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Abstract Purpose: Distance measures are required for

diagnoses, therapy decision and documentation. With

today’s high resolution CT and MR imaging techniques,
high quality images have become possible. Yet, man-

ual measurement can be tedious. We present a method

for automatically determining different distance-based

measures on segmented anatomic structures, like short-
est distances, diameters, and wall thicknesses.

Methods: Our method is inspired from computational

geometry and based on a surface mesh representation.

The computation takes all primitives (points, edges,
faces) into account and organizes them efficiently in a

spatial tree structure. We followed the generic design

paradigm in order to achieve maximum flexibility.

Results: The generic approach allows for a variety of in-

tervention-relevant distance measures to be computed,
using only a single type of data structure. For shortest

distance, our approach in empirical tests turned out to

be more efficient than previous methods from medical
application literature. Besides the numerical value, also

its defining geometric primitives are determined.

Conclusions: The presented technique is both, fast and

flexible. It can be used to interactively derive automatic

distance measures for arbitrary mesh-based segmenta-
tions. Due to the geometrically exact measurements it is

Ivo Rössling · Christian Cyrus · Bernhard Preim
Otto-von-Guericke University
Institute of Simulation and Graphics
Universitätsplatz 2 D-39106 Magdeburg Germany
E-mail: {iroess,bernhard.preim}@ovgu.de, ccyrus@st.ovgu.de

Lars Dornheim
Dornheim Medical Images GmbH, Magdeburg, Germany
E-mail: lars@dornheim-medical-images.de

Andreas Boehm
Universitätsklinikum Leipzig, Germany
E-mail: andreas.boehm@medizin.uni-leipzig.de

possible to reliably estimate safety margins, assess pos-

sible infiltrations and other clinically relevant measures.

To exploit this benefit, the method requires precise seg-
mentations as input data.

Keywords treatment planning · automatic measure-

ment · surface meshes

1 Motivation

The assessment of anatomical and pathological struc-

tures based on imaging techniques plays a vital role in
surgical diagnostics and therapy planning. Yet, the vi-

sual image (Figure 2) not always allows a reliable evalu-

ation. To support their decisions, medical experts then

seek for additional quantitative information on, e. g.,
texture, shape, volumetry, and spatial relationships.

Specific distance-based measures are crucial for pre-

operative risk assessment. In the field of tumor diagno-
sis, for example, maximum extents of tumor and malig-

nant lymph nodes are essential for overall tumor staging

(TNM classification), which determine possible therapy
decisions. Furthermore, resectability often crucially de-

pends on the distances of tumor tissue to several risk

structures (main vessel, etc.).

Quality and resolution of CT and MR imaging have
increased considerably in the last years. So it is possible

to derive precise measures from this data in principle.

However, a purely manual measurement process is te-
dious and imprecise, not least due to the 3D nature of

the data. Medical experts still often measure by hand

directly in single 2D slices, occasionally obtaining sig-

nificantly incorrect measures (Figure 1) due to the fixed
cutting plane orientation, but also inexact (since intu-

itively chosen) endpoints. Manual measurement may be

performed directly in 3D, e. g. within some interactive



2

direct volume rendering environment (cf. Hastreiter et

al. [9]). But even if such 3D interaction is available, ex-
ploiting the additional dimension exhaustively to find

the correct measure may turn into an ambitious task.

For automatic and exact measurements, segmenta-
tions are needed. Obviously, to finally obtain accurate

measures, corresponding precise segmentations are re-

quired. Today, such segmentations are possible, yet not
always easy or even fully automatic to generate. How-

ever, high resolution segmentations usually consist of

a large amount of voxels or triangles. In consequence,

measurement methods have to deal with a moderate
amount of data, which will become even larger in the

future. Reducing the data is not recommended, because

accuracy will be lost.
The remainder of this paper is organized as follows:

Section 2 starts with reviewing related work on dis-

tance computation in medical imaging and other scien-
tific areas. In Section 3 we will first present a generic

design that allows for a plenty of different measure-

ment tasks to be treated in a uniform and efficient way.

Then we will focus on the concrete application of com-
puting shortest distances between anatomic structures

and present corresponding realizations for the individ-

ual generic components for accomplishing this particu-
lar task. In Section 4, a set of other clinically relevant

applications will be discussed. In Section 5, we will re-

turn to the problem of shortest distance computation
and evaluate our solution in a case study in the field of

neck surgery planning. Finally, the last section draws a

conclusion of this work.

2 Related Work

Despite its potential, automatic measurement of seg-

mented structures has barely been addressed in per-
tinent literature on medical imaging. Distance fields,

obtained from applying 2D or 3D distance transforma-

tions on voxel-based segmentations (see Jones et al. [10]

and Fabbri et al. [4] for comprehensive surveys), are
used in image analysis and shape recognition, e. g. for

extracting skeletons. Measures like object extents or

inter-object distances, however, have not been treated
with this approach. Distance fields appear simply un-

suitable for this kind of tasks for several reasons. Al-

though point-to-object distances are directly at hand,
using that object’s distance field, there is much more ef-

fort required for determining object-to-object distances.

Also, a separate distance map needs to be generated

for each segmentation, which is both highly time- and
space-consuming. Every single distance map needs to

cover the whole bounding volume of all relevant ob-

jects. In addition, higher image acquisition resolution

Fig. 1 Left : A real clinical case for which the involved medical
expert determined a maximum diameter of 24mm for the tumor.
Right : In fact, the real tumor extent was 37mm, which is about
50% more than assessed manually and close to be classified T3.

increases the number of voxels cubically. Finally, since

the measure is intrinsically hard-coded into the field,

different tasks require distinct distance maps to be build.

Even less investigation has been made regarding

distance-based measures on segmentations given as sur-

face meshes. In particular, besides Preim et al. [15] no
other published approach in medical application could

be found, for example, that directly concerns automatic

measurement of shortest distances between anatomic
structures. This lack of domain-specific approaches calls

for considering solutions in other scientific areas. In

computational geometry and robotics, for example, this

topic has already been investigated more closely in the
past. At least in robotics, however, the main interest

was more on pure collision detection or approxima-

tion. In consequence, the findings can be applied to the
present scenario only to a limited extent.

While for a long time approaches were restricted to

convex objects (e. g. Bobrow [1], Lin and Canny [14]),
more and more the non-convex setting is considered.

Thereby, mere analytical approaches (e. g. Gilbert and

Johnson [7]) rarely found their way into practice. Voro-
noi-based approaches (e. g. Kawachi and Suzuki [11] or

Sud et al. [18]) were proposed for fast proximity compu-

tation. Yet, robust implementation can be problematic

in practice (cf. Ledoux [13]). Moreover, as with distance
fields, also Voronoi diagrams have their underlying dis-

tance measure hard-wired into the representation.

Apart from that, hierarchy-based methods are most

commonly applied. The respective hierarchy may be

given by different levels of detail (LOD) of the given

object (so-called hierarchical object models, e.g. Faver-
jon [6]). Alternatively, the hierarchy may consist of a

set of bounding volumes that, in a bottom-up manner,

progressively cover more and more volumetric parts of
the object (so-called bounding representations).

Bounding representations consist of two basic parts:

A spatial decomposition technique to partition the in-
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Fig. 2 Two common ways for representing segmentations. Left :
3D surface meshes. Right : Binary voxel masks as colorized over-
lays for the CT dataset slices. (White/Beige: Bones. Blue: Venes.
Red : Arteries. Brown: muscles.)

put data into suitable subsets, and a geometric shape
definition together with a construction rule to create

a bounding volume for data to be covered. Gottschalk

et al. [8] provide a comprehensive survey on different
kinds of bounding volumes and spatial decomposition

techniques and discuss the to-be-expected performance

of hierarchical methods in terms of a cost equation.

The approach described by Preim et al. [15] for com-

puting shortest distances between anatomic structures

is also based on bounding representations. Following

Quinlan [16], spheres were used as bounding volumes,
which in turn appears to be non-optimal choice with re-

gard to running time. Apart from that the mesh-based

segmentations provided as input are initially reduced
to their vertex sets. As a result, potentially valuable

precision may be lost and, in particular, arbitrary in-

tersections cannot be safely identified anymore.

3 Efficient and Flexible Distance Measurement

– A Uniform Approach

In the following, we present a new approach for distance
measure computation for surgical diagnostics and treat-

ment planning. Three major objectives shall be met:

First of all, the method has to be efficient. For effective
use in interactive treatment planning, requested mea-

sures need to be delivered as immediately as possible.

Second, the method must provide some notion of qual-

ity guarantee. The physician demands to have a justified

trust in the computed results. And finally, the method

shall be versatile. One may come up with a whole set

of point solutions to tackle different relevant tasks –
a uniform approach, however, helps reducing prepro-

cessing time and overall memory requirements, which

is important given today’s growing data volumes.

Fig. 3 Bounding volumes for musculus sternocleidomastoideus.
Left : A bounding sphere is insensitive to object’s orientation, but
fits elongated objects increasingly worse. Moreover, the unique
minimum sphere is generally hard to be determined. Middle: The
minimum axis-aligned bounding box is extremely easy to com-
pute and compare, but its size is sensitive to object’s orientation.
Right : The minimum object-oriented bounding box fits the object
best, but computation and comparison are much more expensive.

We basically consider segmentations given as 3D

surface meshes (Figure 2). They may represent subvoxel
accuracy and facilitate particularly efficient, exact and

generic distance measurement. This decision is not too

much a restriction, as voxel-based segmentations can
easily be transformed into equivalent triangle meshes.

Based on the given representation we aim for geo-

metrically correct results. Note that there are indeed

inaccuracies in terms of variations during image acqui-
sition and segmentation. However, these issues are al-

ready introduced at some earlier point in the pipeline

and out of our control. The best one can do is to guaran-
tee that no additional errors arise. Although it may not

appear very convincing to compute exact results from

inaccurate data, there is nevertheless a clear benefit.

Segmentations that were created or at least approved
by a medical expert can actually be considered a subjec-

tive ground truth. In doing so, we can guarantee exact

results for this “clinical finding” that has been expressed
by the expert by means of the given segmentations.

The basic strategy of our measurement approach is

as follows: In a preprocessing step, a spatial search tree

is constructed for each mesh. The identification of a spe-
cific characteristic value, such as the shortest distance,

then simply amounts to performing a query on these

geometric search data structures. The separate choice
of the design’s exchangeable components thereby allows

for computing plenty of different measures with only a

single kind of data structure. These issues will be dis-
cussed more detailed in the following subsections. We

will first present the overall generic design and then fo-

cus on the concrete application of computing shortest

distances between anatomic structures. For this partic-
ular task, corresponding realizations for the individual

generic components will be given and performance as-

pects will be discussed.
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Fig. 4 The generic design of the approach allows the internal
components to be replaced in order to fit different measurement
tasks or constraints.

3.1 Generic Design

To support a wide range of clinically relevant measures,
we seek for maximum flexibility and follow the generic

design paradigm. It allows each component to be re-

placed by any other fulfilling the same requirements and

has proven very successful in the design of well-known
algorithm libraries, such as the C++ Standard Tem-

plate Library (STL), the Boost Library, and the Com-

putational Geometry Algorithms Library (CGAL) [5].

The core of the overall design (Figure 4) is made of
a small set of permitted geometric primitive types.

Input data is assumed to be given in terms of a finite

set of elements of these types. For “clean” 3D triangle
meshes, it is basically sufficient to provide just triangles.

Yet, for also being capable of processing generalized

meshes with degenerated faces, we consider all three

simplices (i. e. point, edge and triangle). Further types
of primitives are possible but rarely used in practice.

The primitives of a given input mesh will be later

covered by a hierarchy of bounding volumes of prede-

fined type(s). The supported shape types can be arbi-
trary, provided that they are convex and allow for fast

distance calculation between any two instances. In gen-

eral, simple shapes are used (Figure 3) such as spheres,
axis-aligned bounding boxes (AABB), object-oriented

bounding boxes (OOBB), or discrete oriented polytopes

(thereby usually sticking to one type only).

Based on the two sets of allowed primitives and al-
lowed bounding volumes, a distance function needs

to be defined, operating on pairs of instances from each

of the two sets. Applying this function on two primitives
has to return the exact distance in between, measured

in the metric of choice. For two bounding volumes, in

contrast, the distance calculation just needs to impose

some (depending on the particular context either lower
or upper) bound on any possible distance between a

primitive contained in the first and another primitive

contained in the second bounding volume.

The bounding volumes are used to guide the query

through the spatial search tree. This tree is constructed
in a top-down or bottom-up manner. Its leaves contain

a predefined maximum number of primitives and any

node is assigned an associated bounding volume that
encloses all primitives covered by this node. The con-

struction process is guided by a spatial decomposi-

tion technique that partitions a given space into sub-
spaces, distributing the contained primitives into cor-

responding subsets. Depending on the chosen decom-

position technique, one ends up with a specific type of

spatial search tree, such as an octree or kD-tree (for
other techniques see classical text books on computa-

tional geometry and geometric data structures [17,12]).

In course of querying the spatial search trees of the
involved meshes, the distance function is applied to

pairs of bounding volumes or geometric primitives. The

issue of merging the different results as well as the sort-
ing order of nodes remaining to be processed, is treated

by a given objective function .

The query algorithm finally combines all compo-

nents to perform the desired measurement task. In the
basic case, two search trees for the structures of inter-

est are passed as input and the requested measure is

returned. Yet, input and output parameters can also
be extended, e. g. to allow a whole set of objects to be

given as input or to provide enhanced output for sub-

sequent use, like the defining geometric primitives cor-
responding to the computed value(s), etc. Also, further

user-specified constraints, such as a region of interest

may be taken into account during the search process.

3.2 Components for Computing the Shortest Distance

Our generic framework allows the concrete components

to be chosen in a way that optimally suits the specific
setting and measurement task. As exemplary medical

application we considered the task of determining the

shortest distance between two anatomic structures.

We expect the input to be given by surface tri-
angle meshes (cf. Figure 2). To allow also generalized

meshes with degenerate faces (e. g. skeletons or center-

lines, see Figure 7) to be processed, all three primitive
types point , edge and triangle were chosen to be sup-

ported. For the type of bounding volume, we decided on

axis-aligned bounding boxes , for they are fairly easy
and efficient to be computed and compared. According

to Gottschalk et al. [8], object-oriented bounding boxes

yield a better fitting of the data, but are much harder

to compute and slower to compare. Bounding spheres,
on the other hand, usually fit the data worse than axis-

aligned bounding boxes. They also turned out to be

more expensive, both in construction and comparison.



5

As distance function, we implemented the Euclid-

ean distance for bounding boxes and all pairs of sup-
ported primitive types. Since the task was to determine

the shortest distances, accordingly the minimum was

used as objective function.

Our spatial decomposition technique is similar to

an octree , but based on barycenters of the covered

primitives. An ordinary octree starts with a bounding
cube of pre-defined size and position (both usually a

power of 2). In each level, the current cube is divided

exactly at its middle point into 8 equal sized sub-cubes.
For our tree in turn, an overall barycenter (also called

“center of mass” or “center of gravity”) of the contained

primitives is determined, which serves as a pivotal point
for dividing the box and partitioning the data. In ad-

dition, instead of just using the resulting sub-boxes, we

always compute new bounding boxes in order to obtain

better bounds. Altogether, the tree is basically as easy
to construct as an ordinary octree, but it is much more

balanced and thus shows better query time.

Finally, the query algorithm is a priority-queue-

based search on the factor graph induced by the two

given search trees. To provide a deeper insight, the re-

maining three subsections shed some light on the details

Fig. 5 Recursion step of search tree construction. Top: The over-
all barycenter of all covered primitives determines the position of
the splitting planes. Bottom: The set of primitives is partitioned
into according spatial subsets and corresponding child nodes are
created. For each of the subsets, the corresponding AABB and
barycenter is thereby computed on-the-fly.

of the spatial search tree data structure, the shortest

distance query algorithm itself, and finally the imple-
mentation of distance calculation between primitives.

3.3 Construction of a Search Tree Data Structure

For the surface mesh of a given anatomic structure
we construct the corresponding search tree recursively

in a top-down manner. As a preprocessing step, for

each primitive the corresponding barycenter is com-

puted which represents that primitive’s center of mass.
Each recursion level then consists of two steps (Fig-

ure 5). First, a new tree node is created to hold the

current set of primitives. In the course of this, the cor-
responding bounding box and weighted barycenter are

determined on-the-fly.

The node’s barycenter is simply the weighted sum
of all individual barycenters of the covered primitives,

using the weights w = 1, 2, 3 for points, segments, and

triangles, respectively. This point divides the bounding
volume into a left vs. right, top vs. bottom, and front

Algorithm 1 Construct Search Tree
Input: S = {π1 . . . πn}: set of input primitives πi

Output: T : search tree for S

Compute barycenters for the mesh’s geometric primitives:

1: for all πi ∈ S do

2: compute bci ← BaryCenter(πi)

Construct search tree recursively in a top-down manner:

3: T ← CreateTreeNode(S)
4: Split(T )

5: return T

Function CreateTreeNode(Set S)

Create new tree node and assign the set’s primitives to it, thereby
compute bounding box and barycenter on-the-fly:

1: create empty tree node T
2: for all πi ∈ S do

3: T.primitives ← T.primitives ∪ {πi}
4: T.bbox ← BoundingBox(T.bbox , πi)

5: T.weights ← T.weights + wi

6: T.bc ← T.bc + wi · bci

7: return T

Function Split(Tree T , bool recurse=true)

Partition T into child trees of roughly equal size, corresponding
to the 8 octants induced by the barycenter of T :

1: create sets S1 . . .S8 for the 8 octants
2: for all πi ∈ T.primitives do

3: determine oct ← Octant(T.bc, πi)
4: Soct ← Soct ∪ {πi}

5: for oct ← 1 to 8 do

6: T.childoct ← CreateTreeNode(Soct )
7: if recurse and |Soct | > 1 then

8: Split(T.childoct )
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vs. back side. In the second step, these coordinates are

used to partition the node’s set of primitives into sub-
sets of roughly similar size. Recursion stops if the node

contains no more than some fixed number of elements.

The second step, which we refer to as Split, can ac-

tually be initiated at two different points of time. Ei-
ther, right after constructing the root of the tree, the

nodes are repeatedly split in some recursive manner un-

til the whole tree is completely constructed (Full Split);
or the root node is simply being assigned the whole set

of primitives and each query later on then triggers splits

On Demand for any node it needs to descend to.

3.4 A Shortest Distance Query Algorithm

For the specific task of shortest distance computation,
we now briefly describe a concrete query procedure. The

algorithm starts with a priority queue that just contains

Algorithm 2 Shortest Distance Query
Input: S, T : two search trees as described above
Output: (d, πS , πT ): shortest distance between S and T , and

the two defining primitives πS , πT

Initialize return values and priority queue:

1: initialize d←∞
2: initialize πS ← invalid , πT ← invalid

3: create empty priority queue Q

4: if S is not empty and T is not empty then

5: add (S, T , dist(S.bbox , T.bbox)) to Q

Keep refining head of Q until shortest distance is found:

6: while Q not empty do

7: assign (A,B, α)←Head(Q)
8: if d ≤ α then

9: return (d, πS , πT )

10: if A contains only one primitive πA

and B contains only one primitive πB then

11: update d← α

12: update πS ← πA, πT ← πB

13: else

14: RefineHead(Q)

15: return (d, πS , πT )

Function RefineHead(Priority Queue Q)

Selectively refine the query towards one of the two tree nodes
stored at the head of Q:

1: assign (A,B, α)←Head(Q)
2: RemoveHead(Q)
3: if B contains exactly one primitive

or Vol(B.bbox) < Vol(A.bbox) then

4: for all Ai ∈ A.children do

5: let αi ← dist(Ai.bbox ,B.bbox)
6: add (Ai,B, αi) to Q

7: else

8: for all Bi ∈ B.children do

9: let αi ← dist(A.bbox ,Bi.bbox)
10: add (A,Bi, αi) to Q

the root nodes of the two search trees to be tested. Un-

til the final distance is found, it iteratively extracts the
first element (A,B) from the priority queue, refines the

query towards the children of one of the two nodes and

reinserts the new pairings back into the queue. In each
step, the bounding boxes of the two current nodes im-

pose a lower bound on the distance between any primi-

tive contained in the first bounding box and any prim-
itive contained in the second. This bound is taken as

the priority value that determines the position in the

ordered priority queue. Each time that node is chosen

for refinement that features the larger of the two bound-
ing boxes with respect to the enclosed volume, unless

in contains only one primitive.

The first time when two nodes with only one primi-
tive are compared, the first primitive-primitive distance

is determined. Since this “real” distance can be larger

than the bound given by the two corresponding bound-
ing boxes, further elements of the queue are still to be

examined. If better matches are found, the distance is

updated accordingly. The search terminates as soon as

the head of the queue has a priority that is larger than
the distance determined so far.

3.5 Distance Calculation for Geometric Primitives

For the sake of completeness we will now describe how

the distance between two primitives can be computed.

However, we will stick to the three primitives point, edge

and triangle, since other geometric objects are most
uncommon for being used in mesh-based representa-

tions. Moreover, we will only discuss the computation

of the shortest Euclidean distance and simply refer to it
as distance. The algorithmic design for other measures

(e. g. p-norm based distances) may follow a very simi-

lar scheme, but need to be crafted individually. (Note
however, that providing an implementation for distance

computation between all admissible pairs of primitive

types and for two bounding volumes is all that it takes

to establish the generic approach to support the partic-
ular distance measure.)

Regarding the admissible pairs of primitive types,

let us start with the most elementary setting: The dis-
tance between two points P and A is simply the

length |PA|, i. e., the norm of their difference vector.

The distance between a point P and an edge AB

depends on where the foot of perpendicular from P onto

the line through AB is located. If it is in between A

and B, then the desired distance is the height of P

over the edge AB. Otherwise, the distance is given by
the minimum of |PA| and |PB|. Whether or not the

mentioned foot of perpendicular is indeed located in

between A and B, is easily determined by checking if
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the angles ]PAB and ]PBA are both less than 90°

(which just amounts to evaluating the sign of the two
corresponding dot-products).

To determine the distance between a point P and

a triangle 4ABC, we first identify whether the foot

of perpendicular from P onto the supporting plane of
4ABC is actually inside or outside of the triangle. To

do so, we initially compute the plane normal (e. g. by

cross-product). With each of the triangle’s three edges,
this normal spans a plane orthogonal to 4ABC, divid-

ing the space into two half-spaces each. For any such

plane, one can easily test whether the remaining third
triangle corner and the point P are both part of the

same half-space (it just needs to compare the outcome

of two 3D orientation tests). If this criterion applies to

all three planes, then the foot of perpendicular is in-
cluded in 4ABC. In this case, the desired distance is

the height of P over the plane through A,B,C (which

amounts to computing the value of 4× 4-determinant).
If for at least one of the three tests P and the third tri-

angle corner happen to be on opposite sides of the or-

thogonal plane, then the distance between P and that
particular triangle edge gives the desired result. This

distance can be computed as described before.

For the distance between two edges PQ and AB

we distinguish three different cases. If the edges happen

to intersect, then the distance is obviously 0. Otherwise
it is the length of the shortest connector for these two

edges, for which there can be two possible settings: Both

endpoints of this shortest connector are located in the
interior of the edge PQ and AB, respectively. Or at

least one endpoint coincides with P,Q,A or B. In the

former case, the shortest connector is equal to the two
edges’ common perpendicular, whose length is then the

desired distance. In the latter case, the result is given

by the minimum over the four distances between one of

the points P,Q,A,B and the other edge.

The distance between an edge PQ and a triangle

4ABC is 0 in case of a real intersection. Otherwise,

it is the minimum over the two distances of P to the

triangle and Q to the triangle. These two distances can
be computed as described just before.

Finally, the distance between two triangles 4PQR

and 4ABC is simply the minimum over the six in-

dividual distances between each of the edges and the
other triangle which it does not belong to (see previous

item on how these distances are computed).

The distance between two axis-parallel bounding-

boxes A and B is also easily computed. In fact, the

three dimensions can be treated separately. For each
dimension u ∈ {x, y, z} we just need to test the intervals

[uA
min, u

A
max] and [uB

min, u
B
max] for overlapping. If they do,

the corresponding sub-distance for that dimension is 0.

Otherwise it is given by the size of the gap in between

the two intervals: ∆u = max{uB
min−uA

max, u
A
min−uB

max}.
The desired distance between the two bounding boxes

is then simply dist(A,B) = ‖(∆x,∆y,∆z)‖2.

Note that the previous paragraphs only describe the
basic scheme of how distances between pairs of prim-

itives are computed. In fact, the final implementation

is somewhat slightly different to what has just been
presented. This algorithmic difference yet only serves

optimization purposes. In particular, some elementary

calculation are performed only once, for they are simply

redundant. Moreover, expensive tests for rather unlikely
settings (like coincidence, collinearity, or coplanarity)

are deferred to the end, while fast computations for

more likely settings are handled first.

3.6 Performance Aspects

Conducting a pure theoretically-driven worst-case run-

time analysis on the described approach will lead to
rather pessimistic results. In fact, it is possible to con-

struct extremely degenerated synthetic input that forces

the algorithm to perform poorly. This kind of analysis,
however, is not appropriate to characterize realistic be-

havior for the setting to be expected in practice.

Due to the organic origin of the data, segmenta-
tion boundaries are naturally curved, leading to more

or less fine-grained surface meshes. Disproportionally

large primitives are hence not to be expected and unfa-

vorable overlapping of bounding volumes will be small.
Moreover, our barycenter-based spatial decomposition

partitions the given set of primitives at every level into

at least two subsets of roughly equal size. The resulting
search tree will not be perfectly balanced, but of fairly

logarithmic height.

As the spatial search trees are basically well-formed,
the expected running time mainly depends on the de-

gree to which the input data itself is degenerated w r. t.

the specific measurement task. A mesh representing a

perfect sphere would lead to a large number of candi-
date pairs of primitives to be tested for determining

the object’s diameter. This extreme setting, however,

is not to be expected for real human anatomic struc-
tures. Natural variations can be expected that bring out

prominent candidate regions for the maximum diame-

ter and early reduce search space.
For determining shortest distances, the worst-case

setting would be two objects featuring a large surface

patch with nearly the same distance niveau very close

to the minimum value. Again, this would lead to a
large number of primitive pairs to be tested. Unfortu-

nately, this setting appears somewhat possible in prac-

tice, e. g. in terms of two anatomic structures that are
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anatomically-dependent on each other. Imagine the skin

of human head, for example. Across the superior area
of cranium a quite uniform distance between skin and

underlying skull can be expected. Although the mini-

mum distance between these two structures may not be
of too much clinical relevance, this setting is yet all the

more perfect in providing a real world worst-case exam-

ple. Consequently, we integrated this scenario as chal-
lenging input into our test suite. The resulting running

times give reason to assume that real-world data fea-

ture variations of sufficient magnitude thanks to which

most of the “almost-matches” implicitly get sorted out.
In fact, for our test data the query time never exceeded

a justifiable value.

In conclusion, data obtained from human anatomy
may be expected to be not exceedingly critical in terms

of the distance computation suffering from running time

explosion. Of course, an absolute guarantee cannot be
given. However, the issue may easily be dealt with by

incorporating some small bound ε of fractional amount

(e. g. 0.1mm) on the minimum difference between two

distances values in order to be considered different. This
allows the query algorithm to stop, as soon as a prelim-

inary result has been found for which the computed dis-

tance is not more than ε away from the priority stated
by the head of the queue.

4 Clinically Relevant Applications

In the following, we will discuss which different kinds
of medically inspired problems can be treated by our

approach. Each of these tasks requires only minimal ad-

justments to some of the design’s exchangeable compo-
nents. Note that although spatial decomposition tech-

nique and bounding volume type may be specifically

chosen to optimally suit the application – the partic-

ular solution prestented in Section 3.2 ff. should work
well for most of the problems. In particular, if different

applications do not require dissimilar representation of

the input data, one and the same data structure can be
used for all of them, which allows sharing data memory

and renders multiple preprocessing superfluous.

Augmented shortest distances

The method described so far allows for computing the
shortest distance between two segmented anatomic

structures (Figure 7). A comparison of this distance

against some fixed positive value or 0 directly indicates

a possible safety distance violation or infiltration

condition , respectively. This question can be very cru-

cial, as a tumor that is too close to (or even infiltrates)

the basis cranii, for example, is considered inoperable.

Fig. 6 Color-coding of safety distance violation for arteria caro-
tis (light red) with respect to the contiguous tumor (transparent)
and two violation levels (yellow: 3mm or closer, dark red: 1mm
or closer). Left : The color-coding can be used to display contact
areas that are usually occluded. Right : As only yellow patches
of the colorization are visible, this perspective reveals that the
tumor obviously does not encase the arteria by more than 50%.

However, we can do more than simply checking for
a distance violation condition itself. Since the priority

queue provides its front elements in sorted order, we can

extract a whole sequence of pairs of primitives with sim-
ilar distance. In doing so we may determine the outline

of a contact area or infiltration boundary as well

as distance isolines. The examination of such out-
lines is important in some situations (Figure 6): While

tumor tissue that just touches arteria carotis interna is

still operable, a resection becomes impossible as soon

as the artery is encased by more than 50%.

Single Structure Measures

The meshes which are to be compared do not necessar-

ily have to reflect surfaces of different anatomic struc-
tures. Instead, if we were to test a single anatomic struc-

ture against its own skeleton, the minimal distance be-

tween surface and skeleton can be determined, i. e. the
minimal inner radius. This allows not only local-

ization of blood vessel stenosis, for example, but also

assessment of respiratory tract constrictions with re-

gard to minimum clearance (Figure 7). Similarly, if for
a specific anatomic structure separate segmentations

were given, one for the inner and one for the outer sur-

face, one can efficiently determine position and extent
of minimal wall thickness.

Clearly, one of the two meshes can also simply be

a point in 3-space. In this case, we can determine the
minimum distance from that unique point to the given

mesh. This allows, for example, to set one anatomic

structure fixed (e. g. a tumor or malignant lymph node)

and interactively explore distances to arbitrary points
on the surface of the other structure (e. g. a blood ves-

sel). This can be much more substantial than the sin-

gle shortest distance between the two structures alone
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Fig. 7 Left : Assessment of a pharynx constriction. Based on the
centerline, position and extent of minimum clearance can be com-
puted. Right : While the single shortest distance between tumor
and arteria carotis is 18mm, one can also fix the tumor and in-
teractively discover the blood vessel’s surface. The perpendicular
to the selected “structure of interest” is computed in real-time.

(cf. Figure 7). Since this kind of “one-sided” shortest
distance query can be computed extremely fast, it is

even suitable for real-time usage. In fact, it is already

successfully used for collision detection in interactive
virtual endoscopy.

If the minimum determination as part of the query

procedure’s distance and objective function is replaced
everywhere by the maximum, the largest distance be-

tween two anatomic structures will be computed in-

stead. Invoking this altered query with only one sin-

gle anatomic structure for both arguments, we can de-
termine the maximum extent of this structure, also

called its diameter (Figure 1). This measure is of par-

ticular interest in the scope of tumor assessment (TNM
classification). A malignant tumor of hypopharynx or

oropharynx, for example, is to be classified at least as

T2, if its maximum extent is larger than 2 cm, and T3,
if it is also larger than 4 cm. Similarly, lymph node af-

fection in this area has to be classified at least N2, if

it is solitaire and with maximum extent of more than

3 cm or if it is multiple, and N3 for a malignant lymph
node of more than 6 cm diameter. Leaving potential in-

filtration aside, the tumor in Figure 1, for example, is

clearly to be classified as T2 based on the medical ex-
pert’s measurement, but is close to T3 when considering

the automatic measurement.

Combined Input/Output Measures

Input as well as output of the algorithm can also be

further combined or enhanced. The shortest distance
computation, for example, is not restricted to only two

meshes. Instead, by simply adding additional pairs of

anatomic structures during initialization of the queue,

one may determine which inter-object distances are ac-

tually to be considered. This way it is possible to com-
pute distances between groups of anatomic struc-

tures. Hence, one may directly ask for the shortest dis-

tance between a group of malign objects (e. g. tumor
and affected lymph nodes) and a group of risk struc-

tures (e. g. arteria carotis, thyroid cartilage, straight

muscles of neck, etc.), instead of checking all relevant
pairs of structures individually.

Similarly, also the final output can be post-processed

further, thereby using the same method yet another
time. By taking the resulting infiltration boundary from

above as new input again, one may compute the diam-

eter of surface-surface intersections, for example.
In the same way, one may use the maximum extent de-

termined for a given anatomic structure to compute

a projection of the structure’s mesh to an orthogonal
plane. Taking this projection as input again allows com-

puting the second direction of maximum extent .

The third can be computed in the very same manner.

Note though, that these last approaches involve con-
struction of new geometric primitives, which can be a

non-trivial task to be done exactly.

Constrained Measures

All the tasks described so far can also very easily be
performed with respect to a specific given orthogonal

range, i. e. some axis-parallel bounding box. By addi-

tionally comparing every node’s associated bounding

volume against this user-defined area, one can easily
determine constrained measures within regions of

interest . This may particularly be relevant for local

vessel stenosis assessment and local wall thick-

ness determination . Also other shape types can be

imagined to serve as a region of interest, as for instance

spheres, ellipsoids or arbitrary polytopes. Yet, the more
complex the corresponding shape, the more expensive

it is to perform the required intersection test for a given

node of the search tree.

Apart from the spatial location, the measurement

can also be constrained with respect to a possible di-

rection. In fact, the distance function can be adapted to
measure only with respect to some arbitrary predefined

linear subspace. This allows measures like a projective

extent or projective distance to be computed.

Beyond Euclidean Distances on 3D Meshes

Basically all examples described so far were based on
the standard Euclidean metric for 3-space. However,

as with the other components of the generic approach,

also the integral distance function can be adapted to
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Fig. 8 Automatic measures computed on voxel-based segmenta-
tions. Left : Maximum extent for a tumor in 3D. The lower image
part shows the slice for the starting point, the upper accordingly
the slice for the ending point. Right : Maximum extent for the
same tumor, but constrained to the current selected single slice.

meet new applications. As for instance, we generally

spoke about distances between two objects, but never
explicitly mentioned symmetry as a requirement. And

indeed, this criterion is not necessary. One may just

as well apply asymmetric distance functions (i. e. from

one object to another) when querying the spatial search

tree, as long as the upper/lower bound criterion holds

for the bounding volumes. So it is possible to obtain

asymmetric or weighted measures.
Another interesting example is the possibility to de-

fine distance functions for spaces other than 3D. In par-

ticular, one may incorporate the dimension time, con-
tained in some medical data. This way, time-depend-

ent measures for 2D+t or 3D+t can be obtained, as

for instance the dynamic minimal wall thickness

or dynamic minimum clearance . Again, these mea-

sures can be constrained to a specific region of interest.

Let us give a last note on the initial decision for us-

ing mesh-based segmentations. Due to the generic de-
sign of the approach, it is actually not necessary to first

convert a given voxel-based segmentation into a mesh-

based one. In fact, by simply interpreting the coordi-
nates of each voxel as a 3D vertex, one may build the

spatial search trees directly on top of the segmentations,

thus allowing for a voxel-based minimum distance

or maximum diameter computation . It is not even

necessary to compute original real-world coordinates, if

the distance function used for querying the search trees

simply incorporates the dataset’s spacing – origin and
orientation can be completely neglected.

5 Evaluation

5.1 Data and Experiments

To evaluate our approach, a small test suite was com-

piled. Two experiments were performed, one using syn-

thetic data and one using real world medical data.

For the first experiment, two sphere meshes were

generated by recursively subdividing the triangle faces
of an icosahedron. Both spheres were tessellated to the

same level l = 4..8 and given a common radius of r = 5.

One sphere was centered at the origin, while the other
was displaced by ∆x = 11 along the x-axis. Hence, the

two meshes had a pre-defined distance of d = 1.

For the second experiment, segmentations of neck
structures in terms of surface triangle meshes of differ-

ent complexity were used as input, which have been pro-

vided by our clinical partner. They were created using

a medical research tool for manual and semi-automatic
segmentation for CT datasets [2,3] and accredited by an

authorized medical expert. For selected pairs of these

meshes, the shortest distance has been computed.
According to our clinical partner, most relevant for

surgical planning are spatial relations between anatomic

vs. pathologic structures. This amounts to computing
the distance between a structure of moderate size (blood

vessel, respiratory tract, bones) and a second structure

of quite small size (tumor, lymph node). Since running

times for this kind of setting turned out barely mea-
surable, a different selection was made in consultation

with our clinical partner. Segmentations of moderate or

large mesh size were chosen to show the suitability of
the approach for more complex input data. Moreover,

with bones vs. skin, a test setting was added that can

be considered a kind of worst case scenario regarding
the computational cost to be expected. Again, this set-

ting was investigated to verify that our approach is also

applicable in difficult problem instances.

For each pair of meshes in both experiments, the
shortest distance was computed five times altogether.

First, the original implementation of Preim et al. [15]

was used, obtaining reference timings. Then, our ap-
proach was used to compute the shortest distance again

in four different ways. Two variants are due to the way

how input data is interpreted: One may reduce each in-
put mesh to its set of vertices like it was done by Preim

et al. [15], or one may process the mesh indeed as a set

of triangles. The remaining two variants result from the

splitting strategy being either Full Split or On Demand.
For each such combination, CPU time was measured

averaged over 20 passes, excluding the time for reading

data into memory. The source code was compiled with
GCC 4.2.1 at optimization level O2. The experiments

were finally performed on a 32-bit Linux system with

an Intel Pentium 4 at 3.2 GHz and 1GB RAM.

5.2 Results

The results for the first experiment on synthetic data

are given in Table 1. It can be directly extracted that
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Table 1 Running times in milliseconds for computing the shortest distance between two tessellated spheres with radius r = 10 and a
displacement of ∆x = 11 (TC=Construction Time, TQ=Query Time). The number of vertices and triangles refers to a single sphere,
while construction time is cumulative for both.

Vertices Triangles
Algorithm → Reference [15]

Full-Split On-Demand Full-Split On-Demand

Level
No. of

Vertices

No. of

Triangles

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

4 2562 5120 4.2 3.2 18.0 <0.1 4.9 2.4 37.2 0.2 9.7 9.8

5 10242 20480 12.0 36.4 119.6 <0.1 18.3 16.2 163.1 0.2 32.7 50.0

6 40962 81920 41.6 245.8 572.1 <0.1 91.3 88.0 684.5 0.3 135.3 236.4

7 163842 327680 156.6 12679.4 2639.7 0.2 386.6 394.6 3261.5 0.5 557.9 1036.7

8 655362 1310720 622.0 70085.8 9207.3 0.2 1142.7 1224.1 13468.8 0.8 2288.2 3578.2

Table 2 Running times in milliseconds for computing shortest distances between pairs of anatomic structures (J.=Jugularis,
C.=Carotis, l/r=left/right), once using the original mesh (upper half of tableau) and once a reduced variant (lower tableau half),
based on two separate phases (TC=Construction Time, TQ=Query Time)

Vertices Triangles
Algorithm → Reference [15]

Full-Split On-Demand Full-Split On-Demand

Object
No. of

Vertices

No. of

Triangles

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

TC TQ

(ms) (ms)

C. (l)

C. (r)

3620

3120

7232

6210
2.0 27.8

9.6

7.8
0.2

1.6

1.6
7.2

55.8

26.0
11.2

9.2

7.6
33.8

C. (l)

J. (l)

3620

3142

7232

6276
2.0 29.0

9.6

6.6
0.4

2.0

1.4
11.4

55.6

29.0
8.0

8.6

4.4
33.8

C. (l)

Bones

3620

222079

7232

445348
60.2 2670.6

9.2

1579.3
1.0

1.6

275.8
448.0

56.0

2240.0
64.4

15.8

553.0
875.9

C. (l)

C. (r)

1807

1558

3616

3104
1.0 0.8

3.6

3.4
<0.1

1.0

0.8
3.2

23.2

14.2
9.8

3.0

3.0
16.2

C. (l)

J. (l)

1807

1567

3616

3137
0.8 10.8

4.0

3.0
0.8

0.8

0.4
5.0

25.4

12.6
58.6

3.1

2.8
76.4

C. (l)

Bones

1807

110452

3616

222674
29.4 704.4

4.0

741.2
1.0

1.0

137.8
229.8

18.0

1250.7
244.8

3.2

214.0
705.4

Skin

Bones

129099

110452

258348

222674
60.0 78600.1

878.5

725.2
44.6

159.8

129.6
1241.9

3351.0

1260.1
142.0

507.8

227.4
2066.8

Full Split has high construction time for the benefit of
low query time, while On Demand Split shows just the

opposite behavior.

Regarding the use of vertices vs. triangles, one should
expect the latter to be always significantly slower than

former one, since computing distances between trian-

gles is much more expensive than between points (cf.
Section 3.5). Yet, the Full Split column for triangles

shows just slightly larger query times than the same

column for vertices. This tells us that only very few tri-
angle pairs finally had to be compared. In most of the

cases subtrees have successfully been ruled out based

on their associated bounding boxes. Moreover, since

even for level 8 with hundreds of thousands of ver-
tices/triangles the query never exceeded 2ms, large parts

of the search space must have been discarded at some

early hierarchy level already. (Otherwise there were a

lot of bounding box pairs to be tested, which in summa
would have taken noticeably more time.) Thus, the query

times for On Demand Split must have almost com-

pletely been caused by on-demand-construction of the
missing nodes on the search paths in both trees.

This behavior stands in contrast to that of Preim

et al.’s approach [15]. While construction time there
was always the smallest among all five competitors, the

query time grew disproportionally faster with increas-

ing mesh size than for all the other instances. For level

7 with about 16 000 vertices it was already five orders of
magnitude slower than its Full Split counterpart based

on vertices or even on triangles. For level 8 the approach

finally turned unusable.

Table 2 provides the results for the second experi-

ment. The upper half of the tableau shows the running

times obtained for original data as input. The lower
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half in turn shows the results for a reduced variant

of the input meshes. Again, On Demand Split showed
faster construction time, while Full Split was signifi-

cantly faster in performing the query. This time, the re-

sults showed the expected behavior that the two triangle-
based variants were noticeably slower than their vertex-

based two counterparts. Compared to the previous ex-

periment this tells us that in this new setting much
more pairs of triangles needed to be tested.

Similar to the first experiment, running times were

hardly measurable as long as the number of vertices for
each segmentation stayed in about the single-digit thou-

sands. Regarding such input sizes, all five variants can

therefore be regarded as efficient. However, for meshes
of about 105 and more vertices Preim et al.’s approach

[15] again showed disproportionally large running times

in relation to the remaining variants. In particular, in

case of the largest triangle meshes (last table row) all
four variants of our approach were significantly faster

with respect to cumulated running time (and even more

when only query time is considered). Although the ra-
tio is much smaller than in experiment 1, there is still

a factor of about 1700 in the query time between our

Full Split variant for vertices and the approach due to
Preim et al. [15]. Even for the triangle Full Split we can

report our approach to be more than 500 times faster

in query time, which underlines the efficiency of this

method particularly in presence of large input data.

Both experiments indicate a significant benefit that

additional expenditure in the preprocessing phase can
offer. For the synthetic data of experiment 1 an almost

2 000 fold speedup was measured, comparing the query

time for On Demand Split and Full Split based on ver-

tices. For triangles, a ratio of up to 500 could be ob-
served. The reason is that On Demand Split performs

partitioning at the time it is required as the query walks

town the search trees. Thereby, each and every primi-
tive already needs to be touched at least once in order

to get the (initially unsplit) root node split. In conse-

quence, query time for On Demand Split increases at
least linear in the size of the input. Indeed, while the

number of primitives grows by factor 4 from one level

to the next, the corresponding query time grows with

a factor of about 4-5 for vertices as well as triangles.

For Full Split in contrast, the whole hierarchy has al-

ready been built completely before it comes to the first
query to be processed. In the best case, only logarith-

mic many pairs of nodes will be on the search path that

need to be processed. This most optimal setting, how-

ever, is not guaranteed. Instead, it may turn out that
there are quite some more pairs of nodes and primitives

to be tested. The larger this number of pairs, the more

they will contribute to the overall query time. At the

same time, however, the effective ratio between the two

types of query time will shrink, since the query times
for On Demand Split and Full Split only differ by the

time required for splitting the nodes.

This described behavior could be observed for the

real medical data. While in some cases an almost 450

fold speedup could be observed for vertices, in other

cases this factor is only 6-7 fold. For triangles, the ratio
is generally somewhat smaller, ranging from about 15

to only 2-3. Only once the factor was smaller than 1.5.

An interesting effect can be noticed in the Full Split

column for triangles. One should expect that running

times for original data should always be larger than (or

at least as large as) the corresponding running times
for the reduced version of the same data. For almost

all pairings of structures and algorithms this has in-

deed been the case. However, when measuring the dis-
tance for Carotis versus Jugularis as well as Carotis

versus Bones, using Full Split on triangles, the query

time was surprisingly smaller for the larger of the two
mesh versions. The reason can be found by analyzing

the consequence of mesh reduction that was performed

to obtain the smaller mesh variant. The positive effect

was that the search trees were reduced in their height –
however, only by less than one level on average. The ad-

verse effect in turn was that in course of the reduction

the data has also smoothed. In consequence, after the
reduction step the shortest distance was somewhat less

prominent than it was before. In addition, the reduction

also resulted in the meshes to consist of larger triangles
on average. In consequence, the primitives’ correspond-

ing bounding boxes were in the same way larger. As a

result, some pairs of primitive could not be ruled out

already based on their bounding volumes. These two
issues finally led to a larger number of triangle pairs

that needed to be tested.

For both experiments, the implementation due to

Preim et al. [15] showed disproportionally large query

time on sufficiently big input data, compared to the four

variants for our method. This performance behavior is
mainly caused by two reasons. On the one hand, the

splitting strategy which was empirically determined by

Preim et al. [15] does not appear to scale well for large
input data. This leads to a very large number of el-

ement pairs that need to be compared. On the other

hand, spheres appear to be a rather inadequate choice
for bounding volumes. First, they obviously fit the data

less well (see also Figure 3). And second, for distance

computation between spheres expensive square root op-

erations are inevitable. For our method, in contrast, we
can use squared distances throughout the whole search

and just perform a single square root operation after

the minimum or maximum has been found.
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6 Conclusion and Outlook

We presented a general approach for computing clini-

cally relevant distance measures based on surface tri-
angle meshes. With a variety of examples (Section 4),

we demonstrated its wide applicability in diagnosis and

treatment planning. The different characteristics can
thereby be computed using only one and the same in-

tegral spatial data structure.

Concerning the shortest distance measure, our ap-
proach in empirical tests showed to be more efficient

than previous methods from medical application lit-

erature. The fast query times also allow for real-time
collision detection with simple reference structures. In

doing so, the method has already been used successfully

as integral part of a software tool in the field of virtual

endoscopy.

Apart from that, geometrically exact results are com-

puted. All geometric primitives available in the input
are incorporated, instead of following the common prac-

tice of simply confining to vertices and disregarding

their connectivity. This also allows to identify real pene-

trations and infiltrations and to measure them. Further-
more, returning not only the simple measured value,

but also its defining primitives, improves means for high

quality distance visualization, particularly in close-up
range. As a prerequisite, however, relevant structures

have to be segmented.

In the future, the following points may be addressed.

The spatial decomposition technique that has been im-

plemented for shortest distances is fairly simple. The

same holds for the choice of using AABB as bound-
ing volumes. The advantage is that the resulting data

structure can also be used for all the other applica-

tions discussed in Section 4. However, more advanced
decomposition techniques and data structures may be

implemented to yield better running times, in general

or for particular applications only.

Moreover, one may consider a notion of maximum

allowed error (in contrast to the geometric exactness

presented), providing means for an early return. The
query procedure presented in Section 3.4 stops just when

the queue’s head shows a priority larger than the min-

imum effective distance computed so far. Yet, if the
result is only demanded to be correct up to some max-

imum allowed error, the algorithm may stop much ear-

lier, possibly on the level of bounding boxes already.

The permitted error may thereby be provided individu-
ally by the user prior to measurement, or it may be set

to some generally approved global or context-specific

fixed value.
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