5.1). In single link
clustering, chaining was observed for nine datasets. A single
cluster contains almost every streamline while the remaining
clusters mostly comprise only a single line (Fig. 5(a)). This
effect was tackled by Yan et al. through a subsequent top-
down balancing of the cluster tree [10]. The trend to break
large clusters was observed in complete link clustering for
three datasets. Here, two similar parts of a large cluster were
not merged due to their high maximum distance. Instead, one
part is merged with a smaller, less similar, but spatially closer
cluster (Fig. 5(b)). Despite the adapted streamline similarity
measure (Sec. 4.2), average link’s sensitivity to outliers lead
to very small-sized clusters in three datasets (Fig. 5(c)). The
effect was also observed for complete link in one dataset. It
is caused by short outliers, which are not similar enough to
neighboring streamlines and are hence grouped in a separate
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Fig. 4. (a) Streamlines deviating strongly from their clus-
ter representative (tubes). (b) Distance matrix reordered
according to cluster ID. Lines indicate cluster borders.



8

(a) (b) (c)

Fig. 5. Clustering issues. (a) Chaining in Agglomerative Hierarchical Clustering (AHC) with single link. A large, red
cluster is generated containing almost every streamline. (b) AHC with complete link tends to break large clusters.
Instead of merging the red and magenta streamlines (left), the red lines are merged with the small blue cluster in the
next step (right). (c) AHC with average link is still sensitive to outlier streamlines (short, yellow lines) if they deviate too
much from neighboring lines (blue). Outliers are grouped separately or with a few, long, “correct” lines.

cluster. Although only a subset of outliers is separated this way
and the generated cluster may as well contain long, “correct”
streamlines, this may be considered a feature of the algorithm.
It could be exploited in an outlier removal preprocessing step.
Note that small-sized, outlier corrupted clusters occurred in
each dataset with average link based on the original MCPD
measure.

In order to identify a reliable number of clusters k for each
dataset, we assigned the computed numbers to three categories.
They were rated as unacceptable if clustering issues were
detected, as inadequate if k was too small or too high, and
as appropriate. The cells of Table 2 are colored accordingly
in red, yellow, and green. The eigenvector rotation associated
with SC delivers a reliable number of clusters ksc in almost
every case. Furthermore, it shows the best computational
performance as can be inferred from columns 11 to 15.
However, the performance of the L-method may be improved
by cutting off unlikely high numbers of clusters from the full
evaluation graph used for determining k [35].

6.2 Quality of Clustering Results
Having identified a method, which consistently returns a reli-
able number of clusters ksc, we seek the clustering algorithm
which produces the best results based on ksc. Different mea-
sures of goodness have been proposed in clustering literature.
In the absence of a ground truth, unsupervised measures of
cluster validity are appropriate [32]. They are also called
internal indices since they are purely based on information
present in the data. We employed three internal indices which
measure different aspects of the data (see [33] for a survey
and implementation details):
• Silhouette Width: Non-linear combination measure of

cluster cohesion and separation. Values are in the range
[−1,+1] and should be maximized.

• Connectivity: Local measure reflecting the degree to
which the L closest streamlines are placed in the same
cluster. Values are in the range [0,+∞] and should be
minimized. In our computations, we set L = 20.

• Hubert’s Γ Statistic: Measure of correlation between
the distance matrix M and an idealized distance matrix
(distance is 0 for streamlines in the same cluster and 1,

otherwise). Values of the normalized statistic are in the
range [−1,+1] and should be maximized.

After each AHC version was forced to generate ksc clusters,
the internal indices were computed. The results are presented
in Figure 6. Bars with no filling correspond to clustering
results rated as unreliable due to artifacts caused by outliers.
The silhouette width of single link is unsurprisingly poor, due
to the chaining effect. Complete link performs better having
an average width of 0.28. Average link, Ward’s method and
SC perform equally well and exhibit the highest silhouette
widths. A drawback of the silhouette is that it favors algo-
rithms creating globular clusters [33]. Hence, algorithms which
correctly identify elongated or concave clusters, e.g., single
link and SC, may be assigned a lower silhouette than failing
algorithms. Since in clustering streamlines only distances
between data entities but not the cluster structure itself is
known, the assumption of globular clusters may be invalid
and the silhouette width must be employed carefully. For fiber
tracts, the non-globular nature of clusters has already been
acknowledged [27].

Single link clustering by far achieves the best connectivity
values. This is due to its proximity measure which strives for
a merge with the nearest neighbor. This bias has already been
acknowledged in [33]. The second and third best connectivity
values are achieved variably by average link and Ward’s
method. Complete link exhibits the highest values of all AHC
versions since its proximity measure is based on the furthest
neighbor. The connectivity of SC also shows high values.
The fact that single link, average link and Ward’s method
lead to better connectivity values is not justified by a better
clustering result but by the way how the algorithms work and
how connectivity is computed. The computation starts with
a connectivity of zero. It adds the highest penalty value if
the nearest neighbor is not included in the same cluster. This
rarely occurs in AHC since each version starts by aggregating
the nearest singleton clusters (Fig. 7). SC aims at a global
optimization and occasionally adds the nearest neighbor to
another cluster if this is beneficial for the final result. Due
to the bias of connectivity towards the AHC approaches, its
usefulness in assessing SC is questionable. Also for single
link it may not be expressive since it does not reflect chaining
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Fig. 6. Internal cluster indices of the datasets in Table 2. Agglomerative Hierarchical Clustering (four versions) and
Spectral Clustering (SC) are compared. Clustering was carried out using the number of clusters suggested by SC.
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Fig. 7. Count of connectivity penalties of dataset 1 in
Table 2. If the i th nearest neighbor of streamline s is not
in the same cluster as s, a penalty is assigned (i ∈ [1,20]).

which occurred in all clustering results based on ksc.
Hubert’s Γ Statistic shows poor results for single link

due to the chaining effect. In the one large cluster, very
dissimilar streamlines are grouped together leading to very
poor correlation values. Complete link, Ward’s method and
SC exhibit similar results on average. The highest values are
obtained for average link by a rather narrow margin. Again
SC suffers from not promoting the assignment of nearest
neighboring streamlines to the same cluster in the beginning.
Small distances between streamlines in different clusters are
hardly penalized by Hubert’s Γ Statistic. Hence, this measure
also favors algorithms creating globular clusters.

7 CONCLUSION

We evaluated Spectral Clustering and Agglomerative Hierar-
chical Clustering with single link, complete link, average link,
and Ward’s method in the context of blood flow clustering.
The evaluation of each technique included a method for
automatically determining a reliable number of clusters. It was
based on streamlines generated for ten datasets conveying the
flow patterns in five different intracranial aneurysms.

The eigenvector rotation associated with Spectral Clus-
tering delivered a reliable number of clusters ksc in 9 of
10 datasets. The L-method associated with Agglomerative
Hierarchical Clustering and Ward’s method placed a distant
second with 5 of 10 datasets. Furthermore, the eigenvector
rotation performed a factor of 16−17 faster than the original
implementation of the L-method. However, the performance of
the L-method may be improved by cutting off unlikely high
numbers of clusters from the full evaluation graph used for

determining k [35]. Note that the timings in the last column
of Table 2 also refer to the entire clustering process, since the
determination of a reliable k includes the clustering itself.

Having identified a reliable number of clusters for each
dataset, all clustering techniques were reapplied but this time
based on ksc. In order to assess the goodness of each clustering
result, three internal cluster indices were computed: silhouette
with, connectivity, and Hubert’s Γ statistic. External indices
could not be applied since no ground truth exists for clustering
blood flow, neither with respect to the number of clusters nor
regarding the grouping of similar lines.

In summary, single link is not suitable for clustering blood
flow because of the chaining effect. Complete link generates
better clusters but its tends to break large clusters. Further, its
connectivity is rather poor and its silhouette width indicates
a worse cluster cohesion and/or separation as compared to
the remaining algorithms. Average link shows good results
for all internal indices despite being sensitive to outliers. This
sensitivity could be exploited in a preprocessing step including
outlier detection and removal. Ward’s method and Spectral
Clustering perform equally well with respect to the silhouette
width and Hubert’s Γ Statistic and they are not sensitive to
outlier streamlines. Together with average link after outlier
removal, they can be recommended for clustering blood flow.
With regard to a fully automatic clustering however, average
link and Ward’s method should be coupled either with a
different method for automatically determining a reliable k or
the L-method should be tested with other evaluation metrics.

Further studies may investigate the overlap of the different
clustering results. Initial comparisons based on the Rand Index
(RDI) and the Adjusted Rand Index (ARDI) [43] revealed
on average a considerable overlap but also differences which
are worth investigating: average link vs. Ward’s method:
RDI = 0.89 and ARDI = 0.60, average link vs. SC: RDI = 0.85
and ARDI = 0.48, and Ward’s method vs. spectral clustering:
RDI = 0.91 and ARDI = 0.59. Values of the RDI and ARDI
are in the range [0,1] and should be maximized.
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[23] A. Pobitzer, A. Lež, K. Matković, and H. Hauser, “A Statistics-based
Dimension Reduction of the Space of Path Line Attributes for Interactive
Visual Flow Analysis,” in Pacific Vis, 2012, pp. 113–120.

[24] R. van Pelt, J. Olivan Bescos, M. Breeuwer, R. Clough, M. Groller, B. ter
Haar Romeny, and A. Vilanova, “Interactive virtual probing of 4d mri
blood-flow,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 17, no. 12, pp. 2153–2162, 2011.

[25] K. Bidmon, S. Grottel, F. Bös, J. Pleiss, and T. Ertl, “Visual Abstractions
of Solvent Pathlines near Protein Cavities,” Computer Graphics Forum,
vol. 27, no. 3, pp. 935–942, 2008.

[26] C.-K. Chen, S. Yan, H. Yu, N. Max, and K.-L. Ma, “An illustrative
visualization framework for 3d vector fields.” Comput. Graph. Forum,
vol. 30, no. 7, pp. 1941–1951, 2011.

[27] J. Klein, P. Bittihn, P. Ledochowitsch, H. K. Hahn, O. Konrad,
J. Rexilius, and H.-O. Peitgen, “Grid-based Spectral Fiber Clustering,”
in SPIE Medical Imaging: Visualization and Image-Guided Procedures,
vol. 6509, 2007, pp. 65 091E–65 091E–10. [Online]. Available: +
http://dx.doi.org/10.1117/12.706242

[28] L. O’Donnell, A. J. Golby, and C.-F. Westin, “Tract-based morphometry
for white matter group analysis,” NeuroImage, vol. 45, pp. 832–844,
2009.

[29] S. Zhang, S. Correia, and D. Laidlaw, “Identifying white-matter fiber
bundles in dti data using an automated proximity-based fiber-clustering
method,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, no. 5, pp. 1044 –1053, 2008.

[30] M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada,
A. Morita, and T. Kirino, “Magnitude and role of wall shear stress on
cerebral aneurysm: Computational fluid dynamic study of 20 middle
cerebral artery aneurysms,” Stroke, vol. 35, no. 11, pp. 2500–2505, 2004.

[31] I. Corouge, S. Gouttard, and G. Gerig, “Towards a shape model of white
matter fiber bundles using diffusion tensor mri,” in ISBI, 2004, pp. 344–
347.

[32] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison Wesley, 2005.

[33] J. Handl, J. Knowles, and D. B. Kell, “Computational cluster validation
in post-genomic data analysis.” Bioinformatics, vol. 21, no. 15, pp.
3201–3212, Aug 2005.

[34] L. Ferreira and D. B. Hitchcock, “A comparison of hierarchical methods
for clustering functional data,” Communications in Statistics - Simulation
and Computation, vol. 38, no. 9, pp. 1925–1949, 2009.

[35] S. Salvador and P. Chan, “Determining the Number of Clusters/Segments
in Hierarchical Clustering/Segmentation Algorithms,” in Tools with
Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Con-
ference on, 2004, pp. 576 – 584.

[36] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 8,
pp. 888 –905, aug 2000.

[37] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[38] L. Zelnik-Manor and P. Perona, “Self-tuning Spectral Clustering,” in
Advances in Neural Information Processing Systems 17. MIT Press,
2004, pp. 1601–1608.

[39] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing
Systems (NIPS), 2001, pp. 849–856.

[40] “A. Zagouras. L-method,” www.mathworks.com/matlabcentral/fileexchange/37295-
l-method/content/Lmethod.m.

[41] “L. Zelnik-Manor. Self-Tuning Spectral Clustering - MATLAB sources,”
www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html.
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