
Blood Flow Clustering and Applications in
Virtual Stenting of Intracranial Aneurysms

Steffen Oeltze, Dirk J. Lehmann, Alexander Kuhn, G�abor Janiga, Holger Theisel, and Bernhard Preim

Abstract—Understanding the hemodynamics of blood flow in vascular pathologies such as intracranial aneurysms is essential for

both their diagnosis and treatment. Computational fluid dynamics (CFD) simulations of blood flow based on patient-individual data

are performed to better understand aneurysm initiation and progression and more recently, for predicting treatment success. In

virtual stenting, a flow-diverting mesh tube (stent) is modeled inside the reconstructed vasculature and integrated in the

simulation. We focus on steady-state simulation and the resulting complex multiparameter data. The blood flow pattern captured

therein is assumed to be related to the success of stenting. It is often visualized by a dense and cluttered set of streamlines.

We present a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by clustering

streamlines and computing cluster representatives. While individual clustering techniques have been applied before to

streamlines in 3D flow fields, we contribute a general quantitative and a domain-specific qualitative evaluation of three

state-of-the-art techniques. We show that clustering based on streamline geometry as well as on domain-specific streamline

attributes contributes to comparing and evaluating different virtual stenting strategies. With our work, we aim at supporting CFD

engineers and interventional neuroradiologists.

Index Terms—Blood flow, aneurysm, virtual stenting, clustering, evaluation

Ç

1 INTRODUCTION

INTRACRANIAL aneurysms, also referred to as cerebral
aneurysms, represent a pathological, balloon like dila-

tion of cerebral vasculature due to a weakness of the arte-
rial wall. They occur with a prevalence of about 2 percent
in Western Europe [1]. Their rupture is associated with a
mortality rate of �50 percent. Among other treatment
options, stenting plays an increasingly important role. In
stenting, the flow is diverted around the aneurysm by an
expandable mesh tube (stent), thereby reducing and
decelerating its inflow (Fig. 1a). The blood flow pattern is
among the hemodynamical parameters that are assumed
to be related to the success of stenting [2], [3], the devel-
opment of thrombosis (blood clotting, which is a desirable
outcome of stenting) [4], and the risk of aneurysm rupture
[5]. A better understanding of these relations may contrib-
ute to patient selection for flow diverting stents. While
they often lead to thrombosis and reverse remodeling,
adverse effects leading to late rupture were also observed
[3]. With the increased number of treatment options and
available types of stents, the need for decision support is
strongly increased.

Computational fluid dynamics (CFD) simulations,
which generate patient-specific hemodynamic data, are

employed to better understand the effect of stents on aneu-
rysmal hemodynamics and for predicting treatment suc-
cess [2], [6], [7]. In virtual stenting (VS), different types of
stents are modeled at different locations inside the recon-
structed vascular anatomy and integrated in the simula-
tion. We focus on steady-state simulations since major
aspects of aneurysmal hemodynamics may be inferred
from steady flow [8]. The simulation results in a complex
multiparameter data set comprising several scalar and
vectorial attributes. The blood flow pattern captured
therein, is often visualized for investigation by a dense
and cluttered set of streamlines colored according to one
of the scalar attributes.

We present a fully automatic approach for reducing
visual clutter and exposing characteristic flow structures by
grouping similar streamlines and computing group repre-
sentatives. We quantitatively evaluate three conceptually
different techniques for the grouping: k-means clustering,
agglomerative hierarchical clustering (AHC) in four variations
(single link, complete link, average link, and Ward’s
method), and spectral clustering (SC). While each individual
technique has been applied to streamlines in 3D flow fields
[9], [10], [11], [12], the quality of their results has not been
compared before. The gained insight is valuable for all
applications employing streamline clustering.

Cluster representatives, which summarize the complex
blood flow, are derived from the clustering result. We
adapt a type of representative that is employed in cluster-
ing fiber tracts of the human brain. In a qualitative expert
evaluation of visual blood flow summaries, we compare
the quantitatively best performing clustering techniques
and the corresponding representatives. Furthermore, we
show that clustering streamlines also based on domain-
specific attributes supports the evaluation of virtual stent-
ing strategies. For instance, clustering based on the local
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residence time (RT) of blood flow within the aneurysm
gives hints on potential locations of thrombosis initiation.

In summary, our contributions are:

� Quantitative evaluation of three conceptually differ-
ent streamline clustering techniques

� Visual summary of flow patterns and design lessons

� Expert evaluation of visual flow summaries

� Application-specific insight from clustering domain-
specific streamline attributes

� A tailor-made type of cluster representative
We aim at supporting CFD engineers in investigating

simulation results. In a dense sampling of aneurysmal flow
by thousands of streamlines, they rely on filtering these
lines, a locally restricted streamline seeding or on global
hemodynamic parameters. Minor, local changes of the flow
pattern yet influencing the success of stenting, may remain
unnoticed. We further aim at supporting interventional
neuroradiologists in developing a patient-specific treatment
strategy. CFD results are not yet part of the clinical routine.
Hence, the physicians have little experience in investigating
flow data. Our visual flow summary simplifies the access to
flow data, it is easy to read, and it contributes to the commu-
nication between CFD engineers and physicians. We
employ our approach amongst others to data of the virtual
intracranial stenting challenges (VISC) in 2009 and 2010.

2 MEDICAL AND TECHNICAL BACKGROUND

This section briefly overviews the treatment of intracranial
aneurysms, introduces the research field virtual stenting,
and describes our data generation pipeline.

2.1 Treatment of Intracranial Aneurysms

Intracranial aneurysms usually develop somewhere at
the Circle of Willis. Their shape may be characterized as
saccular, fusiform or dissecting with saccular having by
far the highest prevalence [13]. The morphological fea-
tures of a saccular aneurysm are illustrated by Fig. 1b.
Most aneurysms remain undetected until rupture. While
surgical clipping has been the gold standard in treatment
for decades, the number of endovascular interventions is
increasing. They bear less intraoperative risk and may be
applied, e.g., by an interventional neuroradiologist, to
aneurysms which are difficult or impossible to reach for
a surgeon [14]. In coiling, the aneurysm is filled with

platinum coils to promote thrombosis, which may even-
tually seal the aneurysm. Self expanding, high-profile,
flow-diverting stents provide a promising alternative to
coiling in patients with complex aneurysms (Fig. 1a).
They reduce and decelerate the blood circulation into the
aneurysm, thereby causing a prolonged residence time,
which in turn promotes thrombosis formation [13].

Despite the progress in interventional techniques, the
associated risks persist, e.g., injury of the aneurysmal wall
during stent insertion. A detailed risk and benefit estima-
tion and a deeper insight into the hemodynamics of blood
flow that cause aneurysm development and rupture are
necessary.

2.2 Virtual Stenting

Virtual stenting is a collaborative effort between CFD engi-
neers, physicians, and computer scientists. Its main objec-
tives are supporting clinical decision making and stent
design. In the former, questions such as “Is the vascular and
aneurysmal morphology eligible for stenting?” and “Which
stent should be used and where should it be placed?”
need to be answered. In stent design, different properties,
e.g., grade of mesh porosity and strut size, and their impact
on the hemodynamics of blood flow are investigated.

One challenge in VS is comparing results of different
CFD simulations, e.g., before and after stenting [6]. We sup-
port a comparison by visual summaries of blood flow. So
far, it is often based on global values such as aneurysmal
inflow rate [15]. Sometimes, the aneurysm wall is colored
according to a hemodynamic parameter and presented in a
side-by-side view [6]. Streamlines are employed for compar-
ing flow patterns. They are often seeded on the ostium and
displayed side-by-side [2], [6], [16]. However, either the
entire set of lines is displayed leading to visual clutter or
representative lines must be selected manually.

2.3 Hemodynamic Data Generation Pipeline

We briefly summarize our hemodynamic data generation
pipeline (see [15], [17] for details). First, image data of the
aneurysm morphology including the vasculature in the
close surrounding are acquired, e.g., by 3D rotational angi-
ography or computed tomography (CT) angiography. Next,
the aneurysm and the vasculature are segmented via thresh-
olding. Afterwards, a surface mesh of the vessel wall is
reconstructed from the segmentation result and optimized
[18]. Then, the ostium is extracted [19]. It separates the aneu-
rysm from the parent vessel and approximates the original
vessel wall (Fig. 1b). It is frequently used to explore the flow
into the aneurysm, e.g., by seeding streamlines there [20].
Next, the stent geometry is modeled and deployed to the
vessel wall. Finally, a volume mesh is constructed based on
the surface meshes of the vessel wall and the stent using
ANSYS IcemCFD (Ansys Inc., Canonsburg, PA). Fluid flow
simulations are performed in ANSYS Fluent 12 (Ansys Inc.,
Canonsburg, PA).

3 RELATED WORK ON PARTITION-BASED FLOW

VISUALIZATION

Flow visualization techniques have been categorized by
Post et al. [21] into direct, texture-based, geometric, and

Fig. 1. (a) Flow diverting stent and its deployment (arrow indicates flow
direction). (b) Morphological features of a saccular aneurysm (bold) and
subdivision of the surrounding vascular domain (red lines).
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feature-based techniques. Salzbrunn et al. [22] added the
class of partition-based techniques, which decompose a
flow field based on vector values, integral curve proper-
ties or topological features. Blood flow clustering based
on vector values has been presented in the context of car-
diac blood flow [23]. However, we follow the arguments
in [10] and advocate the use of integral curves since they
represent continuous flow patterns traced over the
domain instead of a very local vectorial flow information.
We briefly recapitulate approaches for flow decomposi-
tion based on integral curves and classify them into user-
guided and automatic partitioning. For State-of-the-Art
reports on topology-based decomposition and visualiza-
tion of flow, see [24], [25].

3.1 User-Guided Flow Partitioning

The approaches in this class decompose a set of integral
curves guided by the user. Salzbrunn and Scheuermann
[26] propose combined Boolean predicates based on pre-
defined scalar quantities, which determine for each
streamline whether it has a desired property. Predicates
on pathlines are applied to the visual analysis of mea-
sured blood flow in aortic aneurysms [27]. A residence
time predicate is used for evaluating blood clotting. In
[28], a visual analytics approach is proposed for filtering
pathlines based on local and global pathline attributes, e.
g., curvature and Lyapunov exponent. Pobitzer et al. [29]
demonstrate the application of dimension reduction to
the set of attributes in order to detect relevant, indepen-
dent ones. Two other approaches let the user specify
interesting integral curves or curve parts in observation
instead of attribute space. Advanced virtual probing of
measured cardiovascular flow by seeding integral curves
on a flexible probing geometry is presented in [30]. Gas-
teiger et al. employ a lens metaphor for generating focus-
and-context visualizations of streamline parts [17].

The lens metaphor facilitates only a local and view-
dependent inspection of the flow pattern. It emphasizes
or attenuates all streamline parts inside the lens but it
does not reduce visual clutter with respect to the flow pat-
tern. Neither lens nor virtual probing deliver reproducible
and quantifiable results. Line predicates and the visual
analytics of pathline attributes require the user to define
attributes and attribute value ranges of interest in order
to compose sets of lines, which are homogenous with
respect to a certain attribute or a combination of attrib-
utes. Automatic flow partitioning approaches employ a
data-driven strategy for creating such sets and are hence
self-tuning with respect to differences in the flow across
aneurysms.

3.2 Automatic Flow Partitioning

Our work is strongly related to approaches, which auto-
matically partition a set of integral curves by means of
clustering, i.e., grouping similar curves. These approaches
differ in the clustering technique and in the similarity mea-
sure. Chen et al. propose a two-stage k-means clustering
[9]. The initial rough geometry-based partitioning is
refined by taking vector and shape properties into account.
Both stages are based on euclidean distance as the

similarity measure. Cluster representatives are the stream-
lines closest to the cluster centroids. In [12], agglomerative
hierarchical clustering with average link has been used for
partitioning. The authors propose a similarity measure
that facilitates an interactive, cluster-based exploration of
flow with seeding rakes. A saliency-guided streamline
seeding is followed by AHC with single link in [10].
Streamlines at cluster boundaries are displayed as repre-
sentatives. Gasteiger et al. employ local streamline proper-
ties to identify and group lines that constitute the inflow
jet, which is correlated with aneurysm rupture [31]. R€ossl
and Theisel discuss a spectral embedding of streamlines [11].
They demonstrate spectral clustering in the embedding
space and compare various similarity measures. Similar to
the clustering of integral curves is the clustering of fiber
tracts extracted from diffusion tensor imaging (DTI) data.
In [32], fiber tracts are partitioned by means of a special-
ized SC approach. Three types of cluster representatives
are investigated in [33]. Moberts et al. evaluate three var-
iants of AHC and four similarity measures for clustering
fiber tracts [34]. A new similarity measure in conjunction
with AHC using single link is introduced in [35].

AHC, k-means, and SC are the most widely used tech-
niques for clustering streamlines (and fiber tracts). How-
ever, the quality of their results in this context has not
been individually assessed and compared. We quantita-
tively evaluate the three techniques, including four AHC
variants, by means of internal cluster validity indices
(Section 5.4). In a qualitative expert evaluation of the best
performing techniques, we identify the most appropriate
one for clustering blood flow (Section 6.4). While the clus-
tering in related work is mostly restricted to streamline
geometry and derived geometrical attributes, we extend
it to domain-specific attributes. We adopt the idea of clus-
ter representatives for reducing visual clutter and assess
the approaches in [33].

4 STREAMLINE GENERATION & SIMILARITY

In this section, we describe our generation of streamlines,
their properties, and our streamline similarity measures.

4.1 Domain, Tracing, and Line Properties

The input of the streamline generation is the volume mesh
from the CFD simulation (Section 2.3). It is represented as
an unstructured grid composed of tetrahedral cells. A vec-
tor is stored at each cell point. Before streamlines are gener-
ated, the mesh is manually cropped such that it contains
only the aneurysm and the near-vessel domain [20] (Fig. 1b).
This enables us to focus the analysis and strongly improves
the expressiveness of the clustering. It is very likely that
streamlines follow a similar course in the feeding vessel
(inflow) and they may also follow a similar course in a
draining vessel (outflow). However, depending on where
they enter the aneurysm, their course may strongly differ
inside. If the far-vessel domainwas also considered in cluster-
ing, these differences would have less impact.

To assess the in- and outflow of the aneurysm, stream-
lines have been seeded on the ostium. The ostium is repre-
sented by a triangle mesh whose vertices have been
homogeneously distributed such that the under- and
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overrepresentation of flow parts are avoided [19]. The num-
ber of vertices is adjusted such that the mesh resembles the
former vessel wall. Streamlines were traced in ParaView
(Kitware, Clifton Park, NY). A fifth order Runge-Kutta
method has been employed with an integration step size
that was constantly adjusted according to an estimated
error. The tracing was carried out in backward and forward
direction. The resulting two lines were merged such that a
linear traversal of the vertices from in- to outflow is
possible.

Line Properties: The streamlines differ in their number of
vertices and in their length. The former has a strong
impact on the computational time of most inter-streamline
similarity measures. The similarity itself is strongly influ-
enced by streamline length. Two lines may follow a simi-
lar course for a long time but then, one of them is
terminated. Most similarity measures assign a much
higher weight to the difference in length than to the simi-
larity over a long run. In all our data sets, a few lines fol-
low a course very similar to a large set of neighboring
lines but are considerably shorter. They occur close to the
vessel wall due to early termination of the integration. We
consider them as incomplete rather than incorrect data
entities. Hence, the clustering should group them with the
streamlines having a similar course. Still, we term them
outliers in the following.

4.2 Geometry-Based Streamline Similarity

Geometry-based streamline similarity (or dissimilarity) is
often expressed by a distance measure. The choice of a mea-
sure depends on the application. General requirements are
positive-definiteness and symmetry. A valid example is the
Hausdorff distance. However, this distance is very sensitive
to streamline length, since it outputs the maximum of point-
wise distances [11]. A less sensitive measure is the mean of
closest point distances (MCPD) [36]:

dMðsi; sjÞ ¼ meanðdmðsi; sjÞ; dmðsj; siÞÞ
with dmðsi; sjÞ ¼ meanpl2si min

pk2sj
pk � plk k: (1)

Moberts et al. evaluate four similarity measures for clus-
tering fiber tracts and favor MCPD [34]. Yu et al. apply
MCPD for clustering streamlines and report that the clus-
ters comprise important flow features [10]. In [11], five
similarity measures adopted from the clustering of fiber
tracts are evaluated for clustering streamlines. The rather
qualitative evaluation includes MCPD and shows no
drawbacks compared to the other measures. In [12], a
new similarity measure is compared to three other meas-
ures including MCPD. The new measure performs one to
two orders of magnitude faster but no advantage in terms
of cluster quality is reported. However, MCPD is subjec-
tively rated as producing good quality clusterings. We
adopted MCPD and applied it to blood flow clustering.
Initial tests showed good results but also revealed that
MCPD is still too sensitive to streamline length, in partic-
ular when being used with clustering techniques being
sensitive to outliers (Table 1). Very small-sized, outlier-
corrupted clusters were generated whose representatives
distorted the flow summary. We further reduce MCPD’s

sensitivity by replacing the outer mean in Equation (1) by
a minimum computation:

dMðsi; sjÞ ¼ minðdmðsi; sjÞ; dmðsj; siÞÞ
with dmðsi; sjÞ ¼ meanpl2si min

pk2sj
pk � plk k: (2)

If two lines are very similar but one is shorter, dm from the
shorter to the longer line is chosen. The resulting high simi-
larity increases the chance of being assembled.

4.3 Attribute-Based Streamline Similarity

Besides streamline geometry, we employ streamline attrib-
utes for clustering. They describe (1) the underlying vector
field, (2) line bending or (3) domain-specific aspects:

1. pressure, velocity magnitude, velocity gradient mag-
nitude, angular velocity, vorticity magnitude

2. curvature, torsion
3. distance to ostium, distance to aneurysm wall, local

residence time
In the following, we focus on the domain-specific attributes (3)

since their clustering revealed the most interesting aspects. The

distance to the ostium is computed in order to separate flow

structures that occur close to the aneurysm’s neck from those

that occur close to its dome (Fig. 1b). The distance to the aneu-

rysm wall is determined in order to separate flow close to the

wall from flow close to the center. Both are inspired by discus-

sions with a neuroradiologist and by clinical research results

such as a close correspondence between near-wall flow and

wall-shear stress (WSS). They have been computed only at

streamline vertices located inside the aneurysm as the distance

between the vertex and its closest point (not vertex) on the

respective surface.

The residence time of flow inside the aneurysm is crucial
in thrombosis formation [4]. We compute it by aggregating
partial timing results along each streamline. For each line
segment inside the aneurysm, the two associated velocity
magnitudes are retrieved from the data. Based on their dif-
ference and the segment length, the partial residence time is
computed. If a line segment intersects the ostium, the veloc-
ity is interpolated at the intersection point. While the other
streamline attributes are computed per vertex, the residence
time is a single scalar per line.

What is left is the definition of a streamline similarity
measure on the attributes. For the local residence time, we
employ the absolute difference of two scalars. For the
remaining attributes, we first compute a simple statistic that
approximates the attribute information along a streamline,
e.g., minimum, maximum, mean, or median. Since this
breaks down the information to a scalar value, we can apply
the same similarity measure as for the residence time.

5 STREAMLINE CLUSTERING TECHNIQUES: A
QUANTITATIVE EVALUATION

This section is dedicated to the quantitative evaluation of
techniques often used for clustering streamlines (Section 3.2).
It starts with descriptions of agglomerative hierarchical clus-
tering and k-means based on [37] and an introduction to
spectral clustering based on [38].
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5.1 Agglomerative Hierarchical Clustering

AHC starts with each streamline being a cluster and then,
repeatedly merges the two closest clusters until a single
cluster is formed. The resulting hierarchy is stored and
may be visualized by a dendrogram. All merge steps rely on
a squared, symmetric distance matrix M and a measure of
cluster proximity. In our case, M contains the pairwise
inter-streamline distances (Eq. (2)). Various cluster prox-
imity measures have been published among which single
link, complete link, average link, and Ward’s method are most
popular. In single link, the proximity of two clusters is
defined as the minimum distance between any two points
in the different clusters. This approach can handle clusters
of arbitrary shape, it tolerates considerable differences in
cluster size but it is sensitive to outliers. Furthermore, it is
infamous for the chaining effect leading to clusters contain-
ing very dissimilar elements which are connected by a
chain of similar elements via some transitive relationship.
In complete link, the proximity of two clusters is com-
puted as the maximum distance between any two points
in the different clusters. Complete link is less susceptible
to outliers but tends to break large clusters and it favors
globular cluster shapes. Average link is an intermediate
approach between single and complete link. It also strives
for globular compact clusters [39]. The proximity of two
clusters is defined as the average proximity between pairs
of points in the different clusters. Ward’s method aims at
minimizing the total within-cluster variance. It defines the
proximity of two clusters as the sum of squared distances
between any two points in the different clusters (SSE: sum
of the squared error). Due to the SSE-based proximity,
Ward’s method favors globular clusters. It was shown to
prefer clusters with similar size and to be robust against
outliers in the context of 2D curves [40].

All AHC variants lack a global objective function (OF)
to be optimized (Table 1). They decide locally which clus-
ters are merged. These decisions cannot be undone such
that bad decisions, e.g., involving outliers, are propagated
throughout the entire clustering process. A strength of
AHC is its ability to rapidly generate different numbers of
clusters k by cutting the cluster hierarchy at respective
levels. Furthermore, it is non-parametric except for k and
the proximity measure. Both strengths explain its frequent
use when the “correct” number of clusters is unknown.
The user then sequentially browses through the levels.
Visually comparing consecutive clustering results is sim-
plified by the locally restricted change (split/merge).
AHC’s bottleneck in terms of time complexity is the com-
putation of M, which often requires a vast number of
euclidean distance tests.

5.2 k-Means Clustering

k-means requires an a priori definition of the number of
clusters k by the user. Then, k initial cluster centroids are
chosen, often by a random selection of k data entities. Each
entity is now assigned to the closest centroid, e.g, by com-
paring squared euclidean distances. Finally, each centroid
is updated to the mean of its assigned data entities (which
rarely corresponds to an existing entity). The assignments
and updates are repeated until the goal of a global objective
function has been achieved. For squared euclidean distan-
ces, the objective function usually aims at minimizing the
sum of the squared distances of data entities to their cluster
centroid (SSE).

Streamlines cannot be directly plugged into k-means
since the computation of their mean is undefined. Feature
vectors must be derived representing the lines in a new n-
dimensional space. A straightforward approach is to use
the 3D coordinates of their vertices. Since the number of ver-
tices varies (Section 4.1), each line must be equidistantly
resampled to a uniform number. We employ the average
number of vertices of all streamlines. A lower-dimensional
alternative has been proposed by Chen et al. [9]. Two scalar
streamline entropy measures together with the coordinates
of start-, middle, and endpoint of the line constitute an 11-
dimensional feature vector. Contrary to [9], we employ all
dimensions in a single clustering stage since the proposed
two stages hamper a user-defined choice of k. However, the
latter is required for our quantitative evaluation.

k-means is often computationally faster than AHC since
it does not require the computation of pairwise distances
between data entities. However, it is sensitive to outliers
and fails in handling non-globular clusters and clusters of
widely different sizes (Table 1). Its results are dependent on
the random initialization of the centroids. A “bad” choice
causes the algorithm to get stuck in a local minimum of the
objective function. We mitigate this problem by running the
algorithm ten times and choosing the result with the mini-
mum SSE.

5.3 Spectral Clustering

Spectral Clustering maps the original streamlines to a spec-
tral embedding space where each line is represented by a
point (Fig. 2). Key features of the mapping are the preserva-
tion of local distance relations between nearby lines and the
enhancement of the data’s cluster properties, i.e., an

Fig. 2. (a) Spectral Clustering of streamlines in a basilar tip aneurysm.
(b) Spectral embedding of the lines. The first three largest eigenvectors
are shown.

TABLE 1
Comparison of Clustering Algorithms with Respect to the
Type of Objective Function and the Capabilities to Handle

Arbitrarily-Shaped Clusters, Clusters of Significantly
Different Size, and Outliers

690 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 5, MAY 2014



improved cluster separability. In the following, we use the
terms distance and difference interchangeably.

SC can be formulated as a graph partitioning problem
[41]. Streamlines are represented by a weighted, fully-con-
nected, undirected graph. The nodes are the streamlines
and the edge weights are computed according to Equa-
tion (2). The weights are then transformed from difference
to affinity such that similar streamlines have a high and dis-
similar a low pairwise affinity. Next, the graph is parti-
tioned into subgraphs. Shi and Malik [41] propose to use a
normalized cut which minimizes the sum of weights of the
edges that need to be removed (cut) and at the same time
balances the sum of edge weights of the partitions. While
this problem is NP hard, a relaxed version is solved by spec-
tral graph partitioning using Graph Laplacians.

Given a data set S with n streamlines as a graph and a
number of clusters k, (1) the n� n distance matrix M is
computed by a pairwise application of Equation (2) to the
lines in S. The same matrix is employed for AHC (Sec-
tion 5.1). (2) Based on M, the n� n weighted adjacency
matrix of the graph is constructed by applying a function f
to the entries of M that gives high values in case of small
differences and converges to zero for high differences. The
resulting matrix W is referred to as affinity matrix. As f , the
Gaussian similarity function is used:

fðmijÞ ¼ fðmjiÞ ¼ expð�ðmijÞ2=ð2s2ÞÞ: (3)

The parameter s controls the width of f thereby steering
how rapidly the affinity falls off. (3) Next, a n� n diagonal
degree matrix D is constructed with each diagonal entry dii
being the degree of the node that represents streamline i in
the graph. The degree is computed as the sum of weights of
the edges incident to the node. (4) Now, the normalized
Graph Laplacian L is computed [41]: L ¼ I�D�1W with I
being the identity matrix. (5) Then, the eigenvectors and
eigenvalues of L are determined. The eigenvectors corre-
sponding to the smallest k eigenvalues are used for cluster-
ing. (6) Let U be the n� k matrix that contains the k
eigenvectors as columns. Each row i of U then represents
the coordinates of a point that corresponds to streamline i
in the Rk spectral embedding space spanned by the eigen-
vectors. (7) In the embedding, clusters can be detected, e.g.,
by k-means or an eigenvector rotation [42]. We employ the
latter since it suggests an optimum number of clusters based
on a user-defined range for k. Since it is based on the largest
eigenvectors of L, we change the formulation of L to:

L ¼ D�1W: (4)

Local scaling: Zelnik-Manor and Perona propose a local
determination of s since a global value (Eq. (3)) only works
well if all clusters are of the same density [42]. Since we can-
not guarantee this for our streamlines, we adopt their local
scaling. A local si is computed for each line i based on the
difference between i and its N ’th neighbor. A value of
N ¼ 7 is reported to give good results [42]. However, our
experiments indicated that N must be adjusted to each data
set. In very dense sets of streamlines, SC partially failed to
separate clusters. With increasing density, the local neigh-
borhood of a line contains an increasing number of very

similar lines. However, the number of neighbors with an
affinity �0 should not be “too small and not too large” for
SC to work properly [38]. Based on 10 data sets, we identi-
fiedN ¼ 5 percent of the streamline count as appropriate.

SC strives for a globally optimal partitioning while AHC
is bound to locally optimal decisions (Table 1). It can handle
arbitrary cluster shapes while most AHC variations and k-
means favor globular shapes. SC with local scaling consid-
ers the local streamline density. This is useful, e.g., if
streamlines are seeded with a higher density close to the
aneurysm wall. Our implementation of SC is parameter-free
except for the range of values for k. Since the eigenvector
rotation computes all partitionings within this range, the
user can browse also the suboptimal results. SC is biased
towards clusters of similar size due to the balancing of edge
weights in the graph cutting. On the other hand, this prop-
erty makes it robust against outliers which was acknowl-
edged in the context of fiber tract length [35]. As for AHC,
the bottleneck of SC is the computation ofM.

5.4 Quantitative Evaluation

We quantitatively evaluated four variants of agglomerative
hierarchical clustering, k-means, and spectral clustering for
clustering streamlines. The evaluation was based on five
clinical cases together comprising 10 data sets and repre-
senting the prevailing types of aneurysms: basilar tip and
side-wall aneurysms. Three cases were simulated without
virtual stenting (two are shown in Figs. 2a and 4a). Two
cases have been simulated before and after stenting, one of
them with two types of stents in two different positions
(Sections 7.1 and 7.2). The streamline count was between
1,138 and 2,929. The evaluation was restricted to geometry-
based clustering (Section 4.2). For each combination of clus-
tering algorithm (n ¼ 6) and data set (n ¼ 10), streamlines
were clustered with the number of clusters being in the
range ½2; 20� (n ¼ 19). This resulted in 6� 10� 19 ¼ 1; 140
partitionings.

Different measures for assessing the quality of a cluster-
ing result have been proposed. In the absence of a ground
truth, e.g., external labels provided by an expert, unsuper-
vised measures of cluster validity are appropriate [37]. They
are also called internal validity measures since they are purely
based on information present in the data. We employ four
internal measures which together cover the most important
aspects of cluster quality [39]:

� Silhouette Width: Non-linear combination measure of
cluster cohesion and separation. Values are in the
range ½�1;þ1� and should be maximized.

� Connectivity: Local measure reflecting to which
degree the L most similar neighbors of a streamline
are placed in the same cluster. Values are in the
range ½0;þ1� and should be minimized. We define
L ¼ 20.

� Hubert’s G Statistic: Measure of correlation between
the distance matrix M and an idealized distance
matrix (distance is 0 for streamlines in the same clus-
ter and 1, otherwise). Values of the normalized statis-
tic are in the range ½�1;þ1� and should bemaximized.

� Stability: Measure reflecting the stability and hence,
the significance of the clusters. Random overlapping
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subsamples of the data are repeatedly drawn and
clustered using the same algorithm. We draw 20 sub-
samples. Their clusters are then compared to the par-
titioning of the original data via the Adjusted Rand
Index whose values are in the range ½�1;þ1� and
should be maximized [43].

To ensure comparability of the algorithms, all measures were

computed in 3D streamline space although k-means and SC

cluster in different spaces, i.e., in feature vector space and in the

spectral embedding. The first three measures employ the simi-

larity of two streamlines which is inferred from the distance

matrix M. Clustering by k-means has been based on two types

of feature vectors (Section 5.2). The type based on streamline

resampling consistently achieved better internal measures,

which is likely due to the very sparse representation of the

streamline course by the other type (only three vertices). Hence,

we restrict the presentation of evaluation results to the former.

For each algorithm, the internal validity measures were aver-

aged over the 19 partitionings and the 10 data sets (Fig. 3).

SilhouetteWidth:AHCwith single link exhibits a very poor
silhouette width (�0:47). This is due to the chaining effect,
which leads to a single huge heterogeneous cluster contain-
ing almost every streamline (Section 5.1). Hence, cluster
cohesion as well as separation are small. Chaining has been
observed for all data sets and most numbers of clusters.
K-means performs better but sill exhibits a rather low value
(0.18). The reason is that simply resampling all streamlines
to a uniform number of vertices amplifies differences in
streamline length and position offset for otherwise very simi-
lar lines. This counteracts our streamline similarity measure,
which has been tailored to tolerate these differences (Eq. (2)).
As a consequence, similar lines are assigned to different clus-
ters. Complete link also achieves a low silhouette width of
0.28. This is likely due to its tendency to break large clusters
leading to a low inter-cluster separation between the result-
ing parts. This effect could be observed on a sample basis.
Average link, Ward’s method and SC perform equally well
and exhibit the highest silhouette widths: 0:42; 0:43; 0:38.

The silhouette width is biased towards globular clusters
[39]. In case of elongated or concave clusters, algorithms
correctly identifying them, e.g., single link and SC, may be
assigned a lower silhouette width than failing algorithms.
Since the cluster shape in streamline space is not clear, the
silhouette width must be employed carefully. For fiber
tracts, the non-globular nature of clusters has already been
acknowledged [44].

Connectivity: Single link clustering by far achieves the best
connectivity value due to its proximity measure which
strives for a merge with the nearest neighbor. This bias has
already been acknowledged in [39]. The second and third
best connectivity values are achieved by average link and
Ward’s method. Complete link exhibits the worst value of all
AHC variants. It more often adds similar neighbors of a
streamline to another cluster, which may again be due to the
breaking of large clusters. This leads to streamlines at the
joint cluster border, which have similar neighbors in both
clusters. The connectivity of SC is worse than for all AHC
variants. However, this is to a great extent caused by the
functioning of the algorithms and theway of computing con-
nectivity. The computation adds the highest penalty value if
the most similar neighbor is not in the same cluster. This
rarely occurs in AHC since each variant starts by locally
aggregating the nearest singleton clusters. SC aims at a
global optimization and occasionally adds the most similar
line to another cluster. A preliminary investigation revealed
this phenomenon at the joint border of closely spaced clus-
ters. Due to the bias of connectivity towards the AHC
approaches, its usefulness in assessing SC is questionable.
The connectivity of k-means is worst for the same reason as
for the silhouette width.

Hubert’s G Statistic: Hubert’s G Statistic shows a poor
result for single link due to the chaining effect (0.04). In the
one large cluster, very dissimilar streamlines are grouped
together leading to negative correlation values. The perfor-
mance of k-means is considerably better (0.39) but still
worse than for the remaining algorithms since the above-
mentioned assignment of similar streamlines to different
clusters leads to negative correlation values. Complete link,
SC, and Ward’s method reach similar results on average
(0:44; 0:45; 0:48). The highest value is measured for average
link by a rather narrow margin (0.52).

Stability: Single link’s stability (0.97) is not expressive
since the entire set of streamlines is always grouped in a sin-
gle cluster. Complete linked achieves the lowest stability
(0.59) due to the maximum computation in the proximity
measure (Section 5.1). Since random subsamples are drawn
from the original data to measure stability, different stream-
lines are missing each time. While the maximum computa-
tion is considerably affected by missing lines, the average
and the variance computation in Average link and Ward’s
method, respectively are less sensitive (0:79; 0:74). SC and k-
means achieve the highest meaningful stability values
(0:82; 0:85). Both apply a global objective function and are
hence, less sensitive to local changes than AHC. However,
the stability of k-means is dependent on the number of runs
(=10, Section 5.2) and decreases to 0.72 for a single run.
Even with a high number of runs, k-means may generate
different results if started several times due to the random
initialization of cluster centroids. The result of all AHC var-
iants is dependent on the order of the input streamlines. If
the proximity measure happens to be equal for two pairs of
clusters, the first encountered pair is merged. However, we
did not observe this problem.

Summary: Single link is not suitable for clustering blood
flow due to the chaining effect which requires dedicated
post-processing [10]. Complete link generates better clusters
but tends to break large clusters. This has a negative impact

Fig. 3. Average internal cluster validity measures based on 10 data sets.
Spectral Clustering, four variants of agglomerative hierarchical cluster-
ing, and k-means are compared.
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on inter-cluster separation, which is reflected by lower sil-
houette widths. Further, the clustering results of complete
link show a rather low stability. Stability becomes an impor-
tant issue if the seeding density is varied, e.g., along the
ostium, or in interactively sampling a region-of-interest by
overlapping seeding regions, e.g., the aneurysmal near-wall
region. In both cases, pairs of similar streamlines that survive
the modifications should consistently be assigned to a joint
cluster. K-means performed particularly poor with respect
to the silhouette width and connectivity. Also, the stability of
its clusters is less predictable due to the random initializa-
tion. Average link, Ward’s method, and SC performed
equally well except for the connectivity which is however
biased towards AHC. An extended evaluation may investi-
gate the overlap of their clustering results to gain further
insight into their principles of operation and the data.

Average link’s sensitivity to outliers was significantly
reduced by our adapted streamline similarity measure (Sec-
tion 4.2). While the original measure (Eq. (1)) lead to small-
sized, outlier-corrupted clusters (< 6 streamlines) in each
data set, this effect was only observed in three data sets
with the new measure. Ward’s method and SC proved to be
rather insensitive to outliers. Overall, we recommend Aver-
age link, Ward’s method, and SC for clustering blood flow.
Visual blood flow summaries based on each of them are
qualitatively evaluated by domain experts in Section 6.4.

6 VISUAL SUMMARY OF BLOOD FLOW

This section is dedicated to the computation of cluster rep-
resentatives, their aggregation in a visual flow summary,
the interaction with the summary, the expert evaluation of
the summary, and our development environment. The
accompanying supplemental video, which can be found
at http://dx.doi.org/10.1109/TVCG.2013.2297914, shows a
use case of the flow summary.

6.1 Cluster Representatives

Displaying thousands of streamlines leads to a cluttered
visualization hampering particularly the interpretation of
inner flow structures (Fig. 4a). Cluster representatives sum-
marize the flow and show these structures (Fig. 4b). In the
context of clustering fiber tracts, different types of

representatives have been discussed [33]. O’Donnel et al.
employ spectral clustering and determine an embedding-
based representative for each fiber bundle in spectral embed-
ding space (Fig. 2b). The centroid of the bundle’s point
cloud is computed and the fiber closest to it is chosen. This
is feasible due to the high density and number of embedded
fibers (up to 25;000 per brain). In our case, the streamline
count is often < 3;000. Furthermore, given a non-globular
cluster, e.g., banana-shaped, the streamline closest to the
cluster centroid may provide a weak representative.

As an alternative computed in the original 3D space, we
chose the streamline with the smallest average distance to
all other lines of the cluster. While often well representing
the clusters, this distance-based representative is prone to out-
lier streamlines due to the outer minimum in the distance
measure (Eq. (2)). A short outlier, running very similar to all
streamlines in its cluster, is assigned a small distance to all
of them. Longer streamlines are more likely to deviate from
the other lines in their cluster. Hence, the outlier is a more
likely candidate for representative selection.

O’Donnell et al. propose another approach for comput-
ing representatives in 3D space [33]. For each cluster of
fibers, a local Cartesian grid is aligned with the cluster’s
axis-aligned bounding box. For each voxel of the grid, the
number of fibers that pass through is recorded leading to a
density volume. For each fiber, the density is integrated
along the line and the result is weighted with the fiber’s
length. The fiber with the highest value is the density-based
representative. Several problems occur in transferring this
approach to streamlines. The lines in a cluster may follow
the same course over a long range but extend beyond either
end of this range (Fig. 4c, bottom). No line may exist that
faithfully represents the entire cluster. The lines may also
differ significantly in length. Furthermore, a few very long
lines may exist in helical flow. Hence, we consider only den-
sity and for now neglect the weighting with length. Note
that length is still inherently considered, since longer lines
may accumulate more densities. The primarily density-
based representatives well indicate the densest parts of the
clusters which often occur in regions of helical or turbulent
flow being of high interest. In an initial flow summary and
in the remainder of this paper, we employ density-based
representatives. However, the user may change the flow

Fig. 4. (a) Full set of streamlines in a side-wall aneurysm. (b) Streamlines in (a) clustered according to geometry. One representative is displayed for
each cluster (n ¼ 9). A prominent swirl in the center of the aneurysm and laminar helical and complex flow below the ostium (transparent surface)
are revealed (top, left, and right arrow). (c) Examples for good (red) and amendable (yellow) representatives. Dots indicate parts of the cluster which
are not represented. (d) Flow around a cavity clustered according to local residence time. A selected cluster is visualized by semi-transparent
streamlines. Its attribute-based representative indicates only the lower branch (bottom). A representation of cluster shape is obtained by further clus-
tering based on streamline geometry (top).
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summary by modifying weights ½0; 1�, which we assigned to
density, length, and distance. For instance, setting the
weight of density to zero and the weight of length to one
leads to length-based representatives, which may better
illustrate the entire extent of the cluster.

If streamlines were clustered according to a streamline
attribute, we employ attribute-based representatives. For each
cluster, the mean of the attribute or of the statistic that has
been employed is computed and the line with an attribute
value closest to the mean is chosen (Section 4.3). The repre-
sentative then indicates the clusters attribute range instead
of its shape. Since the course of streamlines inside a cluster
may be rather heterogeneous, we conduct a further parti-
tioning according to streamline geometry (Fig. 4d).

6.2 Number of Clusters

A crucial question in generating the blood flow summary is
how many representatives should be displayed, i.e., how
many clusters must be computed? For blood flow data, the
“correct” number of clusters is not known. Agglomerative
hierarchical clustering is well suited here since the cluster
hierarchy may be cut at consecutive levels in order to inter-
actively browse through a range of cluster numbers (Sec-
tion 5.1). Spectral clustering and k-means require rerunning
the algorithm each time. Merging and splitting clusters in
AHC occurs locally in space and is hence easier to track
visually. However, our practical experience with highly
intertwined 3D streamline clusters shows that it is still diffi-
cult to grasp the change between consecutive cluster num-
bers without visual guidance.

We aim at minimizing the workload of physicians by
making a “good guess” with respect to the number of clus-
ters. A default number increases the reproducibility of our
approach, which is a key requirement for entering clinical
routine. Further, it facilitates a more standardized compari-
son of the flow before and after stenting and it supports a
categorization of blood flow patterns. A good guess leads to
clusters representing all significantly distinct flow struc-
tures—overrepresented structures are tolerable while miss-
ing structures are not—and each cluster is homogeneous
such that the representative indeed represents all contained
streamlines. Translated into clustering language, the inter-
cluster separation and the intra-cluster cohesion should be
high. We couple the quantitatively best performing stream-
line clustering techniques, AHC with average link, AHC
with Ward’s method, and SC (Section 5.4), with state-of-the-
art techniques computing the number of clusters k that best
satisfies both requirements.

Salvador and Chan propose the L-method for computing k
in hierarchical clustering algorithms [45]. The method is
based on detecting the knee in a graph that opposes numbers
of clusters and a cluster evaluation metric. Since the location
of the knee depends on the shape of the graph which again
depends on the number of tested cluster numbers, a full
evaluation graph, ranging from two clusters to the
number of data elements, is recommended. We compute
the full graph based on the evaluation metric suggested in
[45]. Zelnik-Manor and Perona propose an algorithm for
computing k in SC [42]. The algorithm iterates over a user-
defined range ½a; b� for k and determines the optimal value.
The optimization is based on finding the optimal rotation

between the set of the first ki; i 2 ½a; b� largest eigenvectors
of the Graph Laplacian (Eq. (4)) and the canonical coordi-
nate system. We empirically determined the range ½4; 20� for
detecting all relevant flow structures in 10 data sets.

6.3 Visualization and Interaction

In the initial blood flow summary, cluster representatives
corresponding to the optimal partitioning are shown
(Fig. 4b). The user may inspect the suboptimal partition-
ings by browsing AHC’s hierarchy or SC’s range ½a; b�. A
representative can be picked causing the corresponding
cluster to be displayed. For browsing all clusters, the user
may scroll the mouse wheel. If the clustering was based
on a streamline attribute, the set of geometry-based repre-
sentatives per cluster is displayed after picking and dur-
ing browsing (Section 6.1).

The streamline visualization is embedded in a surface
rendering of the vessel wall. The wall is reconstructed from
the unstructured grid of the CFD simulation. It is rendered
opaque with culled front faces. The opaque back faces pre-
vent a look through the aneurysm on lines in the near-vessel
domain. The ostium and the stent surface are integrated.
The ostium is rendered highly transparent.

Streamlines are rendered with GPU support as sets of
quads and halos are added to improve spatial perception
[46] (Fig. 4a). The halo color is either set to black or encodes
the cluster ID. The latter is useful to distinguish clusters
when the line color is modified according to a streamline
attribute. However, our collaborators criticized the interfer-
ence of halo and line color hampering the readability of the
attribute. We initially color all halos in black and optionally
allow an encoding of the cluster ID.

For visualizing the representatives, we evaluated
stream ribbons and tubes. While ribbons additionally
show rotation about the flow axis, color-mapped values
are easier to read from tubes during a change of the view-
ing perspective. Our collaborators rated the readability as
more important and hence, we employ tubes. In order to
illustrate the flow direction, arrowhead glyphs are
attached to the end of each tube pointing in outflow direc-
tion. The tube radius encodes the cluster size, i.e., the
number of grouped streamlines. Halos are added to the
representatives and initially colored in black. While this
solves the color interference problem, it hampers visually
tracking a tube through the set of highly intertwined rep-
resentatives. Hence, we offer an optional color encoding of
the cluster ID. Alternatively, only the halo of the represen-
tative under the pointer is colored according to cluster ID
during mouse hover and the other representatives are ren-
dered semi-transparently.

An important aspect is the coloring of streamlines and
representatives. In geometry-based clustering, streamline
color is modified according to a user-defined attribute. In
attribute-based clustering, the statistic that has been
employed for clustering is displayed per line, e.g., the maxi-
mum or mean of the attribute (Section 4.3). Two approaches
are implemented for coloring the representatives: (1) simply
copying the attribute values of the corresponding stream-
line, and (2) averaging the attribute values over all lines in
the cluster. If the clustering has been based on streamline
geometry, we apply (1) for attributes being defined as a
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series of values along each streamline and (2) for single sca-
lar attributes. Note that (1) provides a reasonable approxi-
mation of the entire cluster for most flow attributes since
their change in value is similar across all streamlines in the
cluster due to the common underlying flow pattern. If the
clustering has been based on an attribute, we directly apply
(2) for single scalar attributes and for a series of values, we
average over the statistic that has been employed in com-
puting streamline similarity (Section 4.3).

6.4 Qualitative Evaluation

We let domain experts evaluate blood flow summaries gen-
erated by means of the quantitatively best performing
streamline clustering techniques (Section 5.4): agglomera-
tive hierarchical clustering with average link, AHC with
Ward’s method, and spectral clustering. The number of
clusters in the summary and hence, the number of represen-
tatives, has been computed automatically (Section 6.4). The
evaluation is based on three clinical cases together compris-
ing five data sets and representing the prevailing types of
aneurysms. One case has been simulated without virtual
stenting (Fig. 4a). Two cases have been simulated with and
without stenting, one of them with two types of stents in
two different positions (Sections 7.1 and 7.2). For the latter
case, we considered only the most beneficial type of stent
and position. The blood flow summaries were evaluated by
two board certified (BC) senior interventional neuroradiolo-
gists, a BC senior radiologist with a strong background in
aortic aneurysms, two CFD engineers with a strong back-
ground in cerebral blood flow (one being coauthor of the
paper), and one computer scientist working on experimen-
tal 7-Tesla magnetic resonance imaging (MRI) of cerebral
blood flow. The CFD engineers and one of the neuroradiolo-
gists participated in the virtual intracranial stenting chal-
lenges in 2009 and 2010 (Sections 7.1 and 7.2). The case
without virtual stenting was stented by the neuroradiologist
in real life.

Flow Summary: At first, the experts were asked to famil-
iarize with the original data, i.e., the streamlines. All of
them had seen streamline visualizations of blood flow
before. However, the two neuroradiologists had no and
only limited experience, respectively in interacting with
such visualizations, e.g., filtering lines and probing by inter-
active seeding. The streamlines were visualized as in
Fig. 4a. The experts could filter lines by thresholding their
average distance to the vessel wall. This offered browsing
through the lines from the vessel wall to the center in order
to grasp the path of the flow through the near-vessel
domain (Fig. 1b) and to detect characteristic flow structures,
such as swirls. The experts were asked to sketch the flow
path and annotate all structures that they consider to be rel-
evant in a drawing of the aneurysmal silhouette.

Then, the flow summaries based on the three clustering
algorithms were presented in a random, blinded side-by-
side arrangement. In addition, a control summary was gen-
erated and mixed in to eliminate coincidence. This sum-
mary was generated based on a random number k of
clusters, with k being in the range of the numbers com-
puted for the three algorithms. Cluster size, the assign-
ment of streamlines to clusters, and the selection of

cluster representatives were also randomized. The experts
were asked to rate each flow summary. Zero points were
given if the sketched flow was in no way represented by
the summary, one point was given if it was partially rep-
resented and two points in case of full representation.
Finally, the experts should check whether the summary
reveals other important patterns than they had discov-
ered. Additional comments were recorded during the
evaluation. The overall time exposure for the experts was
�60 minutes.

The results of the evaluation are summarized in Table 2.
SC consistently achieves the best results. Except for one
data set, its flow summaries fully represent the flow
sketched by the experts. For this specific data set, half of the
participants considered a swirl as “not really visible” (one
point) while the other half considered it to be “slightly
indicated” (two points). AHC with average link and with
Ward’s method show the second and third best results,
respectively. However, Ward’s method never achieves the
full score on average for none of the data sets. The control
summary (RAND) performs significantly worse than the
rest, which confirms that the other summaries indeed pro-
vide non-random, meaningful insight. In 33 flow summaries
out of 90 (five data sets times six participants times three
algorithms, excluding RAND), the experts detected more
interesting flow patterns than they had discovered during
streamline filtering further indicating the summary’s bene-
fit. The 33 summaries were generated in equal shares by the
algorithms thus not indicating a unique feature.

Number of Clusters: The CFD engineers and the computer
scientist were given an extra task before the assessment of
the flow summaries. This time-consuming task did not fit
into the tight schedule of the physicians since it extended
the evaluation time to 90–120 minutes. In a sequence, the
flow summaries based on the range of possible numbers of
clusters ½4; 20� were presented and the experts were asked
to select the number ksel that fully represents their sketched
flow, possibly shows more important flow structures, and is
still clearly readable. To reduce time exposure, each expert
assessed each data set only based on one alternately chosen
algorithm A with the control summary being left out (3
experts times five algorithms results in 15 ratings). After ksel
had been determined, the experts were asked to rate the
flow summaries as explained above. Afterwards, the sum-
mary corresponding to A was pointed out and the expert
was asked to compare the associated computed number of
clusters kcmp to ksel.

TABLE 2
Average Expert Ratings of Blood Flow Summaries

(2 0; 1; 2f g, 2 ¼ Best)

Comparison of spectral clustering, agglomerative hierarchical clustering
with average link (avg) and Ward’s method, and random generation
(RAND).
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For SC, ksel was preferred once over kcmp, namely for the
only data set for which SC’s flow summary did not achieve
the full score on average (Table 2, V 09S). For both AHC
with average link and AHC with Ward’s method, ksel was
preferred three times over kcmp since important flow struc-
tures were missing based on kcmp. The remaining eight com-
parisons assessed kcmp as appropriate for generating an
uncluttered summary, which is complete with respect to
characteristic flow structures. In five (of eight) comparisons,
these structures were overrepresented (kcmp > ksel) but still
clearly visible. In the remaining three comparisons, ksel was
higher than kcmp because one specific swirl was seen based
on both but even more clearly based on ksel.

In conclusion, the blood flow summaries based on SC
have achieved the best evaluation results by a narrow
margin. The applied clustering algorithm, the number of
clusters, and the type of representative effect the success
of the summary. Hence, we recommend and employ in
the remainder SC, its associated technique for computing
a reliable number of clusters, and density-based repre-
sentatives (Sections 5.3, 6.1, 6.2). Since kcmp was assessed
as inappropriate in one case of SC, we offer interactively
browsing the range of possible cluster numbers ½4; 20�
starting from kcmp.

Anecdotal Feedback: All experts agreed that the flow
summary is much faster to interpret than the entire set of
streamlines and reveals flow features which are hidden
inside the streamline clutter. They appreciated the work-
load reduction by avoiding the tedious iterative proce-
dure of selectively seeding and/or filtering streamlines.
Displaying streamline clusters on demand was rated as
very valuable to get an impression of the spatial region
that is represented by a cluster representative. Supporting
the visual tracking of individual representatives by color-
ing the halo of the representative under the mouse pointer
was preferred over temporarily modifying the halo color
of all representatives according to cluster ID (Section 6.1).
The physicians agreed that the comparison of flow before
and after stenting is greatly simplified by the flow sum-
maries in Figs. 5 and 7.

6.5 Design Lessons

We carefully designed the flow summary in a tight feedback
loop with our collaborators. The design lessons learned help
other visualization practitioners working with similar data.

(1) Restrict the clustering domain to the region-of-interest.
We restrict it to the aneurysm and the near-vessel domain.
Otherwise, long sections of straight in- and outflow would
lead to high streamline similarities while differences
inside the aneurysm would have less impact (Section 4.1).
(2) Choose a similarity measure that is less sensitive to
streamline length if the course of streamlines is the primary
concern. (3) Provide a good initial guess of the number of
clusters since visually tracking the changes while browsing
through different numbers of clusters is a tedious task espe-
cially for highly intertwined streamlines. (4) Use tubes as
cluster representatives instead of ribbons if the readability of
attribute values is crucial. (5) Add halos to streamlines and
representatives in order to enhance their spatial perception.
(6) Use black as halo color to avoid visual interference with

color-coded streamline attributes. (7) Support visual tracking
of tubes through a set of intertwined representatives by
assigning a striking color to the halo of the representative
under the mouse pointer. (8) Allow the user to see the origi-
nal clusters since the representatives well encode the general
course of the contained streamlines but fail in illustrating the
cluster extent. (9) Encode the direction of the flow, e.g., by
arrowhead glyphs. (10) Attribute-based clustering may
require the computation of several representatives per clus-
ter since the streamlines in a cluster may be quite heteroge-
neouswith respect to their geometry (Figs. 8b and 8d).

6.6 Development Environment

The clustering algorithms, the similarity measures and
the computation of cluster representatives are imple-
mented in Matlab (MathWorks, Natick, MA). Source code
for local scaling and determining the number of clusters
is provided by Zelnik-Manor and Perona [47]. All Matlab
code is exported as a shared library and accessed from
custom C++ code. The three categories of streamline
attributes are computed using (1) ANSYS Fluent 12 and
ParaView, (2) the vascular modeling toolkit (www.vmtk.
org), and (3) custom C++ code (Section 4.3). The visuali-
zation is implemented in C++ and the Visualization Tool-
kit (Kitware, Inc., Clifton Park, NY).

7 APPLICATION

We applied our approach to data of the virtual intracranial
stenting challenges in 2009 and 2010 [48]. Please consider
the following advices when reading the figures of this sec-
tion. The color scales refer to the representatives, not their
halos. The annotated range of values is based on the entire
set of streamlines. Halo colors must not be employed for
establishing correspondence between clusters in different
figures or figure parts. They are assigned independently to
each clustering result and simplify the visual tracking of
representatives in a non-interactive display.

7.1 Virtual Intracranial Stenting Challenge 2009

For the VISC 2009, teams were invited to compete in pre-
dicting stenting success based on simulated hemodynamic
data. Two cases and a model description of the flow divert-
ing SILK stent (Balt, Montmorency, France) were provided.
Due to space restrictions, we only discuss the first case with
a saccular side-wall aneurysm located at a bifurcation
(Fig. 5a). A rare anatomical variant is the cavity (fenestration)
behind the aneurysm. Our medical collaborators suggested
placing the stent in the right artery and circumventing the
aneurysm to the left. The stent geometry was modeled in a
CAD program and manually fitted to the vessel wall. The
hemodynamic data generation resulted in volume meshes
with 4.3 and 4.6 (with stent) million tetrahedral elements
(Section 2.3). The meshes constituted the input for stream-
line generation (Section 4.1).

The resulting lines have been clustered based on geome-
try (Section 4.2). The flow summaries are displayed in
Figs. 5b and 5c. A higher number of clusters can be
observed in the untreated aneurysm indicating a more com-
plex flow pattern (Fig. 5b). After stenting, the flow is less
complex which decreases the risk of aneurysm rupture [5].
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In the stented configuration, flow arriving from the right
artery is not completely diverted but still enters the aneu-
rysm (Fig. 5c). A closer look from inside the vessel at the
location where this flow enters the stent reveals that the
stent model does not perfectly adhere to the vessel wall
(Fig. 5d). A considerable gap exists through which flow
with high pressure is bypassing the stent. A neuroradiolo-
gist commented that such gaps indeed occur in real stenting
due to a sharp bending of the vessel. Their prediction would
be of great value. The flow that travels through the virtual
stent, exits the stent at its aneurysm-near inflection point
and enters the aneurysm (Fig. 5c). This may be mitigated by
a higher general or local mesh density. Before stenting,
reflux is observed below the ostium (Fig. 5b, top arrow).
Furthermore, flow is entering the aneurysm from the left
artery with high pressure (Fig. 5b, bottom arrow). After
stenting, this flow is obstructed by the stent and circum-
vents the aneurysm. This is a convenient side effect of
diverting the flow arriving from the right branch.

A comparison of the aneurysmal wall-shear stress before
and after stenting revealed lower values in the latter which
indicates a benefit. We investigate the near-wall flow by
clustering the streamlines based on their mean distance to
the aneurysm wall (Section 4.3). The results before and after
stenting are compared in Fig. 6. To support a visual compar-
ison, the color mapping and the radius scaling of the repre-
sentatives after stenting are applied uniformly to both
configurations. The comparison shows that more flow hits
the wall and is traveling through the near-wall region before
stenting. This is in accordance with the higher WSS [49].
After stenting, a considerable amount of the flow barely

enters the aneurysm (thick blue tube in Fig. 6b). Note that
attribute-based representatives have been applied well indi-
cating a cluster’s range of attribute values (Section 6.1).

7.2 Virtual Intracranial Stenting Challenge 2010

For the VISC in 2010, research teams were invited to find the
optimal placement of a stent in treating a basilar tip aneu-
rysm (Fig. 7a). We considered two types of stents and two
different positions, both covering the end of the basilar
artery and then extending to the beginning of the left and
the right posterior cerebral artery (LPCA/RPCA), respec-
tively. We restrict our discussion to the most beneficial type
of stent (SILK). The hemodynamic data of the two stented
configurations and the untreated case has been generated as
described in Section 2.3. The biggest tetrahedral mesh con-
sists of 13.5 million elements (including stent). The stent
geometry was modeled in a CAD program. Learning from
the issues of a manual stent deployment (Section 7.1), we
applied an automatic wall-tight deployment using polyhar-
monic splines for free-form deformation [15].

For the detection of flow structures in the untreated aneu-
rysm and in the two stented configurations, the near-vessel
domain is specified (Fig. 7a) and the data is cropped. Then,
streamlines are seeded at the ostium and clustered based on
geometry. Cluster representatives are displayed and colored
according to local residence time (RT, Section 4.3). The color
scale has been set for all configurations to mapping the range
of RT in the untreated configuration (Figs. 7a, 7b, 7c and 7d).
Thus, regions of prolonged RT after stenting can be easily
spotted. Before we focus on RT, we study the detected flow
structures.

In (Figs. 7b, 7c and 7d), representatives indicating a
major difference between the flow patterns are rendered
opaque. Before and after stenting along the LPCA, parts
of the flow enter the aneurysm and after a swirling
motion inside, exit via the RPCA (Figs. 7b and 7c). Stent-
ing along the RPCA considerably alters the flow pattern
and generates a double helical swirl in the center of the
aneurysm. A closer look at the highlighted representative
(s) of each configuration revealed that they always repre-
sent those clusters with the highest RT values on average.
Comparing their coloring indicates that SILK stenting
along the RPCA causes the most prolonged RT and hence
represents the preferred strategy (Fig. 7d). Further evi-
dence is given by plotting the percentage of streamlines

Fig. 6. Clustering streamlines according to their mean distance to the
aneurysm wall before (a) and after virtual stenting (b). Stenting reduces
near-wall flow.

Fig. 5. VISC 2009. (a) Virtual stent placement, morphological features, subdivision of vascular domain (red circles) and flow conditions. (b,c) Stream-
lines clustered based on geometry (b) before and (c) after stenting. Arrows point at interesting differences, e.g., reflux (upper arrow). Flow from the
right artery is not completely diverted (c). (d) Inside the artery. Flow bypassing the stent (arrow) reveals a gap between stent and vessel wall.
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over discrete RT values (Fig. 8a) and by Janiga et al. [15]
who report the most prolonged turnover time for this con-
figuration. The turnover time is a global scalar measure
which is proportional to RT and both characterize intra-
aneurysmal flow stasis [50]. In the following, we focus on
stenting along the RPCA.

In order to investigate RT more locally, the streamlines of
the stented configuration have been clustered based on it.
The cluster with the highest RT values is shown in Fig. 8b. Its
streamlines are rendered semi-transparent such that the
inner swirl is easier to perceive. Flow enters the aneurysm, is
attracted by opposing wall parts, converges in a swirl in the
center, and leaves the aneurysm (the swirling motion is also
indicated in Fig. 7d). Since correspondences between a low
WSS and thrombosis development as well as between a high
RT and thrombosis development are known [4], the cluster
has been further investigated in the context of WSS (Fig. 8c).

WSS is mapped to the surface of the aneurysm and visual-
ized by contour lines. In agreement with [4], a value of 1.5 is
chosen as the upper limit for color mapping. Values above
are clamped to this limit. As can be observed, low WSS val-
ues occur in a large region where the flow streaks the wall
(arrow). The same is true for the opposite side of the wall. It
should be further investigated whether these regions are
potential candidates for thrombosis initiation and whether a
double helical swirl particularly encourages flow stasis.

It was shown in [15] that the SILK stent diverts a consid-
erable amount of blood. However, parts of the blood flow
exit the wired mesh and enter the aneurysm. In Fig. 8d, the
cluster with the highest values of RT is refined by a cluster-
ing based on geometry and the new representatives are col-
ored according to velocity magnitude. The structure of the
swirl is easier to perceive as compared to Fig. 8b. Further-
more, it can be observed that the flow exiting the stent is
strongly decelerated at its wires thus leading to a prolonged
RT and a slow inflow (strong red to green jump in the inset
of Fig. 8d).

7.3 Performance

This section reports on the performance of our approach.
The focus is on computation time since memory consump-
tion is not critical. The time is dependent on the number of
streamlines and their number of vertices (columns 2-3 in
Table 3). While the first varies with the sampling density of
the ostium, the latter depends on the streamline length and
integration step size (Section 4.1). We measured the compu-
tation time of spectral clustering and of the visualization. In
clustering, we differentiated between the computation of

TABLE 3
Data Set Characteristics and Timings ½s� of Geometry-Based

Clustering and Visualization

V09/V10 ¼ Virtual Intracranial Stenting Challenge 2009/2010, S ¼ SILK
stent, N ¼ Neuroform stent, L/R ¼ left/right posterior cerebral artery.

Fig. 8. VISC 2010. (a) Comparison of local residence times before and
after stenting along the left and right posterior cerebral artery (LPCA,
RPCA). The percent of streamlines is plotted over discrete RT values.
Stenting causes prolonged RT. (b) Cluster with the highest average RT
in RPCA stenting. (c) Investigating this cluster in the context of wall-
shear stress (iso-contours). (d) Partitioning the cluster based on stream-
line geometry. Flow is strongly decelerated at the stent wires (inset).

Fig. 7. VISC 2010. (a) Virtual stent placement, morphological features, subdivision of the vascular domain (red circles) and flow conditions.
(b-d) Clustering of streamlines based on geometry before (b) and after stenting (c,d). Representatives indicating a major difference between
the flow patterns are rendered opaque. While a “simple” swirl is characteristic for the first two patterns (b,c), a double helical swirl is
observed in the third one (d).
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the distance matrix and the actual clustering. The latter also
comprises the determination of cluster representatives. In
distance matrix computation, we focused on geometry-
based distances since attribute-based distances are much
faster to compute. The timings were taken on a 3.07 GHz
Intel 8-core PC with 8 GB RAM and a 64 bit Windows oper-
ating system (Table 3).

As expected, the computation of the distance matrix rep-
resents the bottleneck. However, the matrix can be reused
for different clustering settings. In attribute-based cluster-
ing, the time for computing the matrix depends on the
applied statistic (Section 4.3). For simple statistics such as
min/max, the computation is two orders of magnitude
faster than in geometry-based clustering. The timings for
the clustering itself are in the range of seconds. The most
time-consuming part of the visualization is the geometry
computation for the GPU-based streamline rendering.

8 SUMMARY AND DISCUSSION

We presented an approach for reducing visual clutter in
streamline visualizations of simulated blood flow. The
approach is based on clustering streamlines and computing
cluster representatives, which are compiled into a flow sum-
mary. To determine the most appropriate clustering algo-
rithm, we carried out a quantitative evaluation of spectral
clustering, four variants of agglomerative hierarchical clus-
tering, and k-means. Based on cluster validity measures, we
identified SC and AHC with average link and Ward’s
method, respectively as superior. In an expert evaluation of
blood flow summaries generated by these algorithms, SC
achieved the best ratings by a narrowmargin. Its summaries
are complete with respect to the relevant flow structures in
most cases. In a tight feedback loop with our collaborators,
we carefully designed the flow summary. The design les-
sons learned help scientists, e.g., in exploring flow in other
vascular pathologies.

The computation of the summary is fully automatic.
Only a range for the number of clusters that possibly exist
in the data set must be provided. The optimal number is
identified automatically. We empirically determined a
range of ½4; 20� for detecting all relevant flow structures in
ten data sets. The time needed for the clustering and the
visualization is within the range of minutes. Compared to
the Computational Fluid Dynamics simulation, which takes
hours, it is of little consequence with respect to a possible
therapeutic workflow.

Results from CFD simulations are not yet part of the clin-
ical decision pipeline although they can be generated within
a clinically acceptable time frame for planning an interven-
tion. Neuroradiologists have little experience in investigat-
ing flow data. Our flow summary simplifies the access to
the data, it is easier to read than full streamline visualiza-
tions, and it contributes to the communication between
CFD engineers and physicians. The latter is of crucial
importance in understanding “How stent properties affect
flow patterns?”, “How the change in flow patterns after
stenting is related to treatment success?”, and “How flow
patterns are related to the risk of aneurysm rupture and the
development of thrombosis?”. Once these questions can be
answered, stenting may not be planned solely based on the

coverage of the aneurysm neck by the stent, but also based
on CFD results and the flow summary. The concept of the
summary can be readily transferred to (virtual) coiling.
However, the joint visualization of coils and cluster repre-
sentatives will cause serious occlusion problems.

The success of virtual stenting is so far evaluated based
on global measures, e.g., the turnover time. However, if a
certain stented configuration does not indicate a benefit for
the patient, global measures fail to explain why. We cluster
streamlines also based on locally derived domain-specific
attributes, e.g., the distance to the aneurysm wall and the
local residence time. The latter was considered a useful
extension to the turnover time. Clusters with a high resi-
dence time may forecast locations of thrombosis initiation.

A limitation of our approach is that a few cluster repre-
sentatives do not capture the entire structure of their cluster.
They faithfully represent its densest part but fail to repre-
sent all parts in the in- and outflow regions of the near-ves-
sel domain. Hence, the clusters itself should also be
inspected.
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