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Survey of the Visual Exploration and Analysis of
Perfusion Data
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Abstract—Dynamic contrast-enhanced image data (perfusion data) are used to characterize regional tissue perfusion. Perfusion data
consist of a sequence of images, acquired after a contrast agent bolus is applied. Perfusion data are used for diagnostic purposes in
oncology, ischemic stroke assessment or myocardial ischemia. The diagnostic evaluation of perfusion data is challenging, since the
data is complex and exhibits various artifacts, e.g., motion artifacts.
We provide an overview on existing methods to analyze, and visualize CT and MR perfusion data. The integrated visualization of
several 2D parameter maps, the 3D visualization of parameter volumes and exploration techniques are discussed. An essential aspect
in the diagnosis of perfusion data is the correlation between perfusion data and derived time-intensity curves as well as with other
image data, in particular with high resolution morphologic image data. We discuss visualization support with respect to the three major
application areas: ischemic stroke diagnosis, breast tumor diagnosis and the diagnosis of coronary heart disease.

Index Terms—Medical visualization, multi-parameter visualization, volume rendering, perfusion data.
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1 INTRODUCTION

Compared to static image data, where the morphology
of anatomic and pathological structures is represented
with high spatial resolution, dynamic image data char-
acterizes functional processes, such as metabolism and
blood flow, which is often essential to detect diseases at
an early stage or to discriminate pathologies with very
similar morphology.

Important examples of dynamic medical image data
are functional MRI, where activations of brain areas are
imaged, dynamic PET and SPECT, where the temporal
distribution of a radioactive tracer is measured to as-
sess metabolic processes and perfusion imaging, where
the blood flow is measured. We focus on CT and MR
perfusion data which are acquired to support essential
diagnostic tasks, e.g., ischemic stroke diagnosis, the as-
sessment of different types and stages of tumors and the
detection and diagnosis of coronary heart disease (CHD).

With modern CT and MRI devices, the effects of
perfusion can be measured in high spatial and temporal
resolution. In perfusion imaging, the distribution of con-
trast agents (CAs) is registered to assess blood flow and
tissue kinetics. Signal intensities after the administration
of a CA are recorded. Whether or not a CA is delivered
and subsequently absorbed within a particular region,
how long it takes until the maximum amount of CA
is delivered as well as other perfusion parameters are
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determined for medical diagnosis. These parameters are
substitutes for physiological parameters such as tumor
perfusion and vessel permeability, which e.g., character-
ize the malignancy of a tumor [1].

Visual exploration of perfusion data is particularly
challenging. It is primarily based on the derived per-
fusion parameters, which represent features of time-
intensity curves (TICs). These parameters are derived for
each voxel of the perfusion data and represent a high-
dimensional space, usually of five to eight parameters.
The correlation between these parameters as well as
the local distribution of single perfusion parameters are
essential. Since the time-dependency is not represented
in the perfusion parameters, often perfusion maps along
with TICs have to be analyzed. The comprehensible
and simultaneous display of these curves and perfusion
maps poses considerable challenges for the layout. The
visual exploration is also challenging due to the char-
acter and the quality of the data: they exhibit various
artifacts and thus the visualization also serves the as-
sessment of the reliability of the original data and also
the assessment of preprocessed data, where artifacts are
reduced. In contrast to static CT data, no absolute scale
for the intensity values exists. Therefore, simple visuali-
zation techniques with predefined (absolute) settings are
not applicable. As a consequence of these difficulties,
image processing and visualization have to be tightly
integrated and a variety of visualization techniques is
needed to detect and characterize important features.

This paper is organized as follows: In Section 2, we
give a brief overview on the medical background in
selected application areas. In Section 3, we briefly de-
scribe the image data processing which enhances the
expressiveness of simple visualization techniques and is
indispensable for advanced visualization support. Basic
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visualization techniques, which are widely available in
commercial software, are presented in Section 4. More
advanced techniques for the visual exploration, data
analysis techniques as well as the combination of both
are discussed in Section 5. The application of advanced
techniques is described in separate case studies on cere-
bral perfusion (Section 6), tumor perfusion (Section 7)
and myocardial perfusion (Section 8). In Section 9, we
propose guidelines for the use of the basic and advanced
visualization techniques.

2 MEDICAL BACKGROUND

In perfusion imaging, a certain amount of a CA is
injected intravenously and its distribution is measured
by a repeated acquisition of subsequent images covering
the volume of interest [2]. The CA causes signal changes
and works as a tracer of perfusion which means that the
uptake of the tracer is relative to the blood flow. The
time-dependent behavior of the signal depends on the
type of CA applied. The CA circulates through the body
in several passages until it gets completely excreted. In
perfusion imaging, normally only the first-pass, which
shows the most significant signal changes, is evaluated.
Perfusion imaging differs strongly from static imaging,
since greater care must be exercised in injection rate and
dose, image timing and image analysis. The diagnostic
quality of perfusion data and the derived perfusion
parameters depends on the type of CA, the amount of
CA and the speed of injection. Currently, such imaging
techniques are mainly performed in a research context
[1].

Depending on the physiological process, either the
short-term blood flow or the long-term (> 1 min)
diffusion process of the tracer particles through the
membranes of the micro-vessels are represented in the
varying signal of the image voxels. Different imaging
sequences are used for perfusion imaging: T1-weighted
MRI data are typically used for breast cancer diag-
nosis, whereas T2-weighted MRI data and CT images
are employed for the diagnosis of ischemic stroke. In
T1-weighted imaging and CT imaging, a signal en-
hancement is achieved in areas of CA accumulation. In
contrast, T2-weighted imaging leads to a decrease of
signal intensity where the CA accumulates. To facilitate
a consistent processing of the data from both sequencing
modalities, the signal intensities in T2-weighted datasets
are often inverted prior to any visualization task. This
leads to the more intuitive mapping of CA accumulation
to signal enhancement (rather than attenuation). The T2-
weighted cerebral perfusion datasets used to generate
Fig. 1 (left) and Fig. 4 have been inverted. Another MR
imaging technique—which is not yet used in clinical
routine—is arterial spin labeling. With this non-invasive
approach, a CA does not necessarily need to be injected.
The CA can be excited endogenous protons [3].

Perfusion datasets from different application areas
considerably differ in spatial and temporal resolution.

Table 1 lists typical parameters for data from MR per-
fusion imaging. In contrast to cerebral and breast tumor
perfusion data which continuously cover the volume of
interest, myocardial perfusion data exhibit large gaps
(e.g., slice thickness: 6 mm and 12 mm gaps).

TABLE 1
Typical parameters of datasets from MRI perfusion

imaging. The spatial resolution RS and the slice distance
DS are given in mm whereas the temporal resolution RT

is measured in seconds (the bracketed values represent
the number of measurements).

matrix RS DS # slices RT

Cerebral 1282 2 7 10-15 1-2 (40-80)
Breast tumor 5122 0.7 2 60-80 60-90 (3-10)
Myocardial 1282 1.5 18 3-4 0.5-1 (>40)

Perfusion parameters. For the diagnosis, regions of
interest in healthy and suspicious tissue are defined, and
TICs—averaged over all voxels in a selected region—are
analyzed. Typical TICs from cerebral and breast tumor
perfusion are presented in Fig. 1. The curves observed
in myocardial perfusion diagnosis are similar to those
of cerebral perfusion. In both application areas, regions
exhibiting no significant or a delayed and diminished
enhancement (red and green curves in Fig. 1 (left)) are
of interest. However, in breast tumor perfusion, regions
showing a high early enhancement followed by rapid
wash-out, i.e. a decrease of signal intensity afterwards,
are especially suspicious (red curve in Fig. 1 (right)).
To achieve a more quantitative description of curve
shape, perfusion parameters are derived from the TICs.
Depending on the application area, different sets of
perfusion parameters are relevant. However, some para-
meters are of general interest for almost all application
areas (see Fig. 2). Before we describe these parameters,
we introduce three auxiliary variables necessary for a
reliable evaluation.

Fig. 1. Left : TICs for regions of gray matter in the brain
(40 measurements). The blue curve shows normal brain
perfusion. The red curve indicates no significant perfusion
in the infarction core. The green curve shows decreased
and delayed perfusion around the core. Right : TICs of
different regions in breast tissue (5 measurements). The
enhancement relative to the signal intensity at the first
points in time is shown. The red curve is especially
suspicious because of its strong wash-out, which is typical
for malignant tumors.
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Fig. 2. A typical TIC in myocardial perfusion with a
significant first pass and an alleviated second pass of
CA traversal annotated with the essential parameters to
evaluate the first pass.

The CA arrival represents the point in time when the
signal enhancement actually starts, whereas TimeEnd

refers to the end of the first CA passage. The Baseline
represents the average intensity before CA arrival (see
Fig. 2). These auxiliary variables are determined to focus
the evaluation of the TIC on the relevant portion.

Assessing perfusion considering the actual CA arrival
(time), TimeEnd and the Baseline is essential to com-
pare perfusion analysis results from different scanning
devices and patients. Major diagnostically relevant per-
fusion parameters are:

• Peak Enhancement (PE). The maximum value norma-
lized by subtracting the baseline.

• Time To Peak (TTP). The point in time where PE oc-
curs, normalized by subtracting the CA arrival time.
This parameter allows assessing whether blood sup-
ply is delayed in a particular region. If the peak
is not a significant maximum or the temporal re-
solution is low, the TTP value is not expressive. The
signal change in the interval between CA arrival and
TTP is referred to as wash-in, whereas the signal
change in the time between TTP and TimeEnd is
referred to as wash-out.

• Integral. For a certain time interval (often represent-
ing one cycle, or pass, of blood flow) the area be-
tween the curve and the baseline, the approximated
integral, is computed. Together, PE and Integral al-
low to assess whether the blood supply is reduced
in a particular region. Reduced and delayed blood
supply is a strong indicator for a damaged region
for example in ischemic stroke or CHD diagnosis.

• Mean Transit Time (MTT). In the time interval used
for the integral calculation, MTT specifies the point
in time where the integral is bisected. It is norma-
lized by subtracting CA arrival.

• The Slope characterizes the steepness of the curve
during wash-in. Depending on the temporal reso-
lution, different regression methods, such as the
Gamma-Variate and a linear fit are used to char-

acterize the curve progression. The term Up-slope
in CHD diagnosis relates to the maximum slope
between two or three subsequent timesteps between
CA arrival and TTP.

• The DownSlope characterizes the steepness of the
descending curve during wash-out and is computed
similar to the Slope.

Application areas. Throughout this paper, we focus
on ischemic stroke, breast tumor and CHD diagnosis.
However, perfusion analysis bears a great potential in
other diagnostic tasks as well. As an example, it has been
shown that renal perfusion [4] and lung perfusion [5]
enhance selected diagnostic processes, such as detecting
disorders of pulmonary vessels and acute pulmonary
embolism.

Commercial perfusion software. The evaluation of
perfusion data is supported by a variety of specific
tools dedicated to a particular diagnostic question and
to a particular modality. Examples are the PERFUSION 3
SOFTWARE, as package for the General Electric, Advan-
tage Windows workstation, the SIEMENS Syngo, Neuro
Perfusion software and Philips CT perfusion software.
The basic features, the ability to analyze TICs for selected
pixels and regions as well as the display of parame-
ter maps are common to all these systems. In nuclear
medicine, the EMORY CARDIAC TOOLBOX and Cedars-
Sinai’s QUANTITATIVE GATED SPECT SOFTWARE are the
two most widely used packages for PET and SPECT data
analysis.

3 DATA PROCESSING

Data processing techniques are experimental, often sub-
ject of active research and therefore not widely available.
Depending on the specifics of an application area, e.g.
the temporal resolution and the amount of motion, data
processing techniques have to be applied.

Motion correction. The analysis and visualization of
perfusion data relies on comparable image data. Other-
wise, subtraction images and TICs are misleading. Com-
parability means that a voxel with coordinates (x, y, z) at
time t1 corresponds to a voxel with the same coordinates
at time t2. Often, a motion correction has to be carried
out to achieve comparability. This is essential in assess-
ing tumor and myocardial perfusion where the inter-
voxel correspondence is hampered due to breathing, pa-
tient movement, muscle relaxation or heartbeat (Fig. 3).
Without motion correction, the subtraction volume is
filled with bright artifacts. Motion artifacts might hide
relevant signal changes, but also pretend signal changes
that are actually not present.

In Dynamic Contrast-Enhanced (DCE)-MRI mammo-
graphy, breathing and muscle relaxation result in consi-
derable soft tissue deformations. Here, rigid registration
approaches are not appropriate. Elastic registration that
considers local transformations enables a better regis-
tration quality. The registration algorithm described by
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Fig. 3. Subtraction volumes of dynamic contrast-
enhanced MRI mammography data rendered as MIP
(Maximum Intensity Projection). Left : Due to respiration,
the data exhibit bright artifacts in regions that are not
aligned. Right : After aligning the data, the volume be-
comes more transparent and reveals an enhancing tumor.
(Image is courtesy of Sven Kohle, MeVis Research Bre-
men. Data is courtesy of Jonathan Wiener, Boca Raton
Community Hospital)

Rueckert et al. [6] is a good basis, which employs nor-
malized mutual information [7] as similarity measure.
Originally developed for motion correction in DCE-MRI
mammography, it is now also used for motion correction
in other application areas.

Calibration of signal intensities. While CT imaging
provides calibrated signal intensities in “Hounsfield”
units, MRI signals are dependent on the scanning se-
quence used. Therefore, it is very important to cali-
brate the raw signal intensities versus CA concentration.
For gradient-echo MR sequences, the calibration can be
based on the assumption of a linear correspondence
between CA concentration and signal intensity [1]. When
user-individual vascular input functions are used for the
quantitative analysis instead of a standardized assump-
tion about the inflow of CA into the region of interest,
this calibration can be neglected [8]. In this case, input
functions correspond to the intensity curves of reference
tissue with high vasculature.

Temporal denoising. Since TICs exhibit high-
frequency noise, smoothing in the temporal dimension
is essential for a reliable analysis. Lysaker et al. [9]
introduced an appropriate filter based on partial
differential equations, which simulate a diffusion
process and applied it to DCE-MRI mammography
data. For the generation of parameter maps, such as
MTT and Integral, the ”right” points in time must be
chosen (recall Sect. 2, auxiliary variables). The smoothed
visualization supports this selection.

4 BASIC VISUALIZATION TECHNIQUES

Some straightforward techniques to visualize and ana-
lyze perfusion data are:

• cine-movies, which step through all points in time
for a selected slice,

• subtraction images, depicting the intensity differ-
ence between two selected time points, and

• color-coded parameter maps for a selected slice. A
parameter map depicts the value of a perfusion
parameter in a pixelwise manner.

Cine-movies. The cinematic depiction of gray scale
images in a movie loop is helpful to assess image noise
and artifacts [1], but especially for the assessment of
enhancement patterns. In CHD diagnosis, cine-movies
are not only applied for assessing myocardial perfusion
but for evaluating the left ventricular wall motion in
functional MR data. This special type of data is acquired
to image the contraction of the myocardium.

Subtraction images. Subtraction images may also be
used for quality control; the injection of a CA leads
to an increase of signal intensity. If the subtraction for
two early points in time, t2 and t1 with t2 > t1, leads
to a negative value it is likely that the pixels do not
correspond to each other due to motion artifacts. If
this occurs, motion correction is indispensable for a
meaningful analysis. In T2-weighted imaging, where the
intensity decreases after CA arrival, the quality control
must be adapted (recall Sec. 2).

In Figure 4, two subtraction images are shown, which
are used for the diagnosis of an ischemic stroke. Both
reveal a dark area in the right hemisphere (left part
of the images). This is suspicious, since it does not
occur in the corresponding region of the left hemisphere.
The region, which is dark in both images, depicts the
core of an ischemic stroke. Around this region, a larger
area appears dark in the early subtraction image (left),
but bright in the subtraction image which refers to a
later time (right). This region shows the “tissue at risk”
around a stroke core.

Fig. 4. Subtraction images to analyze cerebral perfusion.
Left : difference between t6 and t2. The low perfusion
in a larger portion of the right hemisphere (left part in
the images!) characterizes the infarction zone. Right :
difference between t17 and t2. The late enhancement in
a part of the right hemisphere represents the “tissue at
risk”. It is characterized by a high signal intensity. (Data
is courtesy of Jonathan Wiener, Boca Raton Community
Hospital).
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Fig. 5. Parameter maps TTP, MTT, and the relative cere-
bral blood volume (roughly corresponding to the general
perfusion parameter Integral) of a cerebral MRI perfusion
dataset are depicted. The delayed blood flow in the right
hemisphere (left part of the images!) becomes obvious.
(Images are courtesy of Jonathan Wiener, Boca Raton
Community Hospital).

Subtraction images provide valuable information for
the diagnosis. However, there is no assistance in choos-
ing the “right” points in time for subtraction images.
Moreover, the 2D data are only used to visually detect
abnormalities. Subtraction images do not provide quan-
titative temporal and spatial information, which could
make the diagnostic results more reproducible.

Parameter maps. Parameter maps are displayed as
color-coded images (see Fig. 5). Besides parameter im-
ages, it is common to compute TICs for user-selected
regions of interest. Often, a parameter map is used first
to detect interesting or suspicious regions, whereas TICs
in selected regions are analyzed later.

Summary. Basic visualization techniques for exploring
perfusion data were described by Behrens et al. [10] and
König et al. [11]. Meanwhile, the techniques described
above have been integrated into commercial software
packages (recall Sec. 2). The diagnostic quality achieved
by using these techniques often depends on appropriate
data processing (recall Sec. 3).

5 ADVANCED VISUALIZATION AND ANALYSIS
TECHNIQUES
Advanced visualization techniques for exploring perfu-
sion data are motivated by three essential drawbacks of
basic visualization techniques. They do not support the
integration of:

• several parameter maps in one image,
• information derived from perfusion data with mor-

phologic information from another dataset,
• extracted features.
The following sections 5.1 to 5.3 show how these prob-

lems may be tackled. Data analysis techniques which
support the visual exploration by means of classify-
ing tissue according to perfusion characteristics are de-
scribed in section 5.4. The combination of data analysis
and advanced visualization techniques is presented in
section 5.5.

5.1 Multiparameter Visualization

The integrated analysis of several perfusion parameters
in a suspicious region is essential for various diagnos-
tic tasks [12]. To support the analysis, we discuss the
appropriateness of integrated multiparameter visualiza-
tions. These visualizations are based on pre-computed
parameter volumes, where the corresponding perfusion
parameters are represented for each voxel of the original
dataset.

In principle, color may be employed for two or
three parameters as well. Among the wide-spread
color spaces, the HSV space (describing a color by
its Hue, Saturation, and Value component) is the best
choice since it is perceptually roughly linearized [13].
To be compatible with expectations of users, the most
suspicious parameter combinations may be mapped
to a red color (Hue) with high saturation and high
intensity (Value), whereas normal parameter values are
mapped to lower saturation and intensity values and a
bluish hue component. With this approach, the viewer’s
attention is directed to suspicious regions. However,
the simultaneous visualization of three quantitative
values relating to data with high spatial frequency is in
general very hard to interpret. The correct interpretation
of two or even three perfusion parameters by means
of one color cannot be achieved by preattentive vision.
Therefore, Oeltze et al. [14] investigated methods
where color (for one perfusion parameter) is combined
with another visualization technique for displaying a
second parameter. Isolines, height fields, or orientations
of textures might be employed to combine several
parameters within a single image [15]. In particular, the
combination of isolines and colors is effective and can
be easily interpreted. Oeltze et al. [14] also discussed
the use of color icons [16].

Combining isolines and color-coding. Isolines
connect regions where the investigated perfusion
parameter has a certain value. Isolines are easily
computed by the Marching squares algorithm [17].
Noise removal is important in order to prevent that
many irrelevant small and distracting isolines or
relevant but jaggy lines result (see Fig. 6). In contrast to
color-coding isolines are not interpreted at a glance but
allow a more quantitative interpretation.

Colored height fields. Colored height fields enable the
integrated visualization of two parameter maps. A 3D
elevation profile is generated based on the pixel-values
of the first parameter map. In a next step, the resulting
profile is colored according to the pixel-values of the
second parameter map and an arbitrary color look-up-
table. The profile may be freely rotated such that initially
occluded parts become visible. The mapping to height is
scalable. It is initially adapted to the domain of the first
parameter (see Fig. 7). As a natural mapping, PE should
be mapped to the height parameter.
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Fig. 6. Isolines corresponding to ten different isovalues,
evenly distributed over the whole range of data, depict a
dynamic parameter derived from DCE-MRI Mammogra-
phy. The data and the resulting isolines are smoothed.
(Image is courtesy of Olaf Konrad, MeVis Research Bre-
men. Data is courtesy of Jonathan Wiener, Boca Raton
Community Hospital)

Exploration of multiple parameter images with
lenses. Lenses are used to explore conventional images.
Digital lenses—working as pixel magnifiers—are also
required in digital image exploration to analyze small
scale phenomena within enlarged visualizations. The

Fig. 7. Colored height field based on parameters PE
(height) and Up-slope (color). Small elevations (dimin-
ished perfusion) and dark colors (delayed perfusion) re-
present ischemic territories (as pointed at by the arrow) of
the segmented myocardium. The corresponding original
slice at an adjustable point in time serves as context
information. (Data is courtesy of Stefan Miller, University
Hospital, Tübingen)

Fig. 8. Exploration of DCE-MRI mammography data with
a lens. Parameter DownSlope projected through the lens
in the context of the original perfusion data. A blue color
indicates a continuous enhancement for a later period
in time, a green color indicates a plateau in the TIC. A
yellow and in particular a red color indicate a strong wash-
out behavior. (Image is courtesy of Sven Kohle. Data is
courtesy of Jonathan Wiener, Boca Raton Community
Hospital)

interaction with movable viewing lenses (Magic Lenses) is
useful for exploring multidimensional data [18], where
lenses do not magnify information but show different
information in the lens-region. For parameter maps,
lenses may show information relating to one parameter
either in the context of the original perfusion data (see
Fig. 8) or in the context of a map of another parameter
(see Fig. 12).

With this interaction style, the user starts by selecting
a foreground and a background parameter (for example
TTP and MTT) and then moves a lens (a rectangle or an
ellipse) to select either of the parameter set. Inside the
lens region, displays of the foreground and background
parameter are combined by means of alpha-blending
(Fig. 12) thus combining an opaque background and
translucent foreground to imitate transparency. With an
alpha value equal to 1, only the foreground parameter
is represented (Fig. 8).

Glyph-based visualization of multiple parameters.
Glyphs represent a standard technique in the visualiza-
tion of multi-field data. A glyph is a simple geometric
primitive which is positioned with respect to the original
data points in space and whose attributes, e.g., color,
extension, size, and orientation, are modified according
to some represented values. The integrated glyph-based
visualization of multiple perfusion parameters is pre-
sented by Oeltze et al. [19] with a focus on an intu-
itive mapping of perfusion parameter values to glyph
shape. Intuitive mapping here refers to the generation
of an easy to learn glyph coding of TIC shape, e.g.,
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by mapping parameter Integral (area below the curve)
to size, and Slope (steepness of the ascending curve)
to orientation. Several 2D glyph shapes, e.g., circular
discs, ellipses, rectangles or toroids, with different visual
attributes besides color have been implemented in slice-
based visualizations. Inspired by the work of Doleisch
et al. [20], a feature definition component has been inte-
grated to speed up the evaluation of the complex multi-
field parameter data. It is based on the tight integration
of the glyph display with multiple statistical representa-
tions, connected by (smooth) brushing facilities applied
to scatterplot representations. Initial tests showed that
the placement of one glyph per data point results in
too small glyphs which is due to the limited screen
space (see Fig. 9 (left)). Hence, a multi-resolution glyph
display has been proposed to improve the readability
of the glyph attributes (see Fig. 9 (right)). The display
incorporates different resolution layers which can be
interactively explored by the user.

Summary. Multiparameter visualizations enable the
simultaneous visualization of two or more perfusion pa-
rameters. Height fields are visually attractive and might
be used to present diagnostic results, e.g., in educational
settings. However, the use of height fields poses interac-
tion problems due to occlusion and is probably not an
optimal choice for efficient routine diagnosis. The combi-
nation of color and isolines is more promising to support
the integrated visualization of two parameters. The use
of lenses is based on ideas of clinical users and was
considered useful in informal discussions with a neuro-
radiologist and a cardiologist from the medical faculty
of the University of Magdeburg. Both appreciated that

Fig. 9. Glyph-based visual exploration of cerebral per-
fusion parameters. The glyph display in all images has
been restricted to suspicious regions by means of smooth
brushing. Left : One circular disc is placed per data point.
Changes in glyph size are hard to interpret. A magnifi-
cation (inlet) improves the readability but involves a loss
of context information and spatial orientation. Right : The
application of a lower resolution layer solves the problem.
(Data is courtesy of Jonathan Wiener, Boca Raton Com-
munity Hospital)

they can explore two parameter maps simultaneously
instead of having to mentally integrate the information
from spatially separated visualizations.

5.2 Integrating Dynamic Information and
Morphology
Relevant perfusion parameters are often only extracted
and visualized for a restricted region in the entire
dataset, e.g., a tumor or the myocardium. However, other
constituents such as the bony structures might provide
substantial information for displaying the diagnostically
relevant regions in their anatomic environment. Also
other surrounding tissues that are not enhancing, can be
of indispensable diagnostic value. Therefore, it is useful
to add spatial reference information in the regions not
containing relevant dynamic information. As a simple
example, the display of an original slice together with
the height field in Fig. 7 supports the spatial orientation
which is hampered by the circular shape of the myo-
cardium. A reasonable strategy to add spatial reference
information is to color-code dynamic information and
to display the reference data in the background using
a gray scale. Depending on the resolution of the image
data, the integration of dynamic and morphologic infor-
mation should be carried out in 2D slice visualizations
or 3D renderings. For DCE-MRI mammography data
with more than 50 slices, 3D renderings are appropriate,
whereas cerebral and myocardial perfusion data provide
a too small number of slices.

The assessment of perfusion data might benefit from
segmentation information, for example, concerning sus-
picious breast lesions. In this case, the visualization of
dynamic information might be restricted to the seg-
mented region.

5.3 Probing and Annotating of Perfusion Data
Another way to depict temporal curves specified at
every position of the data is to render them outside of
their spatial location. The most common way is to show
a set of time-dependent graphs for a set of pre-selected
spatial locations, respectively. With this approach one
might loose the correspondence between the spatial
position of the measured data and the curve data itself.

Mlejnek et al. [21], [22] proposed the Profile Flag, an
intuitive tool for browsing and annotating of temporal
data. It enables the visualization of spatial or tempo-
ral curves closely connected to the rendering of the
anatomic structure of the data without removing any
parts thereof. The Profile Flag looks like a board-pin-
like glyph which consists of a banner, a marker, a range
selector and a set of needles (see Fig. 10 (left)). The
Profile Flag can be positioned on and dragged along
the surface or inside of the inspected anatomical object.
For probing of the underlying data, the set of needles is
positioned beneath the surface of the probed structure at
locations of interest. Each needle defines the position of
one probed location or curve. The flag pole is a cylinder
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Fig. 10. Left : Sketch of a Profile Flag. Right : DCE-MRI
mammography data with two regions annotated by Profile
Flags: a healthy region (left) and a malignant region
(right). The size and shape of the region is determined by
the range selector (red polytope). (Data is courtesy of the
MR Institut, Univ.-Klinik für Radiodiagnostik Innsbruck,
Austria)

which connects the banner with the range selector. The
size of the range selector can be changed by moving the
marker along the flag pole. The range selector defines the
size of the ROI, i.e., it encloses the set of needles. For 3D
dynamic perfusion data, the probed information is taken
along the time axis (TICs). The temporal development is
probed at a specific 3D point location. In the simplest
case, this probing position and interesting nearby loca-
tions are specified by a spherical range selector. In the
more general case, the range selector can be a general
polytope including all emphasized TICs. Another way
of interaction with the range selectors deals with the
selection of TICs based on its properties. One can define
more general criteria (e.g., maximal deviation from a
pre-defined reference curve) for the selection of a set
of profiles. In this case, the shape of the range selector
determines the size and shape of the region which
includes the selected curves (see [22] for details).

The probed curve data is visualized on the banner.
Several types of banners can be defined, e.g., a single-
profile banner only shows the probed values at the
position of a single needle. During the investigation, one
or more Profile Flags can be stuck into the inspected
object. They can be moved along the object’s surface,
while showing the underlying probed TICs. Multiple
Profile Flags can be placed to emphasize differences be-
tween areas from different spatial locations, e.g., healthy
vs. suspicious regions. For the visualization of dynamic
data, the horizontal axis usually corresponds to the
time-axis. Therefore, for time-varying data, the banner
visualizes the time steps along the horizontal axis, while
the vertical axis shows the values for each measured
time step. Additionally, for sparse temporal data (i.e.,
just a few time steps), vertical lines are included in
order to facilitate reading off the values at particular time
steps. Figure 10 (right) shows an annotation of a DCE-

MRI visualization with four time steps by two Profile
Flags. The left Profile Flag is located at a healthy region
(low increase in the first post-contrast step), while the
right Profile Flag illustrates the size and the shape of a
suspicious region. The range selector encloses all spatial
locations of profiles with similar properties. In this case
the selected set of profiles defines the shape of the range
selector. In order to avoid visual clutter, an averaged
banner is applied, which shows one curve computed by
averaging all probed curves.

The basic concept of Profile Flags has been qualita-
tively evaluated by the radiologists from Catharina Hos-
pital in Eindhoven [22]. An informative survey indicated
that the tool is a valuable add-on to the currently used
examination procedures. Furthermore, the complete di-
agnosis including the anatomy as well as the annotated
regions can be printed on one sheet of paper. Thus,
one of the essential aspects of the Profile Flags is the
efficiency of diagnosis communication between different
hospital divisions.

5.4 Analysis of Perfusion Data
Another venue of analyzing perfusion data relates to
a statistical analysis as well as to mining and know-
ledge discovery techniques. In particular, the classifi-
cation of DCE-MRI mammography data by means of
artificial neural networks and clustering techniques is
an active research area [23], [24], [25]. As an exam-
ple, Twellmann et al. [25] applied an artificial neural
network architecture which combines unsupervised and
supervised techniques for the voxel-by-voxel classifica-
tion of temporal kinetic signals derived from DCE-MRI
mammography data. Chen et al. [23] investigated and
developed a fuzzy c-means clustering-based technique to
automatically identify characteristic kinetic curves from
segmented breast lesions in DCE-MRI mammography
data. Nattkemper and Wissmueller [26] described the
application of self-organized maps to time curve features
of DCE-MRI mammography data and discussed how
the results may be visually represented as color-coded
cross-sections. Automatic classification may be useful in
a screening setting in order to replace the opinion of a
second radiologist or to direct a radiologist to suspicious
regions.

5.5 Combining Analysis and Visual Exploration
Recently, data analysis techniques and advanced infor-
mation visualization techniques have been combined
in order to efficiently explore the space of perfusion
parameters [27]. In particular, a correlation analysis is
carried out so as to investigate which perfusion pa-
rameters strongly correlate. The remaining parameters
are processed by a Principal Component Analysis in
order to detect major trends. Inspired by the work of
Doleisch et al. [20], the trends as well as the original
perfusion parameters are displayed in 2D-histograms
and scatterplots and are used for (smooth) brushing of
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relevant subsets of the data (see Fig. 11). This overall
strategy turned out to be useful to discriminate different
tissues in cerebral perfusion data, tumor perfusion and
myocardial perfusion data.

The overall analysis pipeline is probably too complex
for routine diagnosis but may be essential for researchers
investigating the effects of CAs, magnetic field strength
and other imaging parameters on the diagnostic value of
certain perfusion parameter combinations. The pipeline
has been discussed with two experienced radiologists
from the medical faculty of the University of Magdeburg,
both familiar with perfusion imaging in the clinical
routine, though not in a research context. Both argued
that the data analysis is only applicable in the clinical
routine–in particular in emergency cases–if carried out
in the background leading to an initial suggestion for
suspicious regions. Both assessed brushing as valuable
for exploring a non-standardized parameter domain.
They appreciated the visualization of perfusion data in
3D since it provides a good overview.

The combination of analysis techniques, linking and
brushing for efficiently locating features in perfusion
data has been extended with a dense visualization of

Fig. 11. Analysis of DCE-MRI mammography data. Ex-
amination of the trend represented by the first principal
component (pc1, lower bar chart in (a)). High scores in
pc1 have been brushed (b) and the selection is visualized
within the context of the right mamma in (c). The se-
lection has been color-coded according to Slope. Yellow
and red regions indicate as fast wash-in. The boundary
of the tumor has been delineated. The selection in (b)
is transferred to a scatterplot (d) opposing Slope and
DownSlope. Zooming in on the plot reveals that regions
exhibiting a fast wash-in as well as a fast wash-out have
been detected (red dots). (Data is courtesy of Jonathan
Wiener, Boca Raton Community Hospital)

TICs for all voxels of a perfusion data set. Special tech-
niques are used to reduce clutter in the visualization of a
multitude of TICs and dedicated brushes are employed
to define TIC target shapes, e.g. a sudden increase and
a later decrease of the signal intensity [28].

More specifically, the exploration of higher dimen-
sional histograms for discriminating tissue in ischemic
stroke diagnosis was described by Grzesik et al. [29].
They incorporate MR perfusion data and diffusion-
weighted MR data in order to integrate the information
from both imaging data.

6 CASE STUDY: CEREBRAL PERFUSION
In contrast to highly permeable vessels in malignant
tumors, microvessels in normal brain tissue do not leak
as a result of the blood brain barrier. Consequently, there
is no enhancement in the extracellular volume. Instead,
we observe the first-pass of the CA through the vessel
components. About 10 seconds after the first-pass of
blood circulation, a broadened second-pass can be seen.
The volume of blood in each voxel is diagnostically
relevant. It is measured by the Integral parameter of the
TIC (see Fig. 2).

CT and MRI are primarily used to asses cerebral
perfusion in clinical routine. MRI studies suffer from
a lower spatial resolution compared to CT, but allow
scanning of the entire brain, and are thus better suited to
detect an infarction, if its location is not a priori known.
CT and MRI have both been proven to be useful in
diagnosing the acute ischemic stroke and in decision
making for therapeutical interventions [30]. However,
the feasibility of MRI studies is usually restricted due
to the low availability of emergency settings in most
clinical institutions, superior costs and patient-specific
difficulties with obtaining MRI, e.g., claustrophobia [30].

Typical parameters for cerebral MRI perfusion datasets
are listed in Table 1. In single-slice perfusion CT, one
slice covering a brain area of typically 1 cm is acquired.
With multi-slice CT, an area of 2 cm may be covered by
two or four slices [31]. To reduce image noise, a large
slice thickness (one slice with 10 mm thickness or more
recently, two slices with 5 mm thickness) is used. The
brain coverage may be extended to 4-5 cm by using
two successive bolus administrations [32]. Multi-slice CT
with greater arrays of elements, e.g., 64/256-slice CT, will
pave the way for whole brain imaging in clinical routine.

Cerebral perfusion images are used for ischemic stroke
diagnosis, in particular to discriminate cerebral hem-
orrhage and ischemic stroke. In case of an ischemic
stroke, the existence and the extent of “tissue at risk”
surrounding the core of the stroke has to be evaluated.
While the core exhibits no significant perfusion (red
curve in Fig. 1 (left)), “Tissue at risk” is characterized by
a reduced and delayed perfusion (green curve in Fig. 1
(left)). Surgical and chemical interventions may salvage
at least parts of the “tissue at risk” [33].

The value of combining cerebral perfusion and diffu-
sion data for predicting stroke evolution is discussed in
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[34]. In both types of data, areas of ischemic brain tissue
can be identified in acute stroke patients. The mismatch
between these areas has been reported to present the
“tissue at risk” [35]. Sorensen et al. argue [12] that MTT
as well as two specific parameters for cerebral perfusion,
namely relative cerebral blood volume (rCBV) as well as the
relative cerebral blood flow (rCBF), are essential to assess
stroke. Wintermark et al. [30] give an overview on seven
brain perfusion imaging techniques, including CT and
MRI.

Preprocessing cerebral perfusion data is relatively
straightforward and primarily involves noise reduction.
Breathing and other severe motion artifacts do not occur.
The symmetry of the brain is the basis for a diagnostic
evaluation of static and dynamic images. Whether or not
a part of the brain appears to be pathologic is judged by
comparing it with the corresponding part of the other
hemisphere. To support symmetry considerations in the
exploration of CT and MRI perfusion images, cerebral
perfusion tools provide a feature to define a region of
interest (ROI) in one hemisphere and let the system
define the corresponding ROI in the other hemisphere.
The simultaneous display of both TICs (relating to the
two regions) supports the evaluation of a correlation
between them. In cerebral perfusion diagnosis, synchro-
nized lenses may be used to exploit the symmetry of the
brain in axial views. A lens is mirrored on a relocatable,
vertical line of symmetry to compare both regions (see
Fig. 12 and [36]).

Fig. 12. Synchronized lenses in both hemispheres of
the brain support the comparison between the symmetric
regions. PE is the foreground parameter mapped to color
and TTP is the background parameter. In the lens region,
the information from both parameters is integrated by
means of alpha-blending. The core of the stroke in the
right hemisphere (appears left in the image!) becomes
obvious by comparing the regions inside the synchronized
lenses. (Image is courtesy of Christian Bendicks, Univer-
sity of Magdeburg. Data is courtesy of Jonathan Wiener,
Boca Raton Community Hospital)

7 CASE STUDY: TUMOR PERFUSION

The process of CA enhancement in a tumor can be
described by the diffusion of tracer particles from the
inside of blood vessels into the extravascular space
and vice versa before it becomes excreted in the kid-
neys [37]. The permeability of the vessel walls and the
extracellular volume fraction determine the amplitude
and the shape of the TIC. TICs—which show a high
early enhancement followed by a rapid wash-out—are
especially suspicious (see red curve in Fig. 1 (right)),
because they indicate strong perfusion and high perme-
ability of vessels. Strong perfusion often results from
tumor-induced vessel growth (neoangiogenesis). These
newly formed vessels are highly permeable, leading to a
rapid wash-out [38]. Less suspicious are curves showing
a plateau later on (green curve), or regions that continue
to enhance (blue curve). This is typically observed in
benign tumors.

Dynamic Contrast-Enhanced (DCE)-MRI mammogra-
phy has been introduced by Kaiser and Zeitler [39]
in 1989. However, only recently the imaging modality
gained wide-spread acceptance, which is partially due to
the effective computer support [40]. The major diagnostic
task is to confirm or reject the hypothesis of a tumor
being malignant. Data processing, in particular motion
correction is challenging (recall Sec. 3).

In DCE-MRI mammography, T1-weighted images are
employed. Contrast enhancement lasts considerably
longer than in cerebral blood vessels. Therefore, longer
acquisition times are employed. DCE-MRI mammogra-
phy data is characterized by a high spatial resolution and
a low temporal resolution. Typical parameters for DCE-
MRI mammography data are listed in Table 1. For more
details on tumor perfusion, see [41], [42] and a recent
multicenter study [43].

Substantial research to support the diagnosis of DCE-
MRI mammography data has been carried out at MeVis
Research, Bremen. In the work by Behrens et al. [10],
the display of parameter maps, the selection of ROIs,
the calculation of TICs, and the quantitative analysis
of these curves was presented. Meyer et al. [44] pre-
sented a software assistant adapted to the needs of
the clinical routine, in particular with respect to the
support of breast cancer diagnosis. This assistant has
been successfully applied in a clinical trial evaluating
the DCE-MRI datasets of 46 patients suspected of having
breast cancer [45]. With more advanced visualization
options, a fast motion correction, and the incorporation
of parameters from a pharmacokinetic model, a new
research prototype, DynaVision, was presented by Alfke
et al. [46]. The prototype was tested in examining the
perfusion of pancreatic carcinoma xenografts in mice
with severe combined immunodeficiency disease. The
findings from perfusion analysis were well correlated
with those from histopathological analysis and could be
achieved within a reasonably fast time (15 min).

A long-term effort on visualizing DCE-MRI mammo-
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graphy data has also been accomplished by Hellwig
et al. [47]. They investigated virtual reality input and
output technology for exploring stereoscopic 3D visuali-
zations of the original data and derived parameter vol-
umes. They conclude that the stereoscopic display facili-
tates an improved localization and differentiation of le-
sions in space. This is further supported by virtual input
devices to adjust, e.g., orientation and transparency of
the display. Recently, Coto et al. [48] explored advanced
volume rendering techniques for an efficient diagnosis.
They have shown that a novel workflow to analyze
DCE-MRI mammography data can reduce time needed
for diagnosis by utilizing the combination of interactive
examination, segmentation and advanced visualization
techniques. Moreover, their software MAMMOEXPLORER
allows to indicate different types of lesions based on both
the shape of the lesion and the temporal development of
the TIC.

In the following, selected visualization techniques
which have been used for computer support for breast
tumor analysis are described.

Color coding. Two parameters describing the diagnos-
tically significant shape and amplitude of each pixel’s
TIC may be mapped to color [49]: (1) the slope of the
early CA enhancement to brightness and (2) the slope of
the late wash-out to the color value, encoding suspicious
wash-out in red. Using continuous color values creates
a smooth transition between slowly enhancing and de-
pleting regions.

Projection methods. For the integration of morpho-
logic information and perfusion parameters, 3D visua-
lization techniques are useful. To avoid visual clutter,
the visualization of perfusion parameters should be
restricted to those voxels exhibiting a high dynamic
range (significant signal intensity changes). Projection
techniques, such as MIP and Closest Vessel Projection
[50], provide a direct link between pixels and correspon-
ding voxels with the related TIC. Thus, with a colorized
projection image, morphological information can be vi-
sualized together with physiological parameters [49] (see
Fig. 13).

Kohle et al. [49] suggest to apply a colorized tem-
poral MIP (maximum value along the temporal scale).
With this approach, voxels characterized by a strong
dynamics (either in the wash-in or wash-out phase) are
represented by a color which incorporates the wash-
in as well as the wash-out behavior by mapping these
values to Hue, Value and Saturation. As an improvement
to MIP, closest vessel projection (CVP) also known as
local MIP, was developed to add depth information
to MIP images [50]. The most intense voxel along the
projection ray is no longer selected; rather, the voxel
which represents the first local maximum above a certain
threshold is taken. The threshold has to be adjusted to
display only the interesting structures. A threshold of
20% relative enhancement is appropriate for restricting
the visualization to the interesting structures of DCE-
MRI mammography data. Figure 13 shows a colored

Fig. 13. A gray scale MIP of the subtraction volume
of two early points in time is combined with a color-
coded CVP. The color encodes the dynamical behavior:
bright voxels show a strong enhancement for an early
period, less intense voxels show less enhancement. A
blue color indicates a continuous enhancement for a later
period in time, and a green color indicates a plateau in
the TIC. Yellow and red colors indicate a rapid wash-out.
(Image is courtesy of Sven Kohle, MeVis Research. Data
is courtesy of Jonathan Wiener, Boca Raton Community
Hospital.)

CVP of DCE-MRI mammography data. Both MIP and
CVP are offered as whole-volume visualization tech-
niques and as slab rendering–restricted to a portion of
the data characterized by two parallel clipping planes.

Volume Rendering and Information Visualization
Techniques. The analysis of perfusion data with a large
number of slices, such as DCE-MRI mammography data,
is a tedious and time-consuming task. It involves brow-
sing through all slices and searching for suspicious areas.
Afterwards, the procedure is repeated for the identified
areas. An effective examination requires the extraction
and visualization of diagnostically essential data.

Coto et al. [48] presented several investigation tools
(e.g., scatterplots and volume rendering) for the clas-
sification and visualization of DCE-MRI mammogra-
phy data. The approach combines brushing and linking
interaction with effective visualization of the selected
suspicious areas. For the computation of the TICs, the
pre-contrast scan (t0) is subtracted from all post-contrast
scans (ti). This step emphasizes the gradient in the tem-
poral dimension of the analyzed curve and highlights
suspicious areas. An enhancement scatterplot (see Fig. 14
(left)) is calculated for each post-contrast step. It shows
the relative enhancement of the pre-contrast step with
respect to the post-contrast step ti. In the interaction
step, brushing is performed on one of the scatterplots,
while the selected set is emphasized on all remaining
scatterplots. If the brushing is performed on multiple
scatterplots, the result of the selection is calculated by a
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Fig. 14. Left : Enhancement scatterplot with a selected
region for time step t1. Right : Importance-driven volume
rendering of areas defined by brushing on a set of en-
hancement scatterplots. (Images are courtesy of Ernesto
Coto, Central University of Venezuela).

logical “and” operation. The selection set and the way of
interaction with the scatterplots depends on the specific
application. The result of the interaction can be displayed
in a 2D view by highlighting the selected areas, or in a
3D view with importance-driven volume rendering (see
Fig. 14 (right)).

8 CASE STUDY: MYOCARDIAL PERFUSION

Perfusion data is also crucial in the diagnosis of coronary
heart disease (CHD). At an early stage, the CHD is
characterized by a perfusion defect caused by a stenosis
(an abnormal vessel narrowing). The localization of the
perfusion defect with respect to the myocardium com-
bined with anatomical knowledge about the supplying
coronary arteries is essential in detecting stenosis as
well as in early CHD diagnosis [51]. In particular, for
assessing stenosed coronary arteries, imaging modalities
from nuclear medicine, such as dynamic PET and SPECT
are widespread. With these modalities, the regional dis-
tribution of a radioactive isotope, such as Rb-82 chloride,
nitrogen 13 (N-13) ammonia, or oxygen 15 (O-15) water
is represented [52], [53], [54], [55].

PET is more specific than SPECT in discriminating
vital and irreversibly damaged tissue after an infarction
[56]. However, both imaging modalities exhibit a lower
spatial resolution and more artifacts, compared to MR
and CT perfusion. Also the amount of radiation for
the patient is significantly higher for PET and SPECT
data acquisition. Myocardial MR perfusion offers an
especially attractive alternative since measures of myo-
cardial perfusion, viability and ventricular function can
be integrated in a single scanning protocol. It has shown
to have at least a similar sensitivity and specificity in
comparison to PET and SPECT without exposing the
patient to radiation [57], [58]. However, wide-spread
use is still hampered by a variety of artifacts and the

strong experience necessary to perform the examination
and interpret the results. Recent technical advances in
hardware, CAs and imaging sequences are described in
[51].

The data acquisition is typically accomplished accor-
ding to the standards of the American Heart Association
(AHA) [59] (Fig. 15 (left)). In MR perfusion imaging, the
data acquisition is accomplished during breathhold and
it is electrocardiogram (ECG)-triggered over a period of
at least 40 consecutive heart beats. The acquisition is
often carried out at rest and under drug-induced stress.
The stress test may even reveal marginal stenosis and is
usually performed prior to the test at rest using identical
imaging parameters. Typical parameters for myocardial
perfusion data are listed in Table 1.

According to the AHA standard, the myocardium is
divided into 17 segments based on a correspondence be-
tween those regions and the supplying coronary branch:
ramus circumflex (RCX), left anterior descending (LAD)
and right coronary artery (RCA). The perfusion parame-
ters characterizing the CA distribution for each segment
are derived from the corresponding averaged TIC. The
latter is computed based on the TICs of all voxels in
the respective segment. The perfusion parameters are
visualized separately by polar coordinates in a color-
coded Bull’s-Eye Plot (BEP) (Fig. 15 (right)).

For myocardial perfusion diagnosis, the parameters
PE, TTP, Up-slope and MTT have been evaluated as
especially meaningful [60]. Based on the ratio of the
Up-slope at rest and under stress, an additional perfusion
parameter, the so-called myocardial perfusion reserve index
(MPRI), is computed. The coronary perfusion reserve is
defined as the ability of the coronary arteries to increase
blood flow under stress by vessel dilation. The MPRI
facilitates a more reliable detection of ischemic areas.

Fig. 15. Left : AHA conform acquisition of myocardial per-
fusion data in short-axis views. Schematic representation
of the left ventricle which is imaged with 3 to 4 slices
dissecting the left ventricle basally, centrically, apically
and at the apex. Right : Bull’s-Eye Plot and associated
AHA conform nomenclature. The plot is generated by
projecting the myocardial segments onto a plane. The
segments are colored according to the respective supply-
ing coronary branch.
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The detection and localization of a perfusion deficit
as well as the assessment of the severity are directly
relevant for treatment decisions. Major diagnostic tasks
to be performed are: to evaluate whether the patient
suffers from CHD, to evaluate the severity of the disease,
and to assess the vascular supply of less perfused tissue.
For an overview on MR-based diagnosis of the CHD, see
Edelman [61].

The major preprocessing step for myocardial perfusion
analysis is motion correction. A combination of rigid
and elastic registration employing mutual information
as the similarity measure works reasonably well for
most datasets [62]. For parameter computation, the user
examines the motion-corrected dataset and selects a
ROI in healthy myocardial tissue. Utilizing these data,
the parameters are calculated for each voxel of the
dataset. Since the diagnostic questions mostly relate to
the myocardium of the left ventricle, the visualization of
perfusion parameters is restricted to this structure. The
following description is based on the work by Oeltze et
al. [14].

Multiparameter visualizations for myocardial perfu-
sion analysis. Multiparameter visualization techniques
(Section 5.1) are useful for evaluating myocardial per-
fusion data (see Fig. 16). The visualization of perfusion
parameters by means of colored height fields should be
restricted to the segmented myocardium (see Fig. 7).

Refined Bull’s-Eye plot for rest/stress comparison.
In a rest/stress comparison, BEPs (or parameter maps)
may be displayed side by side to identify areas where
perfusion defects first appear or become worse with
stress. In order to simplify a mental integration of rest
and stress perfusion in one area, a refined BEP was
introduced in [14]. Each segment ring is bisected, thus,

Fig. 16. Parameter Up-slope is displayed for the myocar-
dium in the context of an original slice. Parameter Integral
is projected through a user-defined lens. Dark inferior
and septal regions indicate a perfusion defect. (Data is
courtesy of Stefan Miller, University Hospital, Tübingen)

Fig. 17. Integrated visualization of the parameter Up-
slope for the rest and stress state in a refined Bull’s-
Eye Plot. Dark regions mark the diminished perfusion. An
ischemic area is revealed that spans all inferior segments
(lower encircled region). In the anterolateral segment
of the mid-cavity (upper encircled region), the perfusion
defect may remain unnoticed if perfusion is only examined
at rest.

duplicating the number of segments. The resulting outer
and inner rings represent the stress and the rest state,
respectively (Fig. 17). This circular bisection ensures that
neighboring segments in the plot are adjacent in the
myocardium as well and that they show the same state.
Compared to the original variant [14], the segments
are visually separated by a gap (grey ring) for better
recognizability. The refined plot may also be used for
comparing two different perfusion parameters of one
state.

The diagnosis of CHD benefits from a link to mor-
phologic image data, in particular MR/CT angiography
data. Oeltze et al. [14] provided a link between the BEP
and the 3D view of the coronaries and picking facilities
for both, the plot and the 3D view. A segment of the plot
exhibiting a suspicious parameter value may be selected
by pointing—resulting in an animated emphasis of the
corresponding vessel branch in the 3D view (Fig. 18) and
vice versa emphasizing the supplied segments.

The refined BEP and the linking to morphologic data
have been considered useful in informal discussions with
a cardiologist from the medical faculty of the Univer-
sity of Magdeburg. He explained that supporting the
simultaneous examination of rest and stress perfusion
has been widely neglected so far. He suggested that the
3D view would benefit from mapping the perfusion ana-
lysis results to the ventricular surface hereby facilitating
an exact assignment of the perfused territories to the
supplying coronary branches. However, this requires the
registration of the morphologic and the perfusion data.
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Fig. 18. Anatomy and myocardial perfusion of a patient
suffering from atherosclerosis of the RCA and the LAD.
Upper left : Apical slice of the original perfusion dataset
and the AHA consistent segmentation of the myocardium
overlaid. Upper right : Apical slice of the parameter vol-
ume computed for Up-slope. Middle left : Selection of two
segments in the Bull’s-Eye Plot which color-codes the
parameter Up-slope. Segment 17 is missing since no slice
has been acquired at the apex itself. Lower left : TICs
corresponding to the selected segments. Lower Right :
Coronary branch (RCA) supplying the selected segments.
The animated focussing is illustrated by a semitranspa-
rent overlay of a previous point in time. (Data is courtesy
of Stefan Achenbach, University of Erlangen-Nürnberg)

9 GUIDELINES FOR VISUAL EXPLORATION

Over the years, we collected feedback from our clinical
collaborators concerning the usefulness of the visual ex-
ploration techniques presented in sections 4-5. Based on
this feedback, we propose guidelines for the use of these
techniques. It turns out that some general guidelines
are valid independent of the application area. Before
we define the guidelines, we arrange the exploration
techniques in three different classes whose separating
criterion is the type of required input data:
C1 Input data: the original signal intensities (4D), tech-

niques: cine-movies, subtraction images, and profile
flags

C2 Input data: the perfusion parameters (3D), techniques:
parameter maps, multiparameter visualizations and
Bull’s-Eye plot

C3 Input data: the original signal intensities and perfu-
sion parameters, technique: MIP + CVP

The second class C2 may be further subdivided into
two subclasses: C2a (single parameter techniques: pa-

rameter maps) and C2b (multiparameter techniques:
multiparameter visualizations). The original Bull’s-Eye
Plot fits into C2a, whereas the refined version belongs
to C2b. The MAMMOEXPLORER (recall Sec. 7) and the
exemplary implementation of the analysis pipeline pre-
sented by Oeltze et al. [27] (recall Sec. 5.5) do not fit in
either of these classes. Both rather represent a complex
system comprising several techniques and integrate a
sophisticated solution to link them.

Techniques of C1 are useful for an initial inspection of
the original data. Tissue characterized by a very strong
or by (almost) no enhancement can be roughly identified.
Cine-movies require a mental tracking of signal intensity
change over time. Their application in breast tumor
diagnosis is limited by the low temporal resolution of the
data. Profile flags show the signal intensity development
plotted in a graph and embedded in a volume rendering,
though only for a restricted region. Their application
in cerebral and especially in myocardial perfusion is
hampered due to the low slice number preventing a
volume rendering. Subtraction images emphasize the
highest differences in signal intensity between two time
points. However, care must be taken to choose the
“right” points. All of the before mentioned techniques
require no time-consuming computation or complex user
interaction.

After the initial inspection, techniques of C2 may be
used for a more thorough analysis of the dynamic beha-
vior in the suspicious tissue. Depending on the number
of parameters that are interesting for the clinician, either
techniques of class C2a or C2b should be used. The
choice of a technique from C2b may be influenced by
the number of parameters that can be simultaneously
displayed, differences in the required computational ef-
fort and the complexity of the required interaction.

The class C3 contains techniques which exploit the
original signal intensities as well as the perfusion para-
meters. The combined analysis of both has already been
proven to be useful in a clinical trial for assessing breast
tumor perfusion by Wiener et al. [45]. They could show
that an analysis based on MIPs of subtraction volumes
and parameter maps detected many occult cancers and
thereby altered and allowed more confident treatment
planning. Kohle et al. [49] proposed an integration of
MIP and CVP for the combined analysis. However, this
method is not applicable in cerebral and myocardial
perfusion due to the low number of slices.

10 CONCLUDING REMARKS

This paper discussed general techniques for exploring
perfusion data. However, many aspects of the explo-
ration are relevant for other dynamic medical volume
data. As an example, the analysis of dSPECT (dynamic
Single Photon Emission Computed Tomography) data is
also based on the selection of regions and the investi-
gation of curves depicting changes over time in these
regions [63]. The analysis of functional MRI data also
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involves the analysis of time series [64]. The concept
of application profile flags which enable an integrated
view of the TICs and the underlying dynamic image
data is also a general approach for exploring a variety
of dynamic medical image data [22].

The basic principles of deriving, filtering, and ana-
lyzing TICs were developed for the analysis of scinti-
gramms in the 70s and refined for the analysis of X-ray
image sequences [65].

We described a variety of advanced visual analysis
techniques which are motivated by discussions with
medical doctors and observations of their work which
revealed problems with simple visualization techniques.
As an obvious drawback, we could not cite any sub-
stantial user study related to the superiority of the ad-
vanced visualization techniques with respect to specific
diagnostic questions. To date, no such user studies exist.
Therefore, we conclude that a systematic evaluation of
techniques and their parameters as well as combinations
is the most important task left open for future work. We
also reviewed recent work on data analysis techniques,
such as cluster analysis, feature detection and correlation
analysis. Significantly more research is necessary to in-
vestigate whether these analysis techniques actually lead
to a faster and more accurate interpretation of perfusion
data.
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