
Eurographics Workshop on Visual Computing for Biology and Medicine (2012)
T. Ropinski, A. Ynnerman, C. Botha, and J. Roerdink (Editors)

Visualization and Exploration of 3D Toponome Data

S. Oeltze1 and P. Klemm1 and R. Hillert2 and B. Preim1 and W. Schubert2

1Department of Simulation and Graphics, University of Magdeburg, Germany
2Molecular Pattern Recognition Research Group, University of Magdeburg, Germany

Abstract

The toponome of a cell describes the location and topological distribution of proteins across the cell. In topo-
nomics, the toponome is imaged and its inner structure and its semantics are investigated in order to understand
how cells encode different functionalities both in health and disease. Toponome imaging results in complex multi-
parameter data composed of a 3D volume per protein affinity reagent. After imaging, the data is binarized such
that 1 encodes protein present and 0 encodes protein absent. Biologists are particularly interested in the clustering
of these binary protein patterns and in the distribution of clusters across the cell.
We present a volume rendering approach for visualizing all unique protein patterns in 3D. A unique color is
dynamically assigned to each pattern such that a sufficient perceptual difference between colors in the current
view is guaranteed. We further present techniques for interacting with the view in an exploratory analysis. The
biologist may for instance “peel of” clusters thereby revealing occluded cell structures. The 3D view is integrated
in a multiple coordinated view system. Peeling off clusters or brushing protein patterns in the view updates all
other views. We demonstrate the utility of the view with a cell sample containing lymphocytes.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical
Sciences—Biology and genetics

1. Introduction

While the human genome project has revealed the code for
all proteins, the next big challenge is to understand how
proteins cooperate in cells and tissues in time and space
[Sch10]. Although many details on the molecular function
and structure of many proteins are known, their correspond-
ing cellular functions cannot simply be derived. This is due
to a dependence of the function on the contextual position
of a given protein within a protein network. The toponome
of a cell describes its functional protein pattern, i.e. the loca-
tion and topological distribution of proteins. In toponomics,
the toponome is imaged, explored and analyzed for appli-
cations in toxicology, drug development and patient-drug-
interaction. Toponome imaging results in complex multi-
parameter data composed of a 3D volume per protein affin-
ity reagent. In a post-processing step, the data is binarized
such that 1 encodes protein present and 0 encodes protein ab-
sent. For each data voxel, a binary vector can be constructed
over all volumes, which then encodes the local protein co-
mapping. Biologists are interested in answering questions
such as: Which proteins co-map with which frequency?,

Where across the cell surface do the binary protein patterns
cluster?, and How does the clustering differ from cell to cell?
These questions guide our research. In previous work, we
developed a graph view which encodes co-mapping proteins
and co-mapping frequency [OFH∗11].

Here, we present a volume rendering approach that gen-
erates an integrated 3D visualization of all protein affinity
reagent volumes. It is based on the assignment of a unique
color to each unique binary protein pattern. Since several
thousands of such patterns may exist in a dataset, we offer a
dynamic color range distribution for the current view on the
data, e.g., a close-up view of a cell. The algorithm then gen-
erates a set of unique, perceptually optimized colors for the
currently visible patterns. Thus, the visual differentiability of
these patterns is improved. To support an exploratory analy-
sis of the toponome, the 3D view is equipped with several in-
teraction techniques, e.g., similarity brushing. Furthermore,
it is integrated via linking in a multiple coordinated view
system. Brushing and linking supports the biologist in de-
ciphering the toponome code. We demonstrate the utility of
the 3D view with a cell sample containing lymphocytes.
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(a) (b) (c)
Figure 1: a: Original fluorescence signal in a single slice. b: The same slice as in (a) after thresholding. White pixels indicate
protein present. c: Generation of combinatorial molecular phenotypes and display in a 2D toponome map. For each pixel, the
binary fluorescence signal of all protein affinity reagents is collected in a combinatorial binary code (table columns). The set of
unique binary codes (combinatorial molecular phenotypes) is computed and each code is assigned a color. A toponome map is
generated by mapping each pixel to its corresponding color (right subimage).

2. Biological Background

This section explains the toponome and how it is imaged.
Further, it introduces combinatorial molecular phenotypes,
which serve as the input for the 3D visualization.

2.1. The Toponome

The entirety of all protein networks, in which proteins are
defined by their protein-to-protein context in any given cell,
is defined as the toponome [FBKS07, SBP∗06, SGK∗11]. Its
inner structure, its biological code, and its semantics are
investigated in toponomics. It has been shown that the to-
ponome is hierarchically organized [SBP∗06]. It comprises
protein clusters which contain lead proteins and are inter-
locked as a network. The lead proteins control the topology
of the clusters and their function as a network. However,
neither a lead protein nor the protein cluster which is con-
trolled by it can be predicted from molecular data. Thus, the
toponome must be imaged in human cells or tissues to un-
derstand how cells encode different functionalities both in
health and disease. This is essential for finding new drugs in
cancer and for detecting protein clusters that can be regarded
as a new system of biomarkers in disease [Sch10, SGK∗11].

2.2. Imaging the Toponome

The most advanced technique for imaging the toponome
is robot-driven multi-parameter fluorescence microscopy
TISTM. It is based on a cyclical procedure in which a tag li-
brary (specific affinity reagents recognizing proteins) is con-
jugated to one and the same dye. An imaging robot applies
these tags to a fixed cell or tissue sample [FBKS07]. It starts
with the first dye-conjugated tag and applies it to the sam-
ple. The resulting fluorescence image is then captured by a
CCD camera, which is connected to an epifluorescence mi-
croscope. In the last step of the cycle, the dye is bleached
gently to avoid any energy transfer into the remaining pro-
teins [SBP∗06]. Then, the second tag is applied and so on.

The labeling of 100 proteins in 100 cycles has been demon-
strated [SBP∗06,SGK∗11]. Imaging can be performed in 3D
by modifying the microscope’s focal plane. The acquisition
of a 3D dataset is costly and may take longer than a day.

2.3. Combinatorial Molecular Phenotypes

After imaging the toponome, a thresholding algorithm is ap-
plied to the fluorescence signal (Fig. 1a-1b). This generates
a combinatorial binary code for each voxel where 0 indicates
protein absent and 1 indicates protein present [BDS10]. The
unique binary codes that exist in the data, out of all possi-
ble codes, are referred to as combinatorial molecular phe-
notypes (CMPs). A simple technique for visualizing CMPs
of a single volume slice is the assignment of a unique color
to each CMP and the display of the slice as a colored im-
age also known as toponome map. The generation of CMPs
and of the toponome map are illustrated by Figure 1c. The
binary code that corresponds to a certain CMP very often ex-
ists at several pixel/voxel positions. These positions are not
randomly spread over the data but clustered at certain loca-
tions of the cells. The biologist is interested in these protein
clusters since they correspond to functional units of the cells.

3. Related Work

3D microscopy data may consist of a single channel or mul-
tiple channels, with each channel showing a different aspect
of the data. The most wide-spread visualization technique
for 3D microscopy data is direct volume rendering.

3.1. Single-Channel 3D Microscopy Data

Sakas et al. presented a pipeline for visualizing confocal
laser scan microscopy (CLSM) data [SVP96]. They inte-
grated Maximum and Minimum Intensity Projection as well
as full volume rendering into the rendering step. The vol-
ume visualization system VolVis was presented by Kauf-
man in the context of investigating CLSM datasets of nerve
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cells [Kau98]. It supports surface as well as volume ren-
dering and offers global rendering effects such as shadows
and reflections. Fang et al. described an approach for mi-
croscopy data exploration with a focus on the intuitive de-
sign of transfer functions [FDM∗00]. They employed an
image-based model which defines a transfer function as a se-
quence of 3D image processing steps, e.g., intensity thresh-
olding and boundary detection. An approach for the recon-
struction of cellular structures from optical microscopy data
was proposed by Mosaliganti et al. [MCS∗08]. They em-
ployed sophisticated techniques for extracting cells and sep-
arating overlapping cells. The resulting, individually colored
cells were then visualized through volume rendering. In re-
cent work, Guo et al. presented a novel volume illustration
technique [GYL∗12]. It simulates an optical phenomenon in
interference microscopy, which accounts light interference
over transparent specimens, and thereby enhances the image
contrast and structure details.

3.2. Multi-Channel 3D Microscopy Data

Razdan et al. worked on the visualization of multicolor laser
confocal microscopy data [RPFC01]. In such data, three
lasers providing light at different wavelengths reveal differ-
ent substances in the same field of view. A RGB compos-
ite rendering was generated by means of ray-casting. A vol-
ume rendering system for confocal and two-photon fluores-
cence microscopy data was presented by Clendenon et al.
[CPS∗02]. They focused on a near real-time visualization of
multichannel image stacks on standard PCs by exploiting 3D
graphics processors. DeLeeuw et al. presented the ARGOS
system for an interactive exploration and batch processing
of confocal laser microscopy data [dLVvL06]. They linked
a volume rendering of the image data to attribute views,
e.g., parallel coordinates, which were equipped with brush-
ing facilities. Bruckner et. al presented a system for an inte-
grated visualization, exploration and annotation of anatom-
ical brain microscopy data and molecular genetic data of
fruit flies [BŠG∗09]. The microscopy data was visualized
through volume rendering with Maximum Intensity Differ-
ence Accumulation as a projection method. Wan et al. devel-
oped an interactive tool for visualizing multi-channel confo-
cal microscopy data [WOCH09]. Multidimensional transfer
functions and several compositing techniques were imple-
mented for an integrated visualization of up to three chan-
nels. The approaches creating an integrated visualization of
several data channels are closest to our work. However, none
of these approaches can handle an arbitrary number of binary
data channels (Sec. 2.3).

4. Analysis Framework and Prior Visualization

This section comprises a brief discussion of the in-house to-
ponome analysis framework of our collaborators and their
prior way of visualizing the 3D toponome data in an off-line
process, i.e., outside the framework.

Figure 2: Toponome analysis framework. Multiple views are
implemented, such as a table view listing all CMPs as rows
(left) and a toponome map showing the location of CMPs
selected in the table (right). The toponome map is super-
imposed on a grayscale phase contrast image. Each ring-
shaped structure represents a cell.

4.1. Toponome Analysis Framework

The in-house toponome analysis framework implements
multiple coordinated views: a filter view, a table view (Fig. 2,
left), a toponome map (Fig. 2, right), and a recently added
graph view [OFH∗11]. All views are linked and equipped
with brushing facilities. If a selection is brushed in one view,
it is merged with the selections from all other views and
the result is propagated to all views. The filter view facili-
tates the definition of a template CMP by setting the filter
for each affinity reagent to zero, one or no filtering. The ta-
ble view lists all CMPs as rows. Each selected row is as-
signed a unique color, which serves as an identifier for this
CMP in all views. The table is linked, e.g., to the toponome
map, such that the user may select individual CMPs and ob-
serve their spatial locations in the cell/tissue sample. The
toponome map is often superimposed on a phase contrast
image, which serves as a spatial reference (Fig. 2, right).
In these images, a relatively clear distinction between cell
surface, nucleus, and background is possible. The frame-
work further contains a graph view which encodes the co-
mapping of proteins (edges) and the co-mapping frequency
(edge width).

4.2. Prior Visualization of 3D Toponome Data

Until now, our collaborators applied the commercial soft-
ware IMARIS (Bitplane AG, Zurich, Switzerland) for gen-
erating volume renderings of their 3D toponome data in an
off-line process. The entire procedure for visualizing a 3D
toponome dataset took them 1− 2 workdays. Besides the
high expenditure of time, a visualization at interactive frame
rates in IMARIS is restricted to ≈ 30 different CMPs on a
machine with 4 GB of working memory. Hence, our collab-
orators focused on the 30 most frequent CMPs out of a set
that may comprise several 1000 CMPs. In the following, we
describe the time-consuming visualization procedure. Since
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the in-house framework could only handle 2D data so far,
each volume slice was processed separately. At first, the 30
most frequent CMPs of the volume’s middle slice were de-
termined. Although these might not have been the most fre-
quent ones in the remaining slices, they were treated as such
in order to generate an inter-slice coherent visualization. In a
next step, all n slices were processed sequentially: an image
was generated per CMP, showing its locations in this spe-
cific slice, the image was screen captured and stored. For a
common number of slices n = 20, this resulted in 600 screen
captures which were then loaded into IMARIS. Each set of
images showing the same CMP had to be loaded as a sep-
arate channel and perceptually well separated colors had to
be defined manually and assigned to the channels.

5. Visualization and Exploration Methods

This section starts with a description of the toponome data,
which we employ for demonstration purposes. Then, it elab-
orates on our volume rendering approach for visualizing the
data, which has been integrated in a newly added 3D view of
the toponome analysis framework. Finally, it discusses the
equipment of the 3D view with interaction facilities.

5.1. Toponome Data

Our methods have been applied to a cell sample contain-
ing blood lymphocytes of a healthy subject. Lymphocytes
are frequently related to causing chronic inflammatory dis-
eases by entering healthy tissues. In imaging the sample, a
large tag library, containing monoclonal antibodies directed
against cluster of differentiation (CD) marker proteins, was
used. CD marker proteins are expressed, among others, on
the surface of immune cells such as lymphocytes. A major
challenge is to decipher the cell surface toponome code of
these cells in order to detect disease specifics. In this study,
32 CD surface proteins have been co-mapped on the sample
(Sec. 2.2). The sample has been imaged at 20 slice locations
with a matrix of 658×517 pixels, an in-plane-resolution of
216×216 nm and a slice distance of 200 nm. The data has
been binarized and imported into the framework, which de-
tected 2167 CMPs (see [FBKS07] for detailed information
on sample preparation, data acquisition, and thresholding).

5.2. Volume Rendering of 3D Toponome Data

The combinatorial molecular phenotypes (CMPs) serve as
an input for the volume rendering (recall Sec. 2.3). They are
stored per slice in XML files. Each file contains the CMPs
of the slice and the pixel positions per CMP. In order to con-
struct a 3D dataset, the XML files are read in and an empty
dataset is generated, whose dimensions correspond to those
of the measured data. Then, each CMP is assigned a unique
RGBA value and this value is stored at those voxels of the
new dataset which are associated with the respective CMP
(RGBA computation will be discussed in Section 5.3).

(a)

(b)
Figure 3: (a) Overview of a cell sample containing lym-
phocytes (hemisphere-shaped structures). Each of the 2167
CMPs is assigned a unique color. Very small structures
are likely to represent noise. (b) A globally assigned trans-
parency visually suppresses these structures. A subset of the
major cell types is annotated.

A crucial aspect of volume rendering is the definition of
transfer functions for mapping data values to color and trans-
parency. Often, a color scale together with a range of trans-
parency values between zero and one are defined and dis-
cretized for that purpose. In our case, a color has already
been defined and associated to each data value which ren-
ders a mapping unnecessary. The application of transparency
to visualizing toponome data is challenging. An increased
transparency induces color mixing which hampers the iden-
tification of CMPs by their unique color. This scenario is
very likely, since a cell or tissue section often contains het-
erogeneous regions with respect to CMP distribution. At a
given pixel position, a different CMP may exist in each slice
or all neighboring pixels in the same slice may exhibit dif-
ferent CMPs. Nevertheless, a semi-transparent visualization
proved to be valuable in getting an initial overview of the
data, in visually suppressing noise and in an interactive data
analysis. The latter will be described in Section 5.4. The ex-
ploration of 3D toponome data starts with an overview vi-
sualization (Fig. 3a). Here, the biologist is particularly inter-
ested in the location of cells and in dominant CMP clusters.
In case of noise or a high frequency of other small struc-
tures that visually overlap with the structures of interest, an
increased global transparency simplifies the retrieval of this
information (Fig. 3b). It visually suppresses small structures
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(a) (b)
Figure 4: (a) Ray casting using nearest neighbor interpo-
lation at sample points. (b) Trilinear interpolation improves
the recognition of depth information and cell surface mor-
phology. However, mixed colors occur at transitions between
different CMP clusters and between a cluster and the back-
ground (arrows in inset).

while large regions exhibiting identical CMPs remain visi-
ble due to a higher accumulated opacity. The global trans-
parency is adjustable and initially set to zero.

The volume rendering has been implemented employ-
ing the open-source Visualization Toolkit (VTK, Kitware,
Clifton Park, NY, U.S.). VTK offers fast volume rendering
techniques exploiting graphics hardware, it implements 3D
interaction techniques, e.g., picking, and it is freely avail-
able. Furthermore, it integrates well with the existing frame-
work written in C#, by means of the ActiViz software (VTK,
Kitware, Clifton Park, NY, U.S.). In VTK, two hardware-
accelerated volume rendering techniques are integrated: 3D
texture mapping and GPU-based ray casting. We employ
the latter, since it is better suited for interactive applications
where the input dataset is constantly updated, e.g., through
brushing operations. These updates significantly slow down
the texture mapper since it always resamples the data to be
a power of two in each direction before rendering. In ray
casting, the data is sampled along each ray. At each sample
position, the corresponding data value is interpolated based
on the neighboring values. VTK implements nearest neigh-
bor and trilinear interpolation. We apply the latter since the
resulting visualization better conveys depth information and
cell surface morphology (Fig. 4). A drawback of trilinear in-
terpolation is the generation of mixed colors along the border
between two CMP clusters or a cluster and the background
(arrows in inset of Fig. 4b). However, the corresponding re-
gions are very narrow and hence can be distinguished from
the real data. The sample distance along the ray as well as
the image sampling density have a strong impact on the im-
age quality. If either of them is too low, aliasing artifacts
occur. VTK’s default values for the sample distance and the
sampling density are 1.0 and one ray per pixel, respectively.
These settings led to an artifact-free visualization in all our
experiments. However, a rendering at interactive frame rates

(a) (b)
Figure 5: (a) Close-up view of a cell and a neighboring cell
(upper left). A large CMP cluster appears turquoise in both
cells. (b) A color range redistribution for the same view re-
veals the true variety of CMPs (insets). It shows that the
visible CMP cluster of the neighboring cell differs from the
largest cluster of the focused cell.

is hampered for large render windows, e.g., 1600×1200 pix-
els. As a solution, VTK offers an automatic adjustment of
the parameters to a desired update rate, which we set to 15
frames per second. This guarantees a fluent interaction but
also causes aliasing artifacts. Hence, we turn the automatic
adjustment on when the user is interacting with the scene
and turn it off again when interaction stops.

5.3. Perceptually Optimized Coloring

Color serves as CMP identifier across all views of the
toponome analysis framework. It is crucial that different
CMPs, i.e., their associated colors, may be well discrimi-
nated by the biologist. However, a toponome dataset is likely
to contain several thousand CMPs. While generating a dif-
ferent color for each CMP is technically possible, visually
discriminating these colors by far exceeds the capabilities of
the human visual system. Hence, we offer a dynamic color
range distribution, that can be activated for the current view
on the data, e.g., a close-up view of a particular cell (Fig. 5).
It then generates a set of colors with a sufficient percep-
tual difference for the currently visible CMPs. The colors
are transfered to all other views for a coherent visualization.
The color range distribution is carried out before the dataset
is initially displayed. The user may trigger a redistribution
for the current view at any time of the exploration process. In
the following, we provide details on the implemented color
range distribution algorithm. It strongly improves the former
coloring algorithm, which was independent of the number of
CMPs and generated 255 shades of color by uniformly sam-
pling the perceptually non-linear RGB color space.

At first, an initial pool of colors is computed in HSV color
space by a regular sampling of each component (Alg. 1).
From this pool, the n colors, which will be associated to the n
visible CMPs, will be drawn. When computing the pool, the
hue component is sampled over the full range of 360◦ with a
sample distance of 360◦/n. For the saturation S and the value
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Algorithm 1 Compute pool of colors in HSV space.
counter← 0
degree_incr← 360/n
for hue = 0→ 359 incr : degree_incr do

for saturation = 60→ 100 incr : 10 do
for value = 70→ 100 incr : 10 do

colors[counter]← [hue,saturation,value]
counter← counter+1

end for
end for

end for

V component, only a subrange of [0,100] is considered in or-
der to avoid undersaturated and too dark colors. Both, S and
V are iteratively incremented by 10, within the subranges
[60,100] and [70,100], respectively. With this computation
scheme, n hue samples, 5 saturation samples per hue sample
and 4 value samples per saturation sample are employed re-
sulting in a color pool size of n× 5× 4. Less saturated and
darker colors are computed first. They will later be assigned
to CMPs with a high frequency of occurrence while highly
saturated and bright colors will be assigned to CMPs with
a low frequency of occurrence. Thus, large protein clusters
remain well visible due to their size and small clusters are
easier to perceive due to a striking coloring.

In the next step, the n visible CMPs of the current view are
computed by casting a ray per pixel into the scene and deter-
mining each intersected voxel and the corresponding CMP.
Finally, n colors with a sufficient perceptual difference are
drawn from the pool. We compute the difference in the per-
ceptually linear CIELab color space, since a difference be-
tween two colors there corresponds well to their perceived
difference. As a difference measure, the Euclidean distance
is employed [Sha03]. To facilitate distance computations,
the color pool is transformed from HSV to RGB [Smi78]
and from RGB to CIELab space [JL07]. Before the n colors
are drawn, a distance threshold is defined beyond which two
colors are considered as sufficiently different. If the thresh-
old is too high, the number of colors that can be drawn is
too small. If its is too small, the colors are not perceived as
different. Hence, the threshold is determined in an iterative
process. The iteration starts with a high value and decreases
the value down to the just noticeable difference (JND) of two
colors in CIELab space which is≈ 2.3 [Sha03]. The iteration
is terminated once n colors could be determined. The initial
threshold as well as the step size for decreasing it have been
determined empirically and set to 2.3+ 30 and 0.5, respec-
tively. A higher initial threshold led to very small color sets,
e.g., containing just a single entry. During each step of the
iteration, the algorithm tries to draw a set of n colors from
the pool. It starts with the first color and adds it to the set.
Thereafter, the distance between this color and the second
color is computed. If it is higher than the current threshold,
this color is also added. If not, the algorithms proceeds with

(a) (b)
Figure 6: Close-up views of a T4 (a) and a neighboring T8
lymphocyte (b). Note the strikingly different toponomes.

the third color and measures its distance to the first one and
so fourth. If more than a single color is contained in the al-
ready drawn set, distance tests are carried out between the
new color and each of the set members. Only if all tests are
passed, the new color is added.

The computation time of the color range distribution de-
pends on the view size and the percentage of background
pixels (black image regions). For a view size of 1600×1200
pixels and an overview of the dataset as in Figure 3, the time
is 4.4s. For the same view size and a close-up view as in
Figure 6a, the time is longer (6.2s) due to a lower percentage
of background pixels. A drawback of the current approach
is that the colors of the CMPs which are outside the cur-
rent view are not taken into account. Hence, these colors
may also be assigned to CMPs within the view. This poses a
problem once the user changes the view, e.g., to an overview
representation. In such a case, the color range distribution
should be triggered again.

5.4. Interactive Exploration of 3D Toponome Data

In this section, we describe our methods for interacting with
the 3D view in an exploratory analysis. After the dataset
has been loaded, all CMPs are listed and automatically se-
lected in the table view. Due to linked views, this gener-
ates an overview visualization of the cell sample in the 3D
view (Fig. 3a). The biologist then modifies the global trans-
parency in order to get an overview of the most prominent
CMPs (Fig. 3b). Since the table is initially sorted from top to
bottom according to decreasing CMP frequency, these CMPs
are listed at its top. This together with the overview helps the
biologist in identifying the cell types which are contained in
the sample. For example, the cluster of differentiation (CD)
marker protein CD4 binds to the surface of T4 lymphocytes.
If now CMPs are listed in the table with an entry of 1 in
the column representing CD4 and if the corresponding re-
gions cover large parts of a cell’s surface in the 3D view,
this cell represents a T4 lymphocyte. In the present sample,
for instance T4 and T8 lymphocytes as well as monocytes
and thrombocytes may be observed. In Figure 3b, T4 lym-
phocytes, which activate and direct other immune cells, ap-
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(a) (b)
Figure 7: Similarity brushing of a T8 lymphocyte. (a) The
biologist brushes an interesting part of the cell surface. (b)
The corresponding CMPs are determined across all slices
and the 3D visualization is restricted to these CMPs. A phase
contrast image stack is volume rendered in grayscale mode
and integrated into the scene as a spatial frame of reference.

pear as red and greenish sprinkled hemispherical structures.
T8 lymphocytes destroy cells which are effected by a virus.
Large parts of their surface are colored in turquoise. Mono-
cytes are another type of white blood cells and appear as
mostly blue structures. They are important in immune func-
tion and often serve as antigen presenting cells. Thrombo-
cytes are the light red, small, solid structures in between the
hemispherical cells. They play a role in blood coagulation.
Please note that the coloring of the cells may change across
the figures due to color range redistribution (Sec. 5.3).

For our collaborating biologist, the T4 and the T8 lym-
phocytes are of high interest. Hence, he zooms in to one of
these cells and applies a color range redistribution (Fig. 6).
Then, the proteins that contribute to the visible CMPs need
to be identified. This may be accomplished sequentially by
memorizing the color of each CMP and then searching for
this color within the selected rows of the table view (Fig. 2).
The entries in a detected row which are equal 1 then rep-
resent the co-mapped proteins. This approach has several
drawbacks. It involves frequently changing the point of gaze
between table and 3D view in order to recall the color of
interest. This is further complicated as soon as scrolling the
table is required. Furthermore, once the row of interest has
been detected it needs to be scanned for its entries equal 1.
We avoid these problems by implementing a CMP probing
through mouse-over interaction. During mouse movement,
a ray is cast into the scene starting from the current mouse
pointer position. The first hit non-background voxel is re-
ported, the corresponding CMP is extracted, and the names
of its co-mapped CD marker proteins are rendered as text at
the mouse pointer position. Further, the table row represent-
ing this CMP is moved to the top in order to avoid scrolling.

While the biologist samples the cell’s surface, he mentally
constructs a molecular “face” of the cell which he later com-
pares to the “face” of other cells, e.g., for detecting (patho-

(a) (b)
Figure 8: CMP peeling of a T4 lymphocyte. (a) Initial view
showing all CMPs. The CMP with a single entry equal 1 for
the cluster of differentiation (CD) marker protein CD3 shall
be peeled off (CD3 is found in the membrane of T4 and T8
lymphocytes). (b) A CMP with entries equal 1 for CD3 and
CD4 is revealed (CD4 is specific to T4 lymphocytes).

logical) variations. We support this comparison by similar-
ity brushing (Fig. 7). Here, a cell surface part is brushed
in screen space, the corresponding CMPs are determined
across all slices and the visualization in all views (includ-
ing the 3D view) is restricted to these CMPs. Thus, regions
containing at least one of the brushed CMPs are revealed.
In practice, the biologist defines a rectangular ROI enclos-
ing a cell surface part. Then, rays are cast into the scene for
each ROI pixel. Finally, all hit non-background voxels and
the corresponding CMPs are determined per ray. In order to
augment the 3D visualization, which is restricted to a sub-
set of CMPs and hence, to certain cell parts, a phase contrast
image stack is volume rendered and integrated into the scene
as a spatial reference (Fig. 7b). The reference is rendered in
shades of gray and a global transparency is assigned such
that a trade-off between a good visibility of the brushed data
and a clear visibility of reference structures is achieved. The
reference volume approach has been adopted from superim-
posing a toponome map on a phase contrast image (Sec. 4.1).

A common problem in 3D data visualization is occlusion.
Transferred to toponome data, cell regions corresponding to
one CMP occlude others that correspond to another CMP.
Hence, we implemented a semi-transparent rendering of the
occluding region which is triggered by a point-and-click in-
teraction. After clicking, the desired CMP is determined as
described for the CMP probing. This approach is very lim-
ited, since overlapping semi-transparent regions are difficult
to distinguish and color mixing occurs. Hence, we imple-
mented a CMP peeling interaction (Fig. 8). The desired CMP
is selected by means of point-and-click and then, “peeled
off” by rendering it fully transparent. Further, it is auto-
matically deselected in all other views of the framework.
The peeling step may be repeated any number of times.
We enhance the usability of this technique by offering an
undo/redo mechanism which is operated via the graphical
user interface of the 3D view.

c© The Eurographics Association 2012.
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5.5. Anecdotal User Feedback

We gathered anecdotal feedback from our collaborating bi-
ologist and a computer scientist who has been working in his
laboratory for several years. Both also co-authored this pa-
per. They appreciated the fast generation of the 3D visualiza-
tion, its completeness with regard to the number of displayed
CMPs, and its integration into their framework. They used
the color range redistribution extensively (Sec. 5.3). How-
ever, they criticized that it ignores the spatial arrangement of
the differently colored cell surface parts. Thus, neighboring
parts may be assigned rather similar colors as compared to
further distant parts. The integration of a reference volume
was commended (Fig. 7b). All interaction methods were as-
sessed as useful. Particularly, CMP probing and CMP peel-
ing were frequently used. The computer scientist requested
an undo/redo mechanism for the peeling which we added.

6. Summary and Discussion

We presented a volume rendering approach for visualizing
3D toponome data, which significantly reduces the workload
of our collaborators. Visualizing a 3D toponome dataset,
which took them 1− 2 workdays before, now takes ≈ 30s.
We integrated the 3D visualization into their analysis frame-
work. In this framework, a unique color serves as CMP iden-
tifier. We improved the existing coloring scheme by comput-
ing a set of perceptually optimized colors. This set may be
recomputed for varying views on the data in order to opti-
mize the differentiability of the currently visible CMPs. To
support an exploratory analysis, the 3D view was equipped
with several interaction techniques. CMP probing supports
the biologist in mentally forming the molecular “face” of a
cell. CMP peeling provides insight into the composition of
a cell’s surface. For instance, a CD3 layer wrapping around
a CD3/CD4 layer was frequently observed in T4 lympho-
cytes (Fig. 8). We further presented the brushing of interest-
ing CMPs in 3D space, which restricts the visualization in
all views to these CMPs. In future work, we will conduct a
user study to evaluate the perceptually optimized coloring.
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