
Interaction Facilities and High-Level-Support for the
Exploration of 3D-Models: System Architecture

Bernhard Preim

Institut für Simulation und Graphik, Otto-von-Guericke-Universität
Magdeburg, Universitätsplatz 2, D-39106 Magdeburg

e-mail: {bernhard}@isg.cs.uni-magdeburg.de

Abstract. We describe the design and architecture of an interactive
system to illustrate spatial phenomena. Our system, the ZOOM
ILLUSTRATOR, focuses on the combination of rendered images with dif-
ferent levels of textual descriptions for educational purposes. Fisheye
Techniques are employed to present detailed information while
maintaining the global context of the overall available information.

The design of our system was guided by the object-oriented approach.
To encourage comparison, it is furthermore described in terms of the
reference model for intelligent multimedia presentations. The feasibility of
this approach encourages the use of the reference model for the design of
interactive systems. Our system targets at interactive manipulation by an
end-user, however, it offers automatic support to enhance its usability.
Automatic support is needed for the coordination between images and text,
for the annotation of a 3D-model and for the synthesis of a layout.

Keywords: Interactive Illustrations, Image-Text-Relation, Fisheye-Zoom-
Techniques, Multi-modal Presentation, Object-Oriented Design

1 INTRODUCTION
Interactive 3D-graphics bears a high potential for the explanation
of complex 3D-phenomena, as can be found for example in
engineering and anatomy. Modern hardware allows rendering 3D-
models with considerable detail at interactive rates. The
interactive handling of 3D-models is important to clarify spatial
relations. While this is well-recognized, especially in the computer
graphics community, not enough effort has been spent on the
combination of rendered images and textual information.

Borrowing from textbooks gives hints on how to combine
images and text. Images often are surrounded by labels referring
to their parts via reference lines. Explanations refer to the spatial
structure and are enhanced by cross references as to spatial
relations. In textbooks, however, explanations are generally not
integrated in an illustration but are placed under an image or even
on a separate page, which complicates comprehension.

Interactive systems can handle this problem and tailor the
presentation to the information requested. In current hypermedia
systems, however, this often results in the display of multiple win-
dows, the management of which imposes a high burden on the
user. To make matters worse, an obvious coordination of
explanations and images is missing.

Based on these observations we developed the ZOOM ILLUSTRA-
TOR. Our system tackles some problems which are typical in
multimodal presentation systems, as there are:

• The use of different modalities, namely images and text, must
be coordinated. In particular, an image and its textual descrip-
tion must fit conceptually.

• Flexible layout strategies are required. This is due to the
amount of textual information related to a complex 3D-model
which cannot be displayed at once.

• User support is necessary for the annotation of graphical ob-
jects with textual labels.

To adapt a presentation to the user’s interest, Fisheye Techniques,
as introduced by Furnas (1986), are very useful. Fisheye

Techniques place and scale the space to accommodate information
depending on the user's interest and allow to look at something in
detail while maintaining the context and thus the overview.

Important information is emphasized, driven by a degree-of-in-
terest (DOI) which is assigned to each piece of information. DOI-
values depend on a static à priori importance (API) and on dy-
namic factors which consider the distance of pieces of information
from the one the user interacts with. This distance, however, is not
necessarily a spatial distance in terms of screen coordinates.

This paper describes the design and the architecture of an inter-
active system with focus on the coordination of graphics and tex-
tual descriptions. Fisheye Views are generated to integrate detail
and context. According to its purpose, to integrate rendered
images with textual descriptions, that is to illustrate, and its basic
interaction technique, to zoom, it is called ZOOM ILLUSTRATOR.

In this paper we put emphasis on the Object Oriented Design
(OOD) and the overall architecture of the system. Because the
OOD as well as our architecture use a dedicated terminology, a
system description in terms of the reference model for IMMPs (see
Rugieri et al. (1996)) is presented.

Our system targets at interaction facilities for an end-user.
However, we believe that there is not a strict separation between
knowledge-based systems and interactive systems, because the
latter can benefit from automatic support to allow high-level
interaction. It turns out that the reference model is able to capture
our design and offers new ways to look at the system.

2 RELATED WORK
Our work is related to systems which consider communicative in-
tents to generate 3D-illustrations. Planning strategies are used for
the application of illustration rules and the selection of modalities.
Advanced techniques for the automated design of 3D-illustrations
were developed in the IBIS-System and in the WIP-Project.

The IBIS-system (Intent Based Illustration System), described
in Seligmann and Feiner (1991), is based on an extensive study of
the work of technical illustrators. IBIS employs 3D-models with
considerable detail. Transparency and cut-aways are used as well
as insets (small details scaled up in a large image). Arrows
emphasize parts which are important with respect to the goals
specified. We learned from their work that visibility and
recognizability of important objects are crucial for illustrating 3D-
models. With IBIS excellent images can be produced. However,
labels or other textual descriptions are not included.

The WIP-project (Knowledge Based Information Presentation)
is described e.g. in Wahlster et al. (1993). It originally targeted at
static illustrations, which requires sophisticated strategies to select
the content and modalities to communicate the intents specified.
In a later stage of the project, Rist et al. (1994) describe a system
for the semi-automated illustration design. The system offers
interaction facilities to incrementally augment and evaluate an
illustration the system suggested. The final illustration generated,
however, is not intended for interactive usage. André and Rist
(1994) extend the project to combine interaction facilities and
knowledge-based techniques for the handling of illustrations.

IBIS and WIP offer strategies to plan, evaluate and replan an
illustration. From the intents specified, constraints are derived and
solved. The overall goal is to produce final illustrations which
fulfil the communicative intents.

Our system differs from previous work as the focus lies on pro-
viding flexibility to interactively explore an illustration and does
not target at a final illustration. The need for planing strategies is
reduced because the user can interactively build up a presentation
with a specific view on the 3D-model and the text displayed.
Instead, the user-interface gets more important. While the strate-
gies to generate an initial layout are straightforward, sophisticated
techniques are developed to place textual items after interaction.
Finally, a difference lies in the application area: Our system
focuses on complex, irregular shapes, as can be found in anatomy.

Despite these differences some similarities exist: To emphasize
an object graphically which is textually explained, illustaration
techniques as used in WIP and IBIS are helpful. This includes the
selection of a perspective and the use of semi-transparency to show
an object behind another. Furthermore transparency is used to de-
accentuate objects which are not important in the current context.

Besides intent-based illustration systems, applications of
Fisheye-Techniques are related to our work. We are inspired by
Noik (1993), who applied Zoom Techniques within the hypertext
domain. Especially our DOI-calculation is related to Noik’s work,
which employs a conceptual distance between nodes, derived from
the existence of hyperlinks. Dill et al. (1994) developed the
continuous zoom which provides smooth transitions between an
original layout and the layout after a zoom step. Continuous tran-
sitions indeed enhance the user’s understanding and encouraged us
to use a variant of this algorithm.

3 ARCHITECTURE OF THE ZOOM ILLUSTRATOR
With our design, we combine interactive 3D-graphics with hyper-
text functionality for educational purposes. This involves the
presentation of more or less detailed information on the textual part
and results in a continuous zoom of the corresponding node to
accommodate this information, while automatically repositioning
and rescaling other nodes.

Figure 1: Example layout of the ZOOM ILLUSTRATOR with different levels
of text presentation ranging from a mere rectangle (on the right) to an
extended explanation on the right side. The material properties on the
graphical part are adapted to the amount of text presented. The endpoints
of reference lines are marked with small spheres.

The annotation of the graphics is based on the structure of the

3D-model. To ensure a high quality, we employ 3D-models which
are commercially available. This has one serious disadvantage
concerning the annotation: we must live with the vendor's structure
of the model, which tends to be very coarse and unsuitable to
assign textual information. Therefore the structure must be

tailored before the reference points can be calculated. Each
graphical object is connected to the corresponding part in the
textual information via a line.

Navigation through textual information is supported by
hyperlinks. These hyperlinks connect different explanations for
one node as well as explanations of different nodes with each
other. As usual, e.g. in Web-Browsers, the colour of hyperlinks is
adapted to whether or not they have been visited.

On the graphical part, 3D-models can be transformed freely.
Furthermore, changes on the textual presentation cause an
adaptation of the corresponding graphical part. Transparency and
saturation of colours have proven to be important parameters to
adapt an object's appearance to the amount of detail of its textual
description. Figure 1 shows a typical output of the system which
incorporates this adaptation.

For the layout, different strategies are necessary for the initial
layout and the layout after user-interaction. The initial layout
encompasses the labels with the highest API-values together with
one instance of the 3D-model to explain. The API-values (recall
Furnas (1986)) are derived from the object structure (the position
within the hierarchy) and from geometric criteria (size and
visibility of objects). The Layout Manager is responsible for
choosing the most important nodes to label. (see the architecture in
Figure 3). Textual information is distributed as evenly as possible
between the left and the right side of the image.

Originally, the zoom algorithm placed and scaled the whole
space to accommodate textual information. In many cases, the
zoom performs well and does what can be expected. However, if
one node is zoomed up, others may be closed, which is an
unwanted sideeffect. To prevent nodes from being closed due to a
zoom step, they can be transferred to the pinnwall (see Figure 2).
This is a container for nodes which are always connected to the
graphics. These are at fixed positions and thereby somehow
“privileged“ because they are not exposed to the zoom. However,
the nodes managed by the pinnwall be enlarged to display
explanations.

Figure 2: Layout for the illustration of one 3D-Model

Figure 3 summarizes the architecture of the ZOOM ILLUSTRATOR.
The generation of an illustration is based on two sources (see the
top vertical boxes in Figure 3, next page):

The first is a Scene Description, containing a polygonal 3D-
model which is structured into objects. Secondly, we employ a file
with related Textual Descriptions referring to the objects in the
scene description. The Textual Descriptions contain labels and
explanations.

After the sources are loaded, an internal representation is
generated using the correspondence between a common key in the
Scene Description and in the Textual Description. A user can
interact with the Text Display (ask for explanation, follow
hyperlinks) and with the Image Display (transform the model,
adapt individual objects).

The architecture is well-suited to communicate the ideas behind
the ZOOM ILLUSTRATOR. It is abstract insofar as it does not lead to
an implementation in a straightforward manner. The terminology
is dedicated to the basic features and techniques of our specific
system. To encourage comparison an architecture in terms of
IMMP-systems is presented in Section 5.

Text Display Reference Lines Image Display

Scale to Show/
Hide Text

Rotate, Scale,
Add an instance

Scene description

Zoom Illustrator

Textual Description

Internal Re-
presentation

Internal Scene
Description

Network for tex-
tual Information

Layout-
Manager

Zoom

Figure 3: Overall Architecture

4 OBJECT-ORIENTED DESIGN
Following the conceptual architecture, this Section describes the
Object Oriented Design of the ZOOM ILLUSTRATOR. Classnames,
methods and members are written in italic. The spelling
Class::method() refers to a method of a class. The relations bet-
ween the most important classes are described in Figure 4.

Design of the toplevel-classes

The basic idea of the OOD is to regard an illustration as a
hierarchy of parts which manage a media or a screen space. This
implies that one instance is on top of the hierarchical composition
of the illustration. To realize the described architecture, images
and text must be managed. This gives rise to the classes TextArea
and GraphicsArea. These classes manage the extent of their media
and contain children, instances of a rendered image and networks
of textual information. They assign space to their children, cause a
rearrangement of their children (e.g. if a new child is added. Both
classes involve some file operations, namely they load and process
information from an external file).

The work of the TextArea and the GraphicsArea is coordinated
by class Illustrator, which is on top of the hierarchical representa-
tion. It communicates directly with the application and distributes
commands to their children (namely, GraphicsArea and TextArea).

The similarities between these three classes give rise to define a
common base class which we call IllustratorPart. It has the mem-
bers children and screenspace and methods to manipulate them.

The peculiarities of the part which is on top of the illustration
are summarized in a class TopLevelPart which is derived from
IllustratorPart and enhances the inherited behavior by methods to
manipulate the viewing window in which the whole illustration is
presented as well as global rendering parameters.

With this policy a strict separation of concerns is achieved. The
basic abstract class IllustratorPart which is very generic provides
the basic services for all parts of an illustration, where some
methods are pure virtual, requiring reimplementation in derived
classes. Class TopLevelPart provides the generic behavior of that
part which is on top of the illustration. Class Illustrator which is
derived from Class TopLevelPart is less generic and concentrates
on the coordination of images and text. Furthermore, Class
Illustrator is responsible for the overall layout of the illustration.
An even more dedicated class is derived from class Illustrator and
provides the specific behaviour required to control the Fisheye
Zoom. This derived class is called ZoomIllustrator.

Graphical Interaction

The GraphicsArea manages 3D-Models. Each 3D-Model instance
has its own transformation to be rotated and scaled independently.
Figure 5 demonstrates the independent handling of two 3D-
Models. 3D-Models are containers for 3D-Objects, with each
object having its own material information. With this structure the
material of each 3D-Object can be changed independently in
several instances of the 3D-Model. Thus, an object can be empha-
sized selectively in one instance of the 3D-Model.

Media Coordination

One important issue in a Multimodal Presentation System is the
coordination of the different media. In the ZOOM ILLUSTRATOR,
this task is carried out in the class Illustrator, which distributes
commands at the highest level. Coordination at a lower level (bet-
ween one piece of text and the related graphics part is carried out
by a collaboration between IllustratorNode and class 3D-Object.

Requests to change the view, to add or remove an instance of
the 3D-Model are propagated to the TextArea which initiates an
update of all textual information and of all reference lines. The
TextArea manages several IllustratorNets which “know” their
extent on the screen and hold a list of IllustratorNodes. The
IllustratorNets initiate the update process for their Illustrator-
Nodes, which includes the adaptation of the presentation to the
space available. Requests to explain a node are processed from the
textual part, resulting in a zoom step to accommodate the desired
text and from the graphics part. On the graphical part the 3D-
Object-instance to be explained is emphasized and those 3D-
Objects which may occlude it are deaccentuated performing
changes of material properties. If necessary, the whole 3D-model
is transformed to ensure visibility of the explained object.

Navigation in Textual Information

The LinkManager maintains all hypertext links currently presented
an explanation. This allows to adapt the presentation of nodes
(e.g. the label colour) if they are mentioned somewhere else in an
explanation. A link is a relation between two nodes under a certain
aspect, that is node A has an aspect (an explanation) which refers
to node B. As shown in Figure 4, IllustratorNet is an abstract class.
Subclasses have to define a layout strategy. Two subclasses are
defined: ZoomNet, which uses the zoom algorithm for the layout
and PinWallNet, with nodes at fixed positions. Instances of

ZoomNet manage the labels on the left and right side whereas an
instance of PinnWallNet is responsible for the nodes on top of the
image. The Zoom realizes the zoom algorithm, that is it manages
intervals and initiates an update of all ZoomNodes according to a
zoom step.

Controlling Text Layout

Important methods of class TextArea are move() and rearrange().
The move()-method transfers a node to another network by an
animation. It is invoked for instance to shift a node to the
PinWallNet. The movement consists of three independent and
incremental changes: A zoom step to provide the space in the
target network, a second zoom step to distribute the space which is
no longer needed in the source network and the actual movement
from the source network to the target area. The rearrange()-
method redistributes textual information to prevent crossing
reference lines (which may occur when transforming the 3D-
model). This process is only invoked after an explicit command of
the user to avoid confusions resulting from “flying” labels.

Managing Information for one node

An IllustratorNode manages application-specific data related to a
node. This includes information about its appearance (e.g. colours
of the label, of the rectangular area) and about its relation to the
graphics part, summarized in an instance of GraphicalReference.
This instance holds the reference object within the graphic (see the
association between an IllustratorNode and a 3D-Object in Figure
4) and allows an IllustratorNode to adapt the appearance of the
graphical counterpart.

All information for the placement of an IllustratorNode is
encapsulated in the ZoomNode (the position, the scale factor as a
request to the Zoom). The separation between zoom-specific (or
more general layout-specific) information and application-specific
information (managed by an IllustratorNode) has proven to be
very useful for modifications.

Representations of different levels of textual description

An important issue in the design of the ZOOM ILLUSTRATOR is the
concept of representations. Each node has several representations
where the set of representations varies depending on the node’s
category. Each node has at least a label and it may have
explanations. In our domain, anatomy, we categorize nodes as to
their membership to an organ system, e.g. bones or muscles.

A Representation is an abstract class. It is characterized by its
level of detail and the neededSize to be activated (higher levels of

detail corresponding to more information and more space needed).
Each representation has a display()-method to activate itself.

Representations log their activations and adapt the behaviour of
their display()-method to the occurrence of previous activations.
This is useful if several representations have the same level of
detail. In this case a direct mapping of the DOI to a representation
is not possible, instead the most suitable should be selected. The
strategies for the selection of representations are described in detail
in Rüger et al. (1996).

Label and Explanation are subclasses of Representation which
differ in their display()-method. The Label::display()-method
simply decides whether the label string or a shorter string with
abbreviations can be accommodated and displays it. Expla-
nation::display() arranges a longer text in a rectangle with a given
width with bold parts and hyper links to other nodes (global links)
as well as to other explanations of the same node (local links).

Annotating 3D-Graphics

An important issue in generating illustrations which integrate
images and text is the annotation of images. It is especially a prob-
lem to calculate reference points within an image to which refe-
rence lines point. This calculation should fulfil several require-
ments:

1. The reference point should clearly belong to the object to be
annotated. This is not as trivial as it may seem. The bounding
box centre or the centre point, which seem to be good candi-
dates may be outside the object if it has a concave shape.

2. The resulting point should be visible, which is even less trivial
and implies that the calculation is view-point dependent.

3. Finally, it should be fast. This implies the calculation of
reference points for complex objects can not take into account
all surface points of this object.

The first requirements can be fulfilled using a vertex of that object.
All vertices obviously fulfil the first requirement, and if none of
them is visible it is very likely that the whole object is invisible
and the second requirement cannot be fulfilled. To ensure that the
calculation is finished in a reasonable amount of time (3), the
calculation is adapted to the number of vertices of an object (for
objects with many vertices only a fraction is tested as to whether
they are appropriate as reference points).

The annotation is achieved as a collaboration of an Illustrator-
Node (which holds the coordinates of the label) and the related 3D-
Object which holds the coordinates of the reference points.

Illustrator

TextArea

IllustratorPart

GraphicsArea

LinkManager
activeLinks

Zoom
resize (aZoomNode)

IllustratorNet
extent

Link
from, to, visited

ZoomNode
position, size IllustratorNode

3D Model
transformation

3D Object
material

Reference Lines

Class
method()
member

A

A abstract class

inherits

has

N N N N

N
N

N

1 1

1

1
1

Figure 4: Relations between the most important classes, notation according to Booch (1994)

Figure 5: Independent handling of several instances of a 3D-Model using Trackball-Manipulators. Labels which refer to objects which are visible in both
instances are placed automatically between them and connected to both 3D-Models.

5 DESCRIPTION IN TERMS OF A MODEL FOR IMMP
SYSTEMS
Our system targets at interactive behaviour and even those features
of the system which may sound “intelligent“ at the first glance,
like the selection of representations, are in fact not. Instead a
simple comparison between numerical values takes place. In a
system where complex 3D-models are interactively transformed,
this is necessary just to keep the response rate reasonable.
Although the ZOOM ILLUSTRATOR performs some kind of automatic
support (annotation, layout, coordination), it is rather a (simple)
Multimedia Presentation System than an “intelligent“ one.

Despite of this difference we attempt to characterize the ZOOM
ILLUSTRATOR within the terminology of the reference model
suggested by Ruggieri et al. (1996). It turns out that this is feasible
and (at least for the author) interesting. According to the structure
of the reference model this description is divided into two parts:
The first describes which components of the reference model exist
in our system and the second their relations in an architectural
scheme which is more general than the one presented in Figure 3.

5.1 Important Terms

Media

The ZOOM ILLUSTRATOR includes written text and graphics
which is generated when requested. Output media supported
include the screen and printers, where an Offscreen-Renderer
generates a postscript-file with the rendered presentation.

Goals

Goals to be achieved include textual explanations (explain
anObject| aGroup under anAspect), viewing from arbitrary
directions (show aModel from directionA {and from
directionB}. These goals are not directly specified by a user,
instead he or she invokes commands via mouseclicks at
hyperlinks or via a manipulator (recall Figure 5).

The explicit formulation of these goals, however, is a
prerequisite for constructing scripts which are interpreted −
resulting in commands to the ZOOM ILLUSTRATOR to build up
an animation sequence. The extension of the interactive
system to a semi-interactive tool, the development of a
scripting language and its combination with the interactive
kernel is described in Preim et al. (1996).

Presentational commands

To enable the user to achieve these goals, interaction facilities
on the textual side as well as for the manipulation of the
graphics are provided. When mouse-based invocation of com-
mands does not seem to be reasonable, menu items are

provided, e.g. to add/remove an instance of the 3D-Model, to
rearrange labels after geometric transformations.

Application

The external data sources for our system are the textual
information and the scene description (recall Figure 3). The
scene description describes the geometry of the underlying 3D-
model. The textual information consists of two parts:

• Structure information

⇒ Existing categories and subcategories
 (e.g. in anatomy muscles, bones and nerves) where

subcategories summarize nodes of a category which belong
to a certain region (e.g. face muscles)

⇒ Linkage of nodes via hyperlinks

⇒ Nodes and representations which belong to a (sub)cate-
gory

• Textual Information for each node structured according to the
first part.

The separation of structure information and textual information
enables us to decide quickly which nodes are important to tailor
the presentation for a specific purpose. Structure information is
used to find out which items of the textual information are
important with respect to a goal specified.

Knowledge

The ZOOM ILLUSTRATOR records requests to change the
presentation of a node (Zoom In, Follow a link). This infor-
mation is made explicit as a history which contains items of the
form (<node>, <representation>) and furthermore exploited
to guide the presentation (recall Section 3). In the terminology
of the reference model, this information belongs to the Dis-
course Model. Changes on the graphical part are also recorded
and thus the whole illustration can be reconstructed, which
allows to return to arbitrary points in the history of interaction.

Design Knowledge

Design knowledge is included in the software, but not
explicitly formulated. The required knowledge can be catego-
rized in knowledge on how to focus on pieces of information,
how to relate graphics and text to each other and on how to
make changes smooth. Smooth and incremental changes are
important for both the system (prevent unnecessary rendering)
and even more important for the user (care for animated
movements instead of rapid changes).

To make geometric transformations smooth, knowledge
about rendering parameters, their influence on the quality of
the image and on rendering times is required. The reference

model refers to this knowledge as Media Specific Design
Knowledge. The basic principle is to find a trade-off between
quality (essential for looking in detail) and the frame-rate
(essential when transforming the 3D-model in which case the
response-rate is more crucial than quality). The incorporation
of this knowledge is crucial for the acceptance of the system,
however it depends strongly on a specific environment and
thereby less general than the Design Knowledge incorporated.

5.2 Architecture in terms of the Reference Model

The description of the ZOOM ILLUSTRATOR in terms of the
reference model, reveals that two important parts are not present
(see Figure 6). On the part of the layers involved, the Content
Layer is missing. A selection of media and of strategies to co-
ordinate does not exist. The two basic media are always
employed, their coordination is defined by user-defined options
and changes in one medium are propagated to the corresponding
part in the other medium. Due to the interaction facilities offered
and the narrow target area, to illustrate complex spatial
phenomena, a planning scheme on how to present something is less
important than for systems with a broader scope, like WIP (recall
Wahlster et al. 1993).

On the other hand, there is no User Expert in the scheme,
meaning that information concerning the user is not stored. To
tailor the presentation, the user is offered Display Options
(including fonts and colours), and Rendering Options (concerning
the compromises between quality and frame-rate, forcing different
rendering algorithms to apply).

Application Expert

The Application Expert contains structural information about
the domain, including categories (e.g. muscles), aspects of
textual descriptions for nodes of a layer and “knows“ which
objects are visible from which directions (visibility information
derived from 3D-model). The Application Expert „knows“
how to present objects of a category graphically (colours and
material properties) and on standardized viewing directions.

Figure 6: Architecture in terms of IMMP

Context Expert

The design of a ContextExpert for our system is strongly
influenced by the Reference Architecture. It contains infor-
mation on active links, on previous activations of textual
information, which is exploited to adapt the presentation (e.g.
representations to activate, colours). Furthermore information
about the state of the graphics is included. For each 3D-Model
the transformation and the state of manipulators is registered,

which enables us to save a „homePosition“ to which the user
may return. For each 3D-Object the Context Expert stores its
material and the draw-style (wireframe, filled).

The Context Expert is informed whenever an event occurs
which changes the presentation and stores it into a list. Each
event has an indication whether the user has requested it inter-
actively or whether it is performed by the system automatically
as a side-effect, e. g to adapt image and text to each other.

We are currently investigating the generation of descriptive
figure captions, which describe the image generated verbally.
These descriptions include the current viewing direction, the
usage of graphical techniques. Figure captions – as can be
found for example in textbooks – are based on the information
maintained by the Context Expert and comment especially
those changes which have been performed by the system
automatically.

Layout Layer

The Layout Layer (corresponding to the Layout-Manager in
Figure 3), is not a central instance, managing all layout
problems. Instead instances of each class (recall the class
structure in Figure 4) manage their own layout and distribute
the space for subordinate instances.

With this policy class Illustrator knows how many 3D-
Models and Networks are present and assigns space to them.
This assignment, includes a rectangular area for usage and a
tolerance area which can be used if necessary without
informing the superior instance. Only if an instance cannot
cope at all with the assigned space, the superior instance (see
the has-a-relations in Figure 4) is asked to redistribute space.
This hierarchical mechanism turns is effective (in terms of
speed) and flexible.

An example may clarify this strategy. If the user interacts
intensively with textual information at one side, requesting
explanations, the network is allowed to “grow“ a bit and the
nodes involved may even grow a little bit more (recall Figure 1
with the different width of nodes). This can even result in
small overlaps between text and graphics display. This is
tolerable because overlaps are seldom and the exact extent of
the graphics is − due to its irregular shape − difficult to
consider. If some limit in the growth of a net is reached and
information can only be presented at the expense of others, the
user recently interacted with, the TextArea-instance is in-
formed. To circumvent the problem, it can move a node to
another network or extend the network. Such a change, how-
ever, is not incremental and should not occur often, because it
is expensive for the system and irritating for the user.

6 IMPLEMENTATION
The implementation was carried out on medium range Silicon
Graphics Workstations. This platform allows to experiment with
models of a “realistic“ complexity, but on the other hand still
forces considerations on the efficiency of algorithms. The system
uses Open Inventor™, an object-oriented graphics library which
targets at interactive applications. For our purpose several charac-
teristics of this library are important: It provides an extensible
class library and includes classes for event-handling, interactive
manipulation of objects, classes to control the behaviour of objects.

7 CONCLUDING REMARKS
The design and architecture of the ZOOM ILLUSTRATOR have been
demonstrated. Whenever possible, the architecture is generic so
that at least classes on a higher level should be reusable for similar
purposes.

Our system combines interaction facilities with automated
techniques to allow more high-level-interaction. This automatic
support is especially useful for the annotation of objects, the basic
layout and the coordination between images and text.

The architecture of the ZOOM ILLUSTRATOR could be described
in terms of the reference model although only a subset of the terms
and components have a counterpart in the system. The interaction
with textual information could be easily described.

OO-Design is well-suited to state “who“ is responsible for
which behaviour and to define relations among classes.
Furthermore, it naturally leads to an OO-Implementation. The
OOD usually results in a vertical structure with hierarchical
relations. However, OO-Design tends to bring up lots of classes
the overall structure of which is easily lost, especially when little
has-a or inherits relations exist between them.

The horizontal layer structure of the reference model has advan-
tages to explain this overall structure. This becomes obvious, for
instance, in the description of the layout policy. The distribution
of the responsibility to different classes is very useful for the
implementation and maintenance of the software. The overall
strategy, however, can be better described within the Layout Layer
of the reference model. While the experts presented in the
Reference Model lend themselves to be designed as classes in a
OO-system, the layer structure is orthogonal to object-oriented
design. The tasks being supported by different layers are
distributed to many classes in an OO Design. In fact, each part of
an illustration performs its own layout calculation and
presentation. However, even the layer structure can be exploited
to enhance an OOD, because it allows to structure the methods of
the classes as to the layers for which they perform a service (many
classes have presentation-methods, layout-methods,...).

Future Work
The architecture presented encompasses text and graphics. Text
presented can be clearly assigned to the parts of the graphics it
refers to via reference lines. The disadvantage, however, is that
both images and text must be processed by our visual system. The
ZOOM ILLUSTRATOR would benefit from the incorporation of
speech output, which is especially suited for verbal explanations
which are not as closely connected to the graphics.

The Reference Model gives us new insights in the system and
reveals room for improvement. The inclusion of a User Expert for
example would enable us to tailor the presentation to a specific
user. Such a personalization is extremely helpful, if the educa-
tional aspect of the system is extended (the systems asks questions
and answers them).

ACKNOWLEDGEMENT
My thanks go to Thomas Strothotte who has encouraged this work
and has initiated my interest in Fisheye Techniques. The author
wishes to thank Alf Ritter, who implemented the initial version of
the ZOOM ILLUSTRATOR. Furtehrmore my thanks go to Knut
Hartmann for commenting on the paper.

REFERENCES

André, E. and T. Rist (1994)
“Multimedia Presentations: The Support of Passive and Active
Viewing”, Working Notes of the AAAI Spring Symposium on
„Intelligent Multimedia Multimodal Systems“, Stanford, Mars,
pp. 22-29

Booch, G. (1994)
Object-Oriented Analysis and Design with Applications, The
Benjamin Cunnings Publishing Company, Second Edition,
Redwood, California

Dill, J., L. Bartram, A. Ho, and F. Henigmann (1994)
“A Continuously Variable Zoom for Navigating Large
Hierarchical Networks”, Proc. of IEEE Conference on
Systems, Man and Cybernetics, November, pp. 386-390

Furnas, G.W. (1986)
“Generalized Fisheye Views”, Proc. of ACM SIGCHI’86
Conference, Boston, April, pp. 16-23

Noik, E.G. (1993)
“Exploring Large Hyperdocuments: Fisheye Views of Nested
Networks”, Proc. of ACM Hypertext and Hypermedia,
Seattle, November, pp. 192-205

Preim, B., A. Ritter, and T. Strothotte (1996)
“Illustrating Complex Phenomena: A Semi-Interactive
Approach“, Proc. of Visualization in Biomedical Computing,
Hamburg, September, pp. 23-32

Rist, T., A. Krüger, G. Schneider, and D. Zimmermann (1994)
“AWI − A Workbench for Semi-Automated Illustration
Design“, Proc. of Advanced Visual Interfaces, Bari, Italy, May,
pp. 59-68

Ruggieri, S., M. Bordegoni, G. Faconti, T. Rist, P. Trahanias, and
M. Wilson (1996)

“Intelligent Multimedia Presentation Systems − A Proposal of
Reference Model“, Council for the Laboratory of the Research
Councils, Technical Report RAL-TR-96-011, February

Rüger, M., B. Preim, and A. Ritter (1996)
“Zoom Navigation: Exploring Large Information and Appli-
cation Spaces“, Proc. of Advanced Visual Interfaces, Gubbio,
Italy, May, pp. 40-48

Seligmann, D. and S.K. Feiner (1991)
“Automated Generation of intent-based 3D-Illustrations“,
Computer Graphics 25(4), Chicago, July, pp. 123-132

Wahlster, W., E. André, W. Finkler, H-J. Profitlich and T. Rist
(1993)

“Plan-Based Integration of Natural Language and Graphics
Generation”, in AI-Journal 63, pp. 387-427

