
The ZOOM ILLUSTRATOR as a MMPS
Bernhard Preim

Institut für Simulation und Graphik, Otto-von-Guericke-Universität Magdeburg
Universitätsplatz 2, D-39106 Magdeburg

e-mail: bernhard@isg.cs.uni-magdeburg.de

Abstract. We describe the architecture of the ZOOM ILLUSTRATOR – an interactive
system to illustrate spatial phenomena. The system focuses on the combination of
rendered images with textual descriptions. Fisheye techniques are employed to present
detailed information while maintaining the context of the overall available information.

Our system was designed in an object-oriented manner. In this paper, we focus on
an OO-description of the ZOOM ILLUSTRATOR compared to a system description in
terms of the SRM. The feasibility of a description in terms of the SRM encourages its
use for the description of interactive systems.

Our conclusion is that the OO- and the SRM-description complement one another.
In unison with one another, they lead to a significantly more structured system
description than could be attained with either of the methods taken by itself.

Keywords: Interactive Illustrations, Image-Text-Relation, Fisheye techniques, Multi-
modal Presentation, Object-Oriented Design

1 INTRODUCTION
Interactive 3D graphics offers high potential for the explanation of spatial phenomena, as can be
found for example in engineering and anatomy. The interactive handling of 3D models is
important to clarify spatial relations. While this is well-recognized, not enough effort has been
spent on the combination of rendered images and textual information.

Borrowing from textbooks gives hints on how to combine images and text. Images are often
surrounded by labels referring to their parts via reference lines. Explanations refer to the spatial
structure and are enhanced by cross references as to spatial relations. In textbooks, however,
explanations are generally not integrated in an illustration but are placed under an image or even
on a separate page, which complicates comprehension. Interactive systems can handle this
problem and tailor the presentation to the information requested.

Based on these observations we developed the ZOOM ILLUSTRATOR. Our system tackles
some problems which are typical in multimodal presentation systems, such as:

• The use of different modalities, namely images and text, must be coordinated.
• Flexible layout strategies are required. This is due to the amount of textual information

related to a complex 3D model.
• User support is necessary for the annotation of graphical objects with textual labels.

To adapt a presentation to the user’s interest, fisheye techniques as introduced by FURNAS (see
[3]) are very useful. Fisheye techniques place and scale the space to accommodate information
depending on the user's interest and allow the user to look at something in detail while
maintaining the context. Important information is emphasized, driven by a degree-of-interest
(DOI) which is assigned to each piece of information. DOI-values depend on a static à priori
importance (API) and on dynamic factors which consider the (spatial or cognitive) distance of
pieces of information from the one the user interacts with. DILL et al. (see [2]) developed the
continuous zoom, a fisheye algorithm, which provides smooth transitions between an original
layout and the layout after a zoom operation. As continuous transitions enhance the user’s

understanding we employ a variant of this algorithm. Fisheye views are exploited to integrate
detailed textual information (e.g. explanations) and context (the labels of important objects).

Our system aims to provide interaction facilities for an end-user. However, there is not a
strict separation between knowledge-based systems and interactive systems, because the latter
can benefit from automatic support to allow high-level interaction.

This paper describes the architecture of an interactive illustration system. In accordance with
its purpose, to integrate images and textual descriptions, that is to illustrate, and its basic inter-
action technique, to zoom, we refer to our system as ZOOM ILLUSTRATOR.

The system has been developed using the Object-Oriented approach. In this paper, we
compare the suitability of the Object Oriented Design (OO-Design) and of the SRM for the
description of the system’s architecture. It turns out that the SRM is able to capture our design
and offers new ways to look at the system.

2 ARCHITECTURE OF THE ZOOM ILLUSTRATOR
With our design, we combine interactive 3D graphics with hypertext functionality for
educational purposes. This involves the presentation of more or less detailed information on the
textual part and results in a continuous zoom of the corresponding node to accommodate this
information, while automatically repositioning and rescaling other nodes. On the graphical side,
direct manipulation of a 3D model is offered.

Figure 1: Basic layout of the ZOOM ILLUSTRATOR with lines superimposed to indicate the
separation between the graphics- and text area. Reference lines connect the image and the
labels with each other. The endpoints of reference lines are marked with small spheres.

The initial layout encompasses the most important labels and one instance of the 3D model to
illustrate. The selection of the „most important“ labels is based on the API-values. These
values (recall [3]) are derived from the object structure (the position within the hierarchy) and
from geometric criteria (size and visibility of objects). The Layout Manager is responsible for
choosing the most important nodes to label (see the architecture in Figure 2). Textual
information is distributed as evenly as possible between the left and the right side of the image.
Separate areas for the graphics- and text presentation are necessary to ensure that they do not
occlude each other. Furthermore, the Layout Manager tries to avoid reference lines which cross
each other. Figure 1 shows an output of the system which is generated from the user’s
specification to see an anatomic model with the focus on the muscles.

Figure 2 summarizes the architecture of the ZOOM ILLUSTRATOR. The generation of an
illustration is based on two sources (see the top vertical boxes): The first is a Scene Description,
containing a polygonal 3D model which is structured into objects. Secondly, we employ a file
with related Textual Descriptions referring to the objects in the scene description. The Textual
Description contains labels and explanations. After the sources are loaded, an internal
representation is generated using the correspondence between a common key in the Scene
Description and in the Textual Description. A user can interact with the Text Display (e.g. ask
for an explanation) and with the Image Display (e.g. modify individual objects).

The architecture is well-suited to communicate the ideas behind the ZOOM ILLUSTRATOR. It
is abstract insofar as it does not lead to an implementation in a straightforward manner. The
terminology is dedicated to the basic features and techniques of our specific system.

Scene Description Textual Description

Fisheye zoom Text Display Image DisplayReference Lines

Internal
Scene Description

Network for
Textual Information

Internal
Representation

Zoom Illustrator

Rotate, Scale
Add an Instance

Show/ Hide Text,
Follow Link

Figure 2: Overall Architecture

Interaction Facilities
Navigation on the textual part, more detailed information can be requested for a node. This
request initiates a zoom operation (a sequence of small zoom steps to realize a size request with
„continuous“ changes). to accommodate an explanation (see Figure 3). Furthermore hyperlinks
may be followed which connect different explanations for one node as well as explanations of
different nodes with each other. As usual, e.g. in Web-Browsers, the colour of hyperlinks is
adapted to whether or not they have been visited.

On the graphical part, 3D models can be transformed freely. Furthermore, changes on the
textual presentation cause an adaptation of the corresponding graphical part. Transparency and
saturation of colours have proven to be important parameters to adapt an object's appearance to
the amount of detail of its textual description. Figure 3 shows a typical output of the system
which incorporates this adaptation.

Originally, the zoom algorithm placed and scaled the whole space to accommodate textual
information. In many cases, the zoom performs well and does what can be expected. However,
if one node is zoomed up, others may be closed, which is an unwanted side-effect. To prevent
nodes from being closed due to a zoom operation, they can be transferred to the pinnwall (see
Figure 3). This is a container for a few „privileged“ nodes which are not exposed to the fisheye
zoom. These nodes remain at fixed positions and are always connected to the graphics.

Figure 3: Example layout with different levels of text presentation ranging from a label to an
extended explanation on the left side.

3 OBJECT-ORIENTED DESIGN
Following the conceptual architecture, this Section describes the OO Design of the ZOOM
ILLUSTRATOR. Classnames, methods and members are written in italic. The spelling Class::
method() refers to a method of a class. The has-a relations between the important classes are
shown in Figure 4. If there is only one instance of a Class it is referred to as the Class.

ZoomIllustrator

TextArea
move()

rearrange()
GraphicsArea

LinkManager
activeLinks

Zoom
resize (aZoomNode)

IllustratorNet
extent

Link
from, to, aspect

ZoomNode
position, size IllustratorNode

3D Model
transformation

3D Object
material

Reference Lines

Class
method()
member

A

A abstract class

has

N N N N

N
N

1 1

1

1
1

N

Illustrator

is-A

Figure 4: Relations between the most important classes, notation according to BOOCH (see [1])

Design of the toplevel-classes

The basic idea of the OOD is to regard an illustration as a hierarchy of parts which manage a
media or a screen space. This implies that one instance is on top of the hierarchical composition
of the illustration. To realize the described architecture, images and text must be managed.
This gives rise to the definition of the classes TextArea and GraphicsArea. These classes
manage the extent of their media and contain children, instances of the 3D model and networks

of textual information. They assign space to their children, cause a rearrangement of their child-
ren (e.g. if a new child is added). Both classes involve some file operations, namely they load
and process information from an external file. The work of the TextArea and the GraphicsArea
is coordinated by an Illustrator, which is on top of the hierarchical representation. It commu-
nicates directly with the application and distributes commands to their children (namely,
GraphicsArea and TextArea). The similarities between these three classes give rise to the
definition of a common base class which we call IllustratorPart (see Figure 5 with the is-a
relations). It has the members children and screenspace and methods to manipulate them. The
peculiarities of the part which is on top of the illustration are summarized in a class
TopLevelPart. This class is derived from IllustratorPart and enhances the inherited behavior by
methods to manipulate the viewing window in which the illustration is presented and global
rendering parameters.

IllustratorTextArea

IllustratorPart
children

screenSpace
sceneGraphNode

GraphicsAreaIllustratorNet 3D Model

Class
method()
member

A abstract class

inherits TopLevelPart

ZoomIllustrator

A

A

Pinnwall ZoomNet

Figure 5: The is-a relations between the most important classes

With this policy a strict separation of concerns is achieved. The abstract class IllustratorPart
provides the basic services for all parts of an illustration, where some methods are purely
virtual, requiring reimplementation in derived classes. Class TopLevelPart provides the generic
behavior of that part which is on top of the illustration. Class Illustrator is less generic and
concentrates on the coordination of images and text. Furthermore, the Illustrator is responsible
for the overall layout of the illustration. An even more dedicated class is derived from class
Illustrator and provides the specific behaviour required to control the fisheye zoom. This
derived class is called ZoomIllustrator.

Graphical Interaction

The GraphicsArea manages 3D Models. Each 3D Model instance has its own transformation to
be rotated and scaled independently. Figure 6 demonstrates the independent handling of two
3D Models. 3D Models are containers for 3D Objects, with each object having its own material
information. With this structure the material of each 3D Object can be changed independently
in several instances of the 3D Model. Thus, an object can be emphasized selectively in one
instance of the 3D Model.

Media Coordination

One important issue in a Multimodal Presentation System is the coordination of the different
media. This task is carried out by the Illustrator, which distributes commands at the highest
level. Coordination at a lower level (between one piece of text and the related graphics part, is
carried out by a collaboration between IllustratorNode and class 3D Object.

Figure 6: Independent handling of several instances of a 3D model. Labels which refer to
objects which are visible in both instances are placed between them and connected to both.

Requests to change the view, to add or remove an instance of the 3D Model are propagated to
the TextArea which initiates an update of all textual information and of all reference lines. The
TextArea manages several IllustratorNets which “know” their extent on the screen and hold a
list of IllustratorNodes. The IllustratorNets initiate the update process for their Illustrator-
Nodes, which includes the adaptation of the selected representation to the space available.
Requests to explain a node are processed from the textual part, resulting in a zoom operation to
accommodate the desired text, and from the graphics part. On the graphical part the 3D Object
to be explained is emphasized (with a more saturated colour) and those 3D Objects which may
occlude it are deaccentuated performing changes of material properties. If necessary, the 3D
Model is transformed to ensure visibility of the explained object.

For the emphasis of small graphical objects, however, it is not enough to choose an appro-
priate viewing direction and to emphasize an object with an appropriate colour. In this case, a
3D fisheye zoom is exploited to enlarge the graphical detail at the expense of other objects. The
incorporation of the 3D fisheye zoom in the ZOOM ILLUSTRATOR is described in [5]. With the
3D fisheye zoom the navigation in the 3D model and in the textual information is unified.

Navigation in Textual Information

The LinkManager maintains all hypertext links currently presented an explanation. This makes
it possible to adapt the presentation of nodes (e.g. the label colour) if they are mentioned
somewhere else in an explanation. A Link is a relation between two nodes under a certain as-
pect, that is node1 has an aspect (an explanation) which refers to node2. As shown in Figure 4,
IllustratorNet is an abstract class. Subclasses have to define a layout strategy. Two subclasses
are defined: ZoomNet, which uses the zoom algorithm for the layout and PinWallNet, with
nodes at fixed positions. Instances of ZoomNet manage the labels on the left and right side
whereas a PinnWallNet is responsible for the nodes on top of the image. The Zoom realizes the
continuous zoom algorithm and initiates an update of all ZoomNodes after a zoom step.

Controlling Text Layout

Important methods of class TextArea are move() and rearrange(). The move()-method transfers
a node to another network by an animation. It is invoked for instance to shift a node to the
PinWallNet. The movement consists of three steps: A zoom operation to provide the space in
the target network, a second zoom operation to distribute the space which is no longer needed in
the source network and the actual movement from the source network to the target area. The
rearrange()-method redistributes textual information to prevent crossing reference lines (which
may occur when transforming the 3D model). This process is only invoked after an explicit
command from the user to avoid confusions resulting from “flying” labels.

Managing Information for one node

An IllustratorNode manages application-specific data related to a node. This includes infor-
mation about its appearance (e.g. colours of the label, of the rectangular area) and about its
relation to the graphics part, summarized in an instance of ReferenceLine. This instance holds
the reference object within the graphic (see the association between an IllustratorNode and a 3D
Object in Figure 4) and allows an IllustratorNode to adapt the appearance of the graphical
counterpart.

All information for the placement of an IllustratorNode is encapsulated in the ZoomNode (the
position, the scale factor as a request to the Zoom). The separation between zoom-specific (or
more general layout-specific) information and application-specific information (managed by an
IllustratorNode) has proven to be very useful for modifications.

Representations of different levels of textual description

An important issue in the design of the ZOOM ILLUSTRATOR is the concept of representations.
Each node has several representations where the set of representations varies depending on the
node’s category. Each node has at least a label and it may have explanations.

A Representation is an abstract class. It is characterized by its level of detail and the
neededSize to be activated (higher levels of detail corresponding to more information and more
space needed). Each representation has a display()-method to activate itself.

Representations log their activations. This is useful if several representations have the same
level of detail. In this case a direct mapping of the DOI to a representation is not possible,
instead the most suitable should be selected on the base of previous activations. The strategies
for the selection of representations are described in detail in Rüger et al. (see [6]).

Label and Explanation are subclasses of Representation which differ in their display()-
method. The Label::display()-method simply decides whether the label string or a shorter string
with abbreviations can be accommodated and displays it. Explanation::display() arranges a
longer text in a rectangle with a given width with bold parts and hyper links to other nodes
(global links) as well as to other explanations of the same node (local links).

The explanations presented, however, are prepared text-sequences and not the result of a
natural language generation (NLG) process. The text presentation would benefit from NLG, not
only because more flexibility would be possible. A semantic representation behind the text
would make it possible to adapt the 3D model to the very specific explanation currently
explained. The presentation of a muscle can be adapted according to whether its orign, its shape
or function is explained.

Annotating 3D Models

An important issue in generating illustrations which integrate images and text is the annotation
of 3D models. As images and text are presented in separate areas, each graphical object must be
connected to the corresponding part in the textual information via a line. In particular, reference
points within an image have to be calculated to which reference lines point. This calculation
should fulfil several requirements:

1. The reference point should clearly belong to the object to be annotated. This is not as trivial
as it may seem. The bounding box centre or the centre point, which seem to be good candi-
dates, may be outside the object if it has a concave shape.

2. The resulting point should be visible, which is even less trivial and implies that the calcula-
tion is view-point dependent.

3. Finally, it should be fast. This implies that the calculation of reference points for complex
objects cannot take into account all surface points of the object.

The first requirements can be fulfilled using a vertex of that object. All vertices obviously fulfil
the first requirement, and if none of them is visible it is very likely that the whole object is
invisible and the second requirement cannot be fulfilled. To ensure that the calculation is

finished in a reasonable amount of time (3), the calculation is adapted to the number of vertices
of an object (for objects with many vertices only a fraction is tested as to whether they are
appropriate as reference points). The annotation is achieved as a collaboration of an
IllustratorNode (which holds the coordinates of the label) and the related 3D-Object which
holds the coordinates of the reference points.

4 DESCRIPTION IN TERMS OF THE SRM
Our system targets at interactive behaviour and even those features of the system which may
sound “intelligent“ at first glance, like the selection of representations, are in fact not. Instead a
simple comparison between numerical values takes place. In a system where complex 3D
models are interactively transformed, this is necessary just to keep the response rate reasonable.
Although the ZOOM ILLUSTRATOR performs some kind of automatic support (annotation,
layout, coordination), it is rather a (simple) Multimedia Presentation System than an “intelli-
gent“ one.

Despite this difference we attempt to characterize the ZOOM ILLUSTRATOR within the
terminology of the SRM. It turns out that this is feasible and (at least for the author) interesting.
According to the structure of the SRM this description is divided into two parts: The first
describes which components of the SRM exist in our system and the second part summarizes
their relations in an architectural scheme which is more general than the one presented in Figure
2.

4.1 Important Terms

Media
The ZOOM ILLUSTRATOR includes written text and graphics which is generated when re-
quested. Output media supported include the screen and printers, where an Offscreen-
Renderer generates a postscript-file with the rendered presentation.

Goals
Goals to be achieved include textual explanations (explain anObject| aGroup under
anAspect), viewing from arbitrary directions (show aModel from direction1 {and from
direction2}. These goals are not directly specified by a user, instead he or she invokes com-
mands via mouseclicks or menu-items.

The explicit formulation of these goals, however, is a prerequisite for constructing scripts
which are interpreted − resulting in commands to the ZOOM ILLUSTRATOR to build up an
animation sequence. The extension of the interactive system to a semi-interactive tool, the
development of a scripting language and its combination with the interactive kernel is
described in [5].

Presentational commands
To enable the user to achieve these goals, interaction facilities on the textual side as well as
for the manipulation of the graphics are provided. When mouse-based invocation of com-
mands does not seem to be reasonable, menu items are provided, e.g. to add/remove an
instance of the 3D Model, to rearrange labels after geometric transformations.

Application
The external data sources for our system are the textual description and the scene description
(recall Figure 2). The scene description describes the geometry of the underlying 3D model.
The textual information consists of two parts:

• Structure information
⇒ Existing categories and subcategories

 (e.g. in anatomy muscles, bones and nerves) where subcategories summarize nodes of a
category which belong to a certain region (e.g. face muscles)

⇒ Linkage of nodes via hyperlinks
⇒ Nodes and representations which belong to a (sub)category

• Textual Information for each node structured according to the first part.

The separation of structure information and textual information enables us to decide quickly
which nodes are important to adapt the presentation in a specific context. Structure information
is used to find out which items are important with respect to a specified goal.

Knowledge

The ZOOM ILLUSTRATOR records requests to change the representation of a node. This
information is made explicit as a history which contains items of the form (<node>,
<representation>) and furthermore exploited to guide the presentation (recall Section 3). In
the terminology of the SRM, this information belongs to the Discourse Model. Changes on
the graphical part are also recorded and thus the whole illustration can be reconstructed,
which makes it possible to return to arbitrary points in the history of interaction.

Design Knowledge

Design knowledge is included in the software, but not explicitly stored in a knowledge-base.
The required knowledge can be categorized in knowledge on how to focus on pieces of
information, how to relate graphics and text to each other and on how to make changes
smooth. Smooth changes are important for both the system (to prevent unnecessary
rendering) and even more for the user (to provide animated movements instead of rapid
changes).

To make geometric transformations smooth, knowledge about rendering parameters, their
influence on the quality of the image and on rendering times is required. The SRM refers to
this knowledge as Media Specific Design Knowledge. The basic principle is to find a trade-
off between quality (essential for looking in detail) and the frame-rate (essential when
transforming the 3D model). The incorporation of this knowledge is crucial for the accep-
tance of the system, however it depends strongly on a specific environment.

4.2 Architecture in terms of the SRM

The description of the ZOOM ILLUSTRATOR in terms of the SRM, reveals that two important
parts are not present (see Figure 7). On the part of the layers, the Content Layer is missing. A
selection of media and of strategies for coordination does not exist. The two basic media are
always employed, their coordination is defined by user-defined options and changes in one
medium are propagated to the corresponding part in the other medium. Due to the interaction
facilities offered and the narrow target area, to illustrate complex spatial phenomena, a planning
scheme concerning how to present something is less important than for systems with a broader
scope, like WIP (see WAHLSTER et al. in [8]).

On the other hand, there is no User Expert in the scheme, meaning that information concer-
ning the user is not stored. To tailor the presentation himself or herself, the user is offered
Display Options (including fonts and colours), and Rendering Options (concerning the
compromises between quality and frame-rate, forcing different rendering algorithms to apply).

Application Expert

The Application Expert contains structure information about the domain, including
categories (e.g. muscles), aspects of textual descriptions for nodes of a layer and has know-
ledge as to which objects are visible from which directions (visibility information derived
from a 3D model). The Application Expert has knowledge how to present objects of a cate-
gory graphically (colours and material properties) and from standardized viewing directions.

Knowledge Server

Application
 Textual Infornmation
 Scene Description

Control Layer
 Processing of Mouse- and
 Keyboard events

Content Layer
 Selection of Representation

Realization Layer
 Selection of Presentation
 Variables

Presentation Layer
 Rendering of the Illustration
 with Open Inventor

User

Goal Formulation

Application Expert
 Structure Information
 Visibility Information

Context Expert
 State of the Text Presentation
 State of the Graphics Presentation

Figure 7: Architecture in terms of the SRM

Context Expert
The design of a ContextExpert for our system is strongly influenced by the Reference
Architecture. It contains information on active links, on previous activations of textual
information, which is exploited to adapt the presentation (e.g. representations to activate,
colours). Furthermore information about the state of the graphics is included. For each 3D
Model the transformation and the state of manipulators is registered, which enables us to
save a „homePosition“ to which the user may return. For each 3D Object the Context Expert
stores its material and the draw-style (wireframe, filled).

The Context Expert is „informed“ whenever an event occurs which changes the presen-
tation and stores it into a list. Each event has an indication as to whether the user has
requested it interactively or whether it is performed by the system automatically as a side-
effect, e.g. to adapt image and text to each other. We are currently investigating the
generation of descriptive figure captions, which describe the image generated verbally (see
HARTMANN et al. in [4] for first results). These descriptions include the current viewing
direction and the usage of graphical techniques. Figure captions – as can be found for
example in textbooks – are based on the information maintained by the Context Expert and
comment especially those changes which have been performed by the system automatically.

Layout Layer
The Layout Layer (corresponding to the Layout-Manager in Figure 3), is not a central
instance, managing all layout problems. Instead instances of each class (recall Figure 4)
manage their own layout and distribute the space for subordinate instances.

With this policy class Illustrator knows how many 3D Models and Networks are present
and assigns space to them. This assignment, includes a rectangular area for usage and a
tolerance area which can be used if necessary without informing the superior instance. Only
if an instance cannot cope at all with the assigned space, the superior instance (see the has-a-

relations in Figure 4) is asked to redistribute space. This hierarchical mechanism turns out to
be effective (in terms of speed) and flexible.

An example may clarify this strategy. If the user interacts intensively with textual
information at one side, requesting explanations, the network is allowed to “grow“ a bit and
the nodes involved may even grow a little bit more (recall Figure 3 with the different width
of nodes). This can even result in small overlaps between text and graphics display. This is
tolerable because overlaps are seldom and the exact extent of the graphics is − due to its
irregular shape − difficult to consider. If some limit in the growth of a net is reached and
information can only be presented at the expense of other information, the user recently
interacted with, the TextArea-instance is informed. To circumvent the problem, it can move
a node to another network or extend the network. Such a change, however, is not
incremental and should not occur often, because it is expensive for the system and irritating
for the user.

5 IMPLEMENTATION
The implementation was carried out on medium range Silicon Graphics Workstations. This
platform allows to experiment with models of a “realistic“ complexity. The system uses OPEN
INVENTOR™, an object-oriented graphics library is aimed at interactive applications. For our
purpose it is crucial that an extensible class library is provided with classes for event-handling
and the interactive manipulation of objects.

6 CONCLUDING REMARKS
We described the ZOOM ILLUSTRATOR which combines interaction facilities with automated
techniques to support high-level-interaction. Automatic support is necessary for the annotation
of objects, the basic layout and coordination between images and text.

The architecture of the ZOOM ILLUSTRATOR has been presented. Whenever possible, it is
generic so that at least the higher level classes should be reusable for similar purposes. The
architecture has been described in terms of the SRM although only a subset of the terms and
components have a counterpart in the system. The interaction with textual information could be
easily described. OO-Design is well-suited to state “who“ is responsible for which behavior and
to define relations among classes. Furthermore, it naturally leads to an OO-Implementation.
The OO-Design usually results in a vertical structure with hierarchical relations. However, OO-
Design tends to bring up lots of classes the overall structure of which is easily lost, especially
when few has-a or inherits relations exist between them.

The horizontal layer structure of the SRM has advantages in terms of its ability to explain this
overall structure. This becomes obvious, for instance, in the description of the layout policy.
The distribution of the responsibility to different classes is useful for the implementation and
maintenance of the software. The overall strategy, however, can be better described within the
Layout Layer of the SRM. While the experts presented in the SRM lend themselves to be
designed as classes in a OO-system, the layer structure is orthogonal to OO-Design. The tasks
being supported by different layers are distributed to many classes in an OO-Design. In fact,
each part of an illustration performs its own layout calculation and presentation. However, even
the layer structure can be exploited to enhance an OO-Design, because it allows to structure the
methods of the classes as to the layers for which they perform a service (many classes have
presentation-methods, layout-methods,...).

To summarize this discussion: The SRM as well as the OO-Design have their advantages and
can be used in a complementary way. None of these notations, however, can replace the other
in its entirety. The SRM is superior in its ability to describe the system’s architecture at a
higher level of abstraction, whereas the OO-notion is superior to describe at a lower level how
an OO-system works. In unison with one another they lead to a structured system description.
It remains an open question whether or not the generic architecture of the SRM can (or should)
be described in an OO-way similar to the OO-architecture included in this paper.

Future Work
The architecture presented encompasses text and graphics. Text presented can be clearly
assigned to the parts of the graphics it refers to via lines. The disadvantage, however, is that
both images and text must be processed by our visual system. The ZOOM ILLUSTRATOR would
benefit from the incorporation of speech output, which is especially suited for verbal explana-
tions which are not as closely connected to the graphics. This, however, leads to new challen-
ging coordination problems.

The SRM gives us new insights in the system and reveals room for improvement. The
inclusion of a User Expert, for example, would enable us to tailor the presentation to a specific
user. Such a personalization is extremely helpful, if the educational aspect of the system is
extended (the systems asks questions and answers them) and the system adapts its behaviour to
the user’s reactions. The current system does not use intelligent reasoning and generation.
Thus the flexibility of the generation is limited. The ZOOM ILLUSTRATOR would profit from the
use of natural language generation techniques to tailor the presentation of textual information.

ACKNOWLEDGEMENT

My thanks go to Thomas Strothotte who has encouraged this work and has initiated my interest
in Fisheye Techniques. The author wishes to thank Alf Ritter, who implemented the initial
version of the ZOOM ILLUSTRATOR. Furthermore my thanks go to Knut Hartmann, Ian Pitt as
well as to the reviewers for commenting on the paper.

REFERENCES

[1] G. Booch (1994)
Object-Oriented Analysis and Design with Applications, The Benjamin Cunnings Publishing
Company (Redwood, Ca, 1994), Second Edition

[2] J. Dill, L. Bartram, A. Ho, and F. Henigmann (1994)
“A Continuously Variable Zoom for Navigating Large Hierarchical Networks”, Proc. of IEEE
Conference on Systems, Man and Cybernetics, November, 386-390

[3] G. W. Furnas (1986)
“Generalized Fisheye Views”, Proc. of ACM SIGCHI’86 Conference (Boston, Ma, April), 16-23

[4] K. Hartmann, B. Preim, and T. Sommerfeld (1997)
„Bildunterschriften zur Erklärung räumlicher Zusammenhänge“, in: Proc. of Elektronische
Sprachverarbeitung (Cottbus, Germany, August), to appear

[5] B. Preim, A. Ritter, and T. Strothotte (1996)
“Illustrating Complex Phenomena: A Semi-Interactive Approach“, in: Proc. of Visualization in Bio-
medical Computing, Lecture Notes in Computer Science, Vol. 1131 (Springer-Verlag, Berlin), 23-32

[6] B. Preim, A. Ritter, and T. Strothotte (1997)
„Coherent Zooming of Illustrations with 3D Graphics and Text“, in: Proc. of Graphics Interface
(Kelowna, Canada, May), 105-113

[7] M. Rüger, B. Preim, and A. Ritter (1996)
“Zoom Navigation: Exploring Large Information and Application Spaces“, Proc. of Advanced Visual
Interfaces (Gubbio, Italy, May), 40-48

[8] W. Wahlster, E. André, W. Finkler, H-J. Profitlich, and T. Rist (1993)
“Plan-Based Integration of Natural Language and Graphics Generation”, in: AI-Journal 63: 387-427

