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Abstract A fully automatic iterative training approach for
the generation of discriminative shape models for usage in
the Generalized Hough Transform (GHT) is presented. The
method aims at capturing the shape variability of the tar-
get object contained in the training data as well as iden-
tifying confusable structures (anti-shapes) and integrating
this information into one model. To distinguish shape and
anti-shape points and to determine their importance, an in-
dividual positive or negative weight is estimated for each
model point by means of a discriminative training technique.
The model is built from edge points surrounding the tar-
get point and the most confusable structure as identified by
the GHT. Through an iterative approach, the performance
of the model is gradually improved by extending the train-
ing dataset with images, where the current model failed to
localize the target point. The proposed method is success-
fully tested on a set of 670 long-leg radiographs, where it
achieves a localization rate of 74–97% for the respective
tasks.
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1 Introduction

Many applications in the area of computer-aided diagno-
sis are in need of object localization prior to execution in
order to run fully automatically. In this paper, we will de-
scribe a general method for automatic object localization,
i.e. locating one target point representing the object of in-
terest, utilizing the GHT; thereby focusing on the task of
joint localization in lower limb radiographs as a prerequi-
site for orthopedic applications. Among these are automatic
measurements of length and angles of bones or automatic
segmentations, which are necessary for bone density esti-
mation as well as pre-operative planning, as described by
Gooßen et al. [6]. Often, the required positions are still de-
termined manually, which is time-consuming, potentially in-
consistent and often presupposes expert knowledge. These
challenges are evaded by the employment of automatic lo-
calization procedures, which furthermore have the advan-
tage that the results are reproducible and independent of the
operator.

In literature, different methods for automatic object local-
ization have been presented. Many of these are tailored for
the specific localization task at hand making use of anatom-
ical knowledge in combination with, e.g., gray-value thresh-
olding and morphologic operators [8], which in many cases
still require expert knowledge.

More general approaches are given by gray-value based
approaches such as template matching [10] or atlas-based
registration [16]. These procedures, however, are not ap-
plicable for tasks, where one cannot rely on the gray-
value profile of the target object due to contrast agents
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or artificial replacements. Heimann et al. [7] proposed
to use evolutionary algorithms to estimate the pose of
a target object. Thereby the shape population is initial-
ized with the mean pose parameters of the target objects
in the training images. This approach becomes unfeasi-
ble in case of varying fields of view, since the position
of the target object differs relative to the image size. An-
other option is the usage of marginal space learning [17],
which determines the object position and further pose pa-
rameters iteratively using Haar wavelet and steerable fea-
tures.

Despite presumed long processing times, we want to fo-
cus on the GHT [1] as means of object localization. The ad-
vantage of the GHT is that it is robust towards image noise
and occlusions or missing object parts, which renders it in-
teresting for medical applications, especially in case of pre-
and post-operative image acquisitions or the presence of ar-
tificial replacements. The execution of the GHT can be sep-
arated into two types based on the kind of model which is
used to represent the target object. Different groups [4, 11,
12] use appearance models based on codebooks of image
patches. The second approach is to employ point models
representing the shape of the object [13–15]. Codebooks of
image patches are mainly used for the localization of ob-
jects in cluttered scenes and rely on gray-value appearances.
Medical images are clearly arranged and the objects dis-
played are often well represented by their shape, therefore
we prefer the faster and for our task better suited shape mod-
els.

In order to improve the localization accuracy of the GHT
and to speed up the procedure, we employ the training of
slim, discriminative models, which contain the variability of
the object expressed in the data as well as information about
rivaling objects (anti-shapes), which resemble the object of
interest. To this end, each model point is equipped with an
individual weight, relative to its importance. This approach
has also been followed by Deselaers et al. [3] and Maji
and Malik [12]; yet they do not allow for negative weights,
which we employ to represent anti-shapes. This approach
results in models, which are discriminative for the target ob-
ject, and therefore reduce false-positive rates. Through an
iterative training of model points and weights, it is possi-
ble to capture the variability of the target object such that
the sole estimation of object position is sufficient for a suc-
cessful localization. Rotation and scaling of the model do
not need to be considered; thus decreasing processing time.
Furthermore, the procedure is not in need of prior shape or
appearance information about the target object, whereby it
runs fully automatically and is applicable to detect arbitrary
objects.

Fig. 1 Overview of the iterative training procedure for creation of dis-
criminative models utilizing the Generalized Hough Transform (GHT)
and a discriminative training procedure (DMC) as described in Sect. 2

2 Methods

The proposed method for model generation consists of two
main modules: the GHT for object localization to establish
the necessary shape information and a discriminative train-
ing procedure (DMC) [2] to estimate model point weights
for an ideal combination of this information. The building
process of the models runs iteratively so that shape and
anti-shape variability contained in the dataset is successively
identified and included into the model. Thereby, the set of
training images is extended in each iteration by appending
images where the current model performed badly. A general
overview of the procedure is given in Fig. 1; the individual
modules are explained in the following sections.

2.1 Model generation and iterative model training

The aim of the iterative supervised training is to create mod-
els which capture the variability of the target object in the
dataset and to determine the importance of shape and anti-
shape points without the incorporation of expert knowledge
or user interaction.

To this end a number of images are chosen, forming the
development dataset, which is used to generate a model and
to monitor its performance. This dataset should contain rep-
resentative characteristics of the target object to be able to
create a discriminative, but yet general model of the target
object. Part of the development images make up the training
dataset on which the model point weights are determined.
This dataset contains a further subset, which is utilized to
generate new model points. Not all training images are inte-
grated into the model generation to avoid overfitting effects
and to reduce model size.

At the beginning of the procedure an initial meaningful
model is created using the approach shown in Fig. 2. A re-
gion of interest of given size is extracted around the target
point from the images of the model dataset. By employing
these regions of interest for model creation, the neighbor-
hood of the target point is included into the model as well,
which in many cases contains significant information for the
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Fig. 2 (Color online)
Processing chain for model
generation. First a region of
interest is extracted from the
images from which the edges
are extracted. These
intermediate models are fused to
create the final model, which is
furthermore thinned as to
increase the entropy of each
model point. The target point in
the lower part of the femur is
shown as (red) dot

localization task. On these extracts, edge points are com-
puted and fused to form the initial shape model. Through
this approach shape variability of the target object is in-
cluded, as becomes obvious in Fig. 2; here especially vis-
ible for the angle of the femur. In the last step, the model is
thinned to guarantee that each model point carries exclusive
shape information to keep its size small while at the same
time increasing the entropy of the model. This step is to en-
sure that the generated model is compatible with the training
algorithm described in Sect. 2.3, which weights the points
according to their importance. Points which carry the same
information content are considered less important and are
thereby downgraded. As thinning criteria, the distance and
difference in gradient directions of model points are consid-
ered such that they do not leave the same voting trace in the
Hough space.

Since the processing time of the GHT depends on the
size of the model, a further point selection is performed af-
ter each training step including the GHT and DMC. Thereby,
the model size is reduced by rejecting points which obtained
low absolute weights and therefore do not have a large im-
pact in the GHT.

The trained weighted model is finally tested on the de-
velopment dataset. Thereafter the set of training and model
images is extended with a fixed number of images where
the current model performed poorly, meaning that a high lo-
calization error was observed. Using these new images, the
model is extended by adding new points, again using the
method shown in Fig. 2. By this method, the model would
consist exclusively of shape information. To be able to in-
corporate anti-shape information as well, a second region

is extracted around the location which obtained the highest
vote in the GHT and therefore contains the strongest rival-
ing object. During the next training iteration, these points
will most likely be assigned negative weights, repelling the
model from the anti-shape location.

Once the model is able to successfully localize the target
object in all images of the development dataset or a maximal
number of iterations is reached, the procedure ends.

2.2 Generalized Hough transform

The GHT is a model-based method for object localization,
which has been introduced by Ballard [1] as an extension
of the standard Hough transform for lines or circles. The
method is capable of localizing objects of known arbitrary
shape and is insusceptible against occlusion or image noise,
which renders it very interesting for medical image process-
ing.

The localization procedure operates by transforming the
given image into a parameter space, the so-called Hough
space, where each cell represents a certain model transfor-
mation. In our case, only translation is considered; how-
ever, a full affine transformation would be conceivable, but
is computationally expensive.

For the localization procedure, a point model represent-
ing the shape of the target object is needed. This model con-
sists of the coordinates of model points relative to a refer-
ence point (as shown in Fig. 2) and the gradient (or surface
normal) direction at each point. The model points are stored
in a so-called R-table where they are grouped according to
their gradient direction for faster access during the voting
procedure described in the following.
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To perform the localization, the edge image is computed,
using, e.g., the Canny edge detector. For each edge point, the
model points with a similar gradient direction are obtained
from the associated R-table bin. Assuming that the model
point mk coincides with the edge point ej the corresponding
possible object location is determined through ci = ej − mk

and the vote in the Hough cell ci is incremented. In the end,
the Hough cell with the highest number of votes is returned
as the most likely object position.

If further transformation parameters like scaling or rota-
tion are of interest, the model needs to be transformed ac-
cordingly and the procedure is repeated. This however re-
sults in much longer processing times and a higher dimen-
sional Hough space. Since the differences in size and an-
gle of medical objects are comparably small, we follow the
approach to include this variability into our model, as de-
scribed in the previous section, to reduce computational ef-
fort.

In the process of model training, the GHT is first per-
formed using an unweighted model where each model point
casts a vote of 1, to obtain the information content of the
current model. This information is exploited in the train-
ing procedure described in the next section to determine
model point weights for an optimal combination of the avail-
able information. When employing the GHT for object lo-
calization, a weighted model is utilized, where each model
point votes with its individual weight such that they have
unequal impact on the localization result. The determined
model point weights can have positive as well as negative
values. Thereby, the positive weights belong to shape points,
while anti-shape points are allocated negative weights.

2.3 Training of model point weights

The DMC technique [2], which we employ for training of
model point weights, is a machine learning technique, which
aims at an optimal probabilistic combination of different
knowledge sources into one model.

To deduce the training procedure, we employ a proba-
bilistic view of the Hough space by transforming it into a
probability mass function. This is achieved through normal-
ization of the number of votes Ni in each Hough cell ci by
the total number of votes N . Thereby, we obtain a posterior
probability for each possible object location (represented by
the Hough cells) given an image X:

p(ci |X) = Ni

N
. (1)

Instead of searching for the cell with the highest number of
votes, the result of the GHT can now also be obtained by
determining the Hough cell with the highest posterior prob-
ability.

Dividing the Hough space into the separate contributions
from the individual model points, a model point dependent
posterior probability is established for each model point mj :

pj (ci |X) = Nij

Nj

. (2)

Since the posterior probabilities defined in (2) cannot solely
be used for object localization, a suitable combination of
these knowledge sources needs to be found. Following the
Maximum-Entropy principle introduced by Jaynes [9] the
optimal incorporation of model point information is given
via a log-linear combination:

pΛ(ci |X) = exp(
∑

j λj · logpj (ci |X))
∑

k exp(
∑

j λj · logpj (ck|X))
. (3)

The coefficients Λ = {λj }j regulate the influence of each
model point posterior probability pj (ci |X) on the model
combination pΛ(ci |X). The value of λj is therefore related
to the importance of the model point mj and will be inter-
preted as model point weight.

To estimate the model point weights from (3) with respect
to a minimal localization error on training images, an error
function E is defined:

E(Λ) =
∑

n

∑

i

ε(c̃n, ci)
pΛ(ci |Xn)

η

∑
k pΛ(ck|Xn)η

. (4)

The function accumulates the weighted error over all images
Xn. Thereby, the Euclidian distance ε of the correct object
position c̃n and a Hough cell ci is chosen as error measure,
which is weighted with an indicator function comprised of
the posterior probabilities. The exponent η in the indicator
function regulates the influence of rivaling hypotheses ck

on the error measure. The error function is designed in a
way that in a cell distant of the true solution a large proba-
bility is penalized stronger than a small one. The true cell,
which holds no error, can have the highest probability with-
out adding to the overall error.

For the determination of optimal λj , which minimize the
error function in (4), a gradient descent scheme is explored.
Due to the high dimensional search space and the most likely
not convex error function, the existence of a global mini-
mum and therefore its determination cannot be guaranteed.
However, the usage of model point weights resulting from
a local minimum already significantly increase the localiza-
tion accuracy of the model as can be seen in Sect. 4.

3 Experimental setup

3.1 Material and task

The procedure is tested on a dataset of 670 long-leg radi-
ographs of adult patients with varying field of view. Most
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Fig. 3 Examples from the dataset of long-leg radiographs

images cover both legs from hip to ankle, while some im-
ages show only one leg or certain joints. Different artifi-
cial replacements of the hip or knee are visible as well as
fractures or further medical conditions. The images were
stitched together from up to three images using the proce-
dure described by Gooßen et al. [5]. In Fig. 3 a few examples
of the database are displayed to demonstrate the diversity of
the images. Furthermore, Fig. 4 shows exemplary extracts of
the right knee.

The images have an isotropic resolution of 0.143 mm.
In order to reduce processing time the images were down-
sampled to a resolution of 1.14 mm. As edge detector the
Matlab1 implementation of the Canny method is utilized,
which automatically determines the thresholds from the gra-
dient image and applies a sigma of 1 as the standard devia-
tion of the Gaussian filter.

The localization is performed for the three joints: hip,
knee and ankle. The results will be integrated in the seg-
mentation procedure described by Gooßen et al. [6] for an
initial placement of the models.

To evaluate the accuracy of the automatic localization,
one observer annotated target points for all joints, which are
used as ground-truth. As target point a salient landmark on
the boundary of the target object was chosen, which could be
reliably annotated by the observer in all images. The mean
intra-observer error for the annotations, which were deter-
mined in two passes for all target points, adds up to 2.3 mm
for the hip, 1.3 mm for the knee and 2.6 mm in case of the
ankle.

1Version 7.6.0.324 (R2008a), MathWorks, Natick, MA, USA.

3.2 Design of experiments

The training procedure will be employed to generate dis-
criminative models for the right joints only. For the localiza-
tion of the left joints the mirrored model can be used, since
there are no significant differences between right and left
joints.

Prior to the training procedure, about 60 images without
pathological findings for the joint of interest were chosen at
random as development dataset. From these, three images
were taken, which form the initial training dataset. One of
these images is furthermore utilized for model generation.

After each training step, the three images with the largest
localization error are determined and added to the set of
training images. Through this proceeding a set of images,
which are needed to characterize the given dataset and to
capture the underlying variability, is established. New model
points are extracted from the image with the largest error as
described in Sect. 2.1.

The training stops if an error of less than 5 Hough cells,
which have a spacing of 2.29 mm, is obtained on all images
of the development dataset or if no further improvement is
achieved.

In the end, the models are tested on the left and right
joints of the complete dataset yielding the results shown in
the next section.

4 Results

The evolution of the models is shown exemplarily in Table
1 for the case of the knee, which needs 4 iterations to con-
verge. As can be seen there, the number of model points
increases in each iteration resulting in a more and more
discriminative model demonstrated by the decreasing error
rate and number of misclassifications on the development
dataset.

In case of the knee, the strongest anti-shape is the knee of
the opposite leg, which appears quite similar when regarded
without the fibula. While the initial model localized only 44
of 51 knees, from which only 32 are right knees, the final
model has a localization rate of 100%. Eventually, a model
evolved which represents the target object, captures its vari-
ability and is capable of distinguishing it from anti-shapes.

In case of the hip 5 iterations are needed to create a mean-
ingful model, while the ankle, which seems to be the most
difficult object, probably due to its rotational freedom, needs
6 iterations. The final models are shown in Fig. 5. To relate
the model points to the object structures, they are superim-
posed on an example image. Furthermore, the model points
are color-coded relative to their weight to be able to dis-
tinguish shape and anti-shape points and to determine their
importance. Model points with negative weights make up
about 25–40% of the models.
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Fig. 4 Exemplary extracts of the right knee, showing the diversity visible in the dataset. The images exhibit differences in the rotational angle,
size of the joint and the visibility of the fibula. Furthermore, disturbing objects like the ruler or implants may occur

Table 1 Evolution of the knee model. In the top part of the table the
number of training images and the size of the trained model is speci-
fied. The middle part states the mean error in mm on the training and
development images. In the bottom part the number of right or left legs,
which were localized by the current model, are listed

Iteration 1 2 3 4

No. of training images 3 6 9 12

No. of model points 75 555 1817 1923

Error on training data 1.7 2.1 3.3 1.6

Error on development data 97.5 25.2 24.8 3.4

Right knees localized 32 48 48 51

Left knees localized 12 2 1 0

The hip model contains mainly strong shape points,
which represent different sizes of the femoral head and dif-
ferent angles of the shaft position. The same holds true for
the ankle model, which concentrates on the gap between
tibia and talus, which is the most robust part with only little
inter-patient variance. The model points which extend be-
low the image border belong to anti-shapes, among others
the upper part of the tibia. In case of the knee, the model
focuses on the gap between femur and tibia, while also con-
taining strong anti-shapes in the region where the fibula of
the opposite leg would be.

In all models, horizontal or vertical chains of model
points can be seen, which most likely originated from the
ruler, the image boundary or artifacts introduced by the
stitching algorithm. These model points do not contain im-
portant information for the object location, nor are they reli-
able anti-shape points. Therefore, further research will aim
at the elimination of these points to obtain slim models with-
out redundant information.

Fig. 5 (Color online) The final models resulting from the training
procedure are shown superimposed on an example image. The model
points are color-coded relative to their weight. Blue color represents a
weight of 1, while red represents a weight of −1

Table 2 Results of the localization task for the three joints. Stated is
the size of the respective model and the mean error of the successful
localizations in mm divided by the state of the joint

Model size Normal Replacement Anomaly

Hip 1608 12.5 14.6 17.4

Knee 1923 4.3 8.5 6.8

Ankle 1187 9.8 – 13.3

The localization performance of the generated models
can be seen in Table 2 and the chart in Fig. 6. For a fair com-
parison, the images are sorted into three categories, namely
images with artificial replacements, with pathological find-
ings and the remaining images where the joints do not ex-
hibit any abnormalities. The latter images make up about
93%, 75% and 96,% of the dataset in case of the hip, knee
and ankle, as can also be estimated from Fig. 6.

The knee has the best localization rate of 97% in case of
the normal joints, followed by the ankle with 87%. The hip
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Fig. 6 Number of successfully or failed localizations of the hip, knee
and ankle on the unknown test data. Results are separated based on the
state of the joint, which can be normal, with artificial replacement or
with pathological findings; results for right and left joints are combined

Fig. 7 Extracts of difficult images where the localization succeeded:
(a) implant, (b) artificial replacement, (c) constrained field of view,
(d) shifted knee joint and occluded fibula

achieved the lowest rate with only 74%. The low localiza-
tion rate of the hip is due to an often very low image con-
trast in that region, which impairs its delineation even for a
human observer. A localization was considered successful if
an error of less than 1 cm was achieved, which is the capture
range of the segmentation procedure described in Gooßen
et al. [6].

Since the models were trained on healthy images, the cor-
rect localization of joints containing artificial replacements
and abnormalities cannot be premised. Yet, in case of the
knee a localization rate of 85% and 71% is achieved on these
images, respectively. In Fig. 7 extracts of example images
are displayed where the localization of the right knee was

Fig. 8 Extracts of example images where the localization failed

successful, although the task was difficult. Figure 8 shows
examples where the localization failed.

To motivate the usage of model point weights, further ex-
periments have been conducted for the knee localization to
compare our approach with a standard unweighted GHT. For
this purpose, 100 random images without pathological find-
ings of the knee were chosen. The results of the following
two experiments are compared to the previous one (stated as
experiment 0) in Table 3.

In the first experiment, an initial model was created from
the four model images, which were determined by the iter-
ative procedure. This model should contain sufficient infor-
mation to localize all joints correctly since it is a superset of
shape points of the weighted knee model created by the pre-
vious experiment, which has a localization rate of 96%. Yet,
when employing this unweighted model, the correct knee
was localized in only 49% of the images, with a mean local-
ization error of 8.8 mm.

In the second experiment, the trained weighted model
was employed, with anti-shape points and weights excluded.
This model achieved a localization rate of 91%, but with
a larger mean error of 7.1 mm compared to the weighted
model.

Apart from yielding a higher localization rate and a lower
mean error, the weighted model also generates a clearly
arranged Hough space with a definite maximum as can be
seen in Fig. 9. This result is more robust and reliable than
the other two, although all experiments yield about the same
result in the displayed case.

5 Discussion

We presented an approach for generation of discrimina-
tive shape models and object localization by means of the
GHT. The attractiveness of the introduced procedure lies in
the fully automatic application flow and the straightforward



H. Ruppertshofen et al.

Table 3 Comparison of the weighted model (experiment 0) with the
standard GHT employing a large unweighted model (1) and a thinned
unweighted model (2). Compared are the size of the model, the mean
localization error in mm, and the percentage of correct localizations

Experiment 0 1 2

No. of model points 1923 2926 1135

Mean localization error 3.7 8.8 7.1

Correct localizations 96 49 91

Fig. 9 Comparison of the Hough spaces obtained in the three experi-
ments. The red circles indicates the location of the target point. Shown
are the Hough space obtained with (a) the weighted model, (b) the un-
trained model from experiment 1 and (c) the unweighted model from
experiment 2

handling. For the generation of suitable models, only a num-
ber of images with annotated target points and a defined re-
gion of interest, from which the model points are to be ex-
tracted, are needed. The procedure, which can be applied to
localize arbitrary objects that are well defined by their shape,
was successfully employed to localize the joints of the lower
limb.

The trained models achieve a localization rate of 74–97%
for the different tasks with a mean localization error of 4.3–
12.5 mm, which is remarkable considering the low resolu-
tion of 2.29 mm employed in the GHT. In many cases of a
wrong localization result, the second or third highest vote in
the Hough space points to the correct joint, such that a lo-
calization rate of more than 90% could be obtained by keep-
ing multiple candidates. Although, images with artificial re-
placements, fractures and further pathological findings have
not been included in the training set, the robustness of the
generated models allows for localizing almost 70% of those
cases.

The experiments demonstrated the feasibility to incorpo-
rate the variability of the target object visible in the train-

ing images as well as anti-shape structures into one shape
model. This is achieved through an iterative training proce-
dure, which successively improves the model performance
by adding images, where the current model yields wrong lo-
calizations, to the set of training images. Through the ob-
tained shape models the false-positive rates are reduced,
while also shortening processing time, since the GHT has
to be run only once and rotation and scaling do not need to
be considered.

The necessity of model point weights was proven in fur-
ther experiments, which revealed that the sole usage of con-
tour information is not sufficient for object localization in
our case. In fact, the determination and weighting of robust
model points is of high importance to increase localization
accuracy and reduce false-positive rates. Establishing this
information by hand is a difficult and time-consuming task,
which would require substantial expert knowledge.

The current experiments were run on down-sampled im-
ages to reduce processing time. The achieved accuracy is
sufficient for the given task of model initialization for seg-
mentation procedures as utilized by Gooßen et al. [6]. If a
higher accuracy is needed, the procedure could be embed-
ded into a multi-level setting.
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