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Abstract

Medical visualizations are highly adapted to a specific medical application scenario. Therefore, many researchers con-

duct qualitative evaluations with a low number of physicians or medical experts to assess the benefits of their visual-

ization technique. Although this type of research has advantages, it is difficult to reproduce and can be subjectively bi-

ased. This makes it problematic to quantify the benefits of a new visualization technique. Quantitative evaluation can

objectify research and help bringing new visualization techniques into clinical practice. To support researchers, we present

guidelines to quantitatively evaluate medical visualizations, considering specific characteristics and difficulties. We demon-

strate the adaptation of these guidelines on the example of comparative aneurysm surface visualizations. We developed

three visualization techniques to compare aneurysm volumes. The visualization techniques depict two similar, but not iden-

tical aneurysm surface meshes. In a user study with 34 participants and five aneurysm data sets, we assessed objec-

tive measures (accuracy and required time) and subjective ratings (suitability and likeability). The provided guidelines

and presentation of different stages of the evaluation allow for an easy adaptation to other application areas of medical

visualization.

Keywords: evaluation, medical visualization, aneurysm surface comparison

ACM CCS: I.3.3 [Computer Graphics]: Picture/ImageGeneration and Display Algorithms, G.3 Probability and Statistics Ex-

perimental Design J.2 Physical Sciences and Engineering Mathematics and Statistics

1. Introduction

Medical visualizations are developed to support the in-depth under-

standing of diagnostic processes, therapeutic decisions and to sat-

isfy intra-operative information needs. Evaluation is mandatory to

assess existing visualization techniques, develop new ones, answer

research questions and generate and verify postulated hypotheses.

Here, a wide variety of evaluation strategies exists. Since the vi-

sualization techniques are highly adapted to the specific medical

application scenario, prior knowledge is often required, which nar-

rows the range of eligible participants. As a result, many researchers

conduct qualitative evaluations with a low number of medical ex-

perts to assess the benefits of their visualization technique. How-

ever, the acquired results are difficult to reproduce. Furthermore,

the medical experts usually are cooperation partners and co-authors

of the presented work, where a subjective bias is hardly avoidable.

Hence, quantitative evaluation can objectify research, provide addi-

tional information and determine whether a statistically significant

difference is achieved.

In this paper, we present guidelines for the statistical evalua-

tion of medical visualizations based on the example of comparative

aneurysm surface views. We discuss possible study designs and

list common measurable properties to assess users’ objective and

subjective performance. The subsequent analysis allows for deter-

mination of statistical significance.

Our medical application scenario covers intracranial aneurysms.

The segmentation of such vessel pathologies is an important re-

search area. To create reproducible results and to reduce the work

load of clinicians, automatic segmentations of vascular structures
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are desired. Due to patient-specific anatomies and pathologies, such

automatic solutions remain challenging, and aiming for a general au-

tomatic segmentation framework is probably illusory [LABFL09].

Aneurysms bear the risk of rupture, which may cause severe con-

sequences for the patients. For an improved intervention planning,

patient-specific 3D surface models of the aneurysm and the sur-

rounding vascular tree are extracted. They allow for the extraction

of morphological parameters [LEBB09] or the simulation of the

internal blood flow [BRB*15]. The results are included into the

minimally invasive surgical plan as well as the post-processing ap-

plications within the clinical environment.

Our application scenario does not focus on the segmentation

technique, but rather on the comparative visualization of differ-

ent segmentation results. During the segmentation process, the

medical expert requires feedback on how parameters influence

the segmentation results, since small parameter adjustments may

induce enormous changes on the surface mesh. To guide the

clinical expert through the process, we developed three differ-

ent comparative visualization techniques to show surface mesh

variations.

Our quantitative evaluation determines the most suitable vi-

sualization technique to assess changes in the aneurysm vol-

umes. Here, we consider objective measures and subjective rat-

ings. The visualization techniques are applied to five cerebral

aneurysms, each approximated with three slightly different surface

meshes.

This work is an extension of our previous work [GSB*16]. We

use the application scenario of cerebral aneurysms to provide three

techniques for the visualization of two similar but not identical

aneurysm surface meshes, which mutually penetrate and overlap.

The additional contributions of this paper are:

r We present comprehensive guidelines to quantitatively evaluate

medical visualizations, considering specific characteristics and

difficulties. Here, we provide instructions for computer scientists

and engineers to carry out statistical evaluation.
r These guidelines are represented as a decision tree, compris-

ing the most common statistical tests. The tree can be used as

guidance leading researchers from their research question to the

choice of a matching statistical test for the desired quantitative

evaluation.
r In addition to the identification of the best suited visualization

technique regarding accuracy and required time, we also carry

out a quantitative evaluation of user subjective ratings, yielding

statistically significant results.
r Finally, we evaluate whether the participants’ experience with

medical visualizations has a significant influence on their accu-

racy and required time to decide which aneurysm possesses the

larger volume.

2. Related Work

In recent years, findings from psychophysical studies were incorpo-

rated to enhance 2D and 3D visualizations [BCFW08] influencing

also the evaluation process of visualizations. For the assessment of

a visualization’s suitability and performance, user studies offer a

scientifically sound method [KHI*03]. Lam et al. [LBI*12] in-

troduced an in-depth discussion of seven evaluation scenarios for

information visualization, which are subdivided in scenarios for

understanding data analysis processes and in scenarios for visual-

ization evaluation. Their approach focused on evaluation goals and

questions that guide the users to select appropriate methods based

on the provided context within the different scenarios. Our proposed

pipeline can be categorized into the evaluation of user performance,

evaluation of visualization type, as well as evaluation of visual data

analysis and reasoning. We chose the quantitative statistical eval-

uation as a goal and provide detailed information as well as the

required statistical tests to achieve it.

Isenberg et al. [IIC*13] presented a systematic review of the

evaluation practices in visualization. They employed several evalu-

ation categories and concluded that the Qualitative Result Inspection

was most often used by all reviewed papers. Further emphasis on

the evaluation of algorithmic performance as well as an increasing

trend in the evaluation for user experience and user performance

were reported.

Examples for this quantitative trend in medical visualizations are

user studies performed by Gasteiger et al. [GNKP10] and Baer

et al. [BGCP11]. Gasteiger et al. evaluated an aneurysm visual-

ization based on the participant’s grade of satisfaction w.r.t. depth

perception, spatial relationships, flow perception and surface shape.

Subsequently, Baer et al. [BGCP11] compared this visualization

technique against two others and were able to determine statistically

significant differences for the visualizations. Borkin et al. [BGP*11]

determined which visualization technique of the endothelial shear

stress of coronary arteries is best suited. The study provided by

Dı́az et al. [DRN*15] comprises a test setup to evaluate differ-

ent shading techniques for volume data sets. Their evaluation in-

cluded a quantitative statistical analysis as well. The survey by

Preim et al. [PBC*16] presents perception-based evaluations of

medical visualization techniques focusing on shape and depth cues.

They proposed to design studies in such a way that a broad range

of users can participate by creating tasks that are solvable with

general visual perception abilities. It provides essential aspects of

perceptual experiment methods as well as a discussion of the type

and setting of an evaluation, stimuli, participants, tasks and major

results for selected medical visualization techniques. In contrast,

the presented approach focuses more on detailed information about

the required tests for a quantitative statistical evaluation, but also

provides general information about study design and experimental

setup choices.

Visualizations of vessels are often depicted as 3D surfaces due to

their complex and patient-individual shape [SOBP07, PO08]. Fur-

thermore, overview visualizations are possible, e.g. the CoWRadar

visualization for cerebral vessels [MMNG15]. Since we intend to

employ aneurysm surface meshes for morphological analyses and

subsequent Computational Fluid Dynamics (CFD) simulations, we

focus on 3D surface visualization methods. The depiction of cere-

bral aneurysms mostly involves the visual representation of hemo-

dynamic parameters, e.g. scalar parameters are displayed via colour-

coded surface views [CSP10]. Gasteiger et al. [GNKP10] developed

an illustrative visualization of aneurysms using a Fresnel shading to

reveal the embedded blood flow. This work strongly motivated our

visualization technique VisB.

©©
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One of our visualizations is inspired by the image-based ren-

dering of intersecting surfaces [BBF*11]. This technique is based

on the approach by Weigle and Taylor [WT05]. Next to the in-

tegration of additional local distance cues, they enabled interac-

tive manipulation of the surfaces. Geurts et al. [GSK*15] em-

ployed a visual comparison of medical segmentation results to

allow for an evaluation of the segmentation quality. They pro-

vided additional information with landmark-based clustering to

detect similar segmentation results. For the visualization itself,

a colour-coding of the surface was employed. There also exist

illustrative approaches, e.g. the visualization presented by Car-

necky et al. [CFM*13]. However, we aim at a fast comparison

of cerebral aneurysm volumes. Therefore, we want to reduce the

visual complexity and choose the concepts provided by Busking

et al. [BBF*11] as inspiration for one of our visualization techniques

(VisC).

Our visualization techniques show different segmentation re-

sults from the same patient, which can also be interpreted as

uncertainty visualization. Grigoryan and Rheingans [GR04] pre-

sented point-based probabilistic surfaces, which visualize sur-

face models of medical structures such as tumors. Hence, the

surface points are displaced to reflect the uncertainty at that

point. The method by Pöthkow and Hege [PH11] comprises

a feature-based visualization for iso-surfaces with uncertainties.

Their approach employs colour-coding, glyphs and direct volume

rendering.

The presented approach only covers a specific part of a medi-

cal application scenario and explains which statistical test can be

adapted to evaluate the medical visualization. In the longer term,

medical visualization aims at the support of medical decision mak-

ing. For example, Lang et al. [LRHea05] reported a change of

operation planning due to the influence of computer-assisted risk

analysis.

3. Comparative Visualization of Cerebral Aneurysms

This section presents the aneurysm image data, the segmentation

process and the three visualization techniques VisA, VisB and VisC .

3.1. Cerebral aneurysm image data and image processing

Cerebral aneurysms are pathologic dilatations of the cerebral artery

walls, which may rupture and cause a subarachnoid hemorrhage

with severe consequences for the patient. Treatment is carried out

via endovascular intervention or neurosurgical clipping. However,

the treatment itself may cause complications such as hemorrhages.

To avoid unnecessary treatment, rupture risk assessment is an active

clinical research area.

In clinical practice, rupture risk factors mainly comprise the

aneurysm’s morphology and whether the aneurysm is asymptomatic

or symptomatic [WvdSAR07]. Hence, the extraction of aneurysm

surface meshes provides additional information such as the evalua-

tion of the ostium area (i.e. the orifice between the aneurysm sac and

the parent artery) [LEBB09]. Further research directions involve the

simulation of the internal blood flow, since unstable and complex

blood flow was correlated with increased rupture risk [CCA*05].

Again, a patient-specific surface mesh is the prerequisite for volume

grid extraction and a subsequent CFD simulation.

For the diagnosis of cerebral aneurysms, rotational angiography

(RA) is considered as gold standard imaging method [GLR*09]

due to the high spatial resolution. Based on RA data, the 3D digi-

tal subtraction angiography (DSA) data sets are reconstructed. To

obtain the slightly similar surface meshes, we exploit the recon-

struction process of the RA data from the DSA suite (Siemens

Artis zeego, Siemens Healthcare GmbH, Erlangen, Germany). Five

patient-specific cerebral aneurysm data sets (P1–P5) were recon-

structed using the Hounsfield Units (HU) setting and three different

image characteristics: smooth, normal and sharp [BSV*17]. The HU

kernel is recommended for quantitative measurements. The sharp

setting maximizes spatial resolution but yields increased noise lev-

els, whereas the smooth setting reduces artifacts as well as the spatial

resolution. A compromise between smooth and sharp is provided

by the normal setting [syn16]. The five aneurysms stem from five

female patients with mean age of 49 years (range 45–59 years).

One cerebral aneurysm was located at the anterior communicating

artery, one at the posterior communicating artery, two at the internal

carotid artery and one at the bifurcation of the middle cerebral artery.

Their size varied from 2.5 to 11.2 mm (mean size). All patients were

treated with endovascular coiling.

Reconstructing the RA data, P1–P5 with the three different

reconstruction modes yields three DSA data sets for each pa-

tient. Aneurysm segmentation was carried out via threshold-

ing [GBNP15]. The segmentation and surface mesh generation was

performed in MeVisLab 2.7 (MeVis Medical Solutions AG, Bremen,

Germany). To provide a visual separation between parent vessel and

aneurysm, we extracted an ostium for each patient using Blender

2.74 (Blender Foundation, Amsterdam, the Netherlands). The os-

tia were extruded to create ruff-like structures in order to support

the participants and the evaluation of the aneurysm size. The ex-

traction of surface meshes and ostia is described in more detail in

[GSB*16]. Figure 1 illustrates the aneurysm surface meshes for P1–

P5 as well as surface meshes for a single patient based on the three

reconstruction modes.

Figure 1: Depiction of aneurysm surface meshes. For patient

P1, the three resulting segmentations S1, S2 and S3 based on

the three reconstruction modes (HU normal, HU sharp and

HU smooth) are shown (top). Surface meshes of the remain-

ing patients P2–P5 reconstructed with HU normal are visualized

(bottom).
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Ostium

Figure 2: Depiction of the iso-surface view VisA. In case the

surface mesh of ARef exceeds the surface mesh of AComp, the

orange surface becomes visible. Otherwise, the cyan mesh is

visible. The ruff-like structure provides information about the

ostium.

3.2. Comparative visualization techniques

To evaluate differences of the aneurysm volume, we developed three

visualization techniques: the iso-surface view VisA, the boundary-

enhancing shading view VisB and the colour-coded map surface

view VisC . VisA and VisB show two aneurysms, where the first one is

referred to as ARef, i.e. the reference aneurysm, and the second one

as AComp, i.e. the aneurysm for comparison. Note that the ordering

of the aneurysms is important, and employing ARef first and AComp

second yields a different visualization result than the usage of AComp

first and ARef second. In the following, the visualization techniques

will be described in more detail.

3.2.1. The iso-surface view – VisA

The iso-surface view is a rather straightforward direct visual-

ization of the two surface meshes of the aneurysms ARef and

AComp. It is realized in MeVisLab using the Open Inventor Li-

brary. For ARef an orange [RGB = (1, 0.33, 0)], and for AComp a

cyan [RGB = (0.33, 0.66, 1)] transparent surface mesh is simulta-

neously visualized with opacity values of 0.5 (see Figure 2). The

colour-coding uses complementary colours and accounts for red–

green colour blindness. Beyond mesh extraction, no further prepro-

cessing is required.

3.2.2. The boundary-enhanced view – VisB

The second visualization technique VisB (see Figure 3) is based on

the Fresnel shading approach, which was successfully employed for

aneurysm visualization comprising an inner blood flow visualiza-

tion [GNKP10] or the outer vessel wall revealing the colour-coded

inner vessel wall [GLH*14]. This technique is also referred to as

ghosted view or x-ray shading. Although we do not include addi-

tional information yet, e.g. the inner blood flow, we do integrate this

visualization technique in our user study since we are interested in

a possible extension of the visualization with the above-mentioned

information in the future.

The opacity o for each surface mesh is assigned in the fragment

shader and depends on the normal En and the viewing vector Ev :

o = 1− (En · Ev)f ,

where f serves as edge fall-off parameter. This parameter strongly

influences the visualization of possible inner structures. We use

an empirically determined value of f = 0.7. The same colours

are used for VisA and VisB . The visualization technique is real-

ized in MeVisLab using the Open Inventor vertex and fragment

shader modules where the user can directly provide shader code as

input.

3.2.3. The map surface view – VisC

In contrast to VisA and VisB , the map surface view visually provides

quantitative information for the distance between ARef and AComp.

For the gathering of the distance information, the estimation of the

nearest vertex pairs from ARef and AComp is carried out. We calculate

the normals of the ARef surface mesh and approximate the distance

based on the intersection with AComp. The normals of ARef point

inwards. If AComp is larger than ARef, the intersection in negative

normal direction is nearer to ARef’s vertex than the intersection in

positive normal direction and the distance value is stored as negative

value. For visual representation, we normalize the extracted distance

values to the interval [0, 1] since we want to store them as texture

coordinates. Therefore, we clamp the original distance values to

the interval [−0.1, 0.1] mm (a well suited range for small structures

such as cerebral aneurysms) and rescale them to [0, 1]. Thus, texture

values of 0.5 are assigned to parts where the surface meshes of ARef

and AComp have a distance of almost 0 mm. Finally, we employ

the colour map depicted in Figure 4 as texture and obtain VisC

by using the Open Inventor Vertex Attributes module provided in

MeVisLab. The colour map is based on the chosen colours for VisA

and VisB . It is designed such that areas where ARef is larger than

AComp are mapped to dark orange, whereas the quantitative distance

information is provided by the hue’s saturation. Blue areas indicate

a larger local extent of AComp.

Ostium

Figure 3: Depiction of VisB . The mesh extents become best visible

at the boundary of the aneurysm (see circular inlay), which requires

an interactive exploration of the 3D scene. The visualization shows

a larger aneurysm neck of ARef (see rectangular inlay and arrows).
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Figure 4: Depiction of visualization VisC . Similar to a relief map,

colour-coding provides information whether ARef or AComp is larger.

Hence, the colour saturation provides quantitative information.

4. Guidelines for the Evaluation of Medical Visualization

Based on previous evaluation projects, discussions with statistical

experts and the studies presented in Section 2, we derive guidelines

for the evaluation of medical visualizations. These guidelines are

summarized as a decision tree with several stages, see Figure 5, with

focus on inferential statistics. These stages are described in more

detail in the following.

The most general subdivision of methods is the distinction be-

tween quantitative and qualitative methods (Figure 5, Stage 1).

While the former allows an analysis of measurable properties, the

latter investigates phenomena. Important to note is that user subjec-

tive ratings, e.g. assessed with a Likert scale, are measurable prop-

erties as well. Quantitative evaluation methods can be applied to

measurable properties to determine whether statistically significant

findings can be extracted. On the other hand, qualitative evaluation

is the right choice for explorative research questions to generate

hypotheses as well as to provide basic information for a new ap-

plication area. For example, if a new medical visualization should

be developed, qualitative evaluation can be applied to determine the

requirements for the novel visualization. Also, the decision making

of a physician can be analysed to get a deeper understanding of the

process from initial data inspection to the treatment decision. Here,

the think-aloud method can be used to assess the influence of a new

visualization technique on the interventional strategy. Our paper fo-

cuses on quantitative evaluation on the example of aneurysm surface

visualization, i.e. a measurable comparison of different visualization

techniques.

The next step for the conduction of the quantitative evaluation is

to check whether all requirements are met for inferential analysis

(Figure 5, Stage 2). Examples for requirements are a clear hypoth-

esis and a sufficient sample size [Fie09]. If these requirements are

not fulfilled, descriptive statistics can be performed, comprising an

analysis of the distribution of the data and an evaluation of mea-

sures for central tendency and variance. Appropriate visualizations

for this information should be provided via box plots, bar charts

and histograms. Even for inferential statistics, these visualizations

should be presented to support the interpretation of the data.

In the following, the evaluation strategies for inferential statistics

are explained in more detail, including problems in the medical fields

and suggestions. Due to the wide variety of statistical tests with

diverse assumptions about the data distribution, the sample size and

the number of compared conditions, we only point out common tests

and when to apply them. For a more detailed overview including

a justification, we direct the interested reader to the book of Andy

Field [Fie09], which includes further references for each test.

4.1. Parametric versus non-parametric tests

Parametric tests, such as a t-test, where differences between mean

values are investigated, have more statistical power and, thus,

a higher probability to reveal possible significances than non-

parametric tests. However, they can only be applied if specific re-

quirements are fulfilled, e.g. the sample size is sufficient and the

data are scaled appropriately as well as normally distributed (Fig-

ure 5, Stage 3). In statistical practice, parametric tests are applied

even if requirements are violated with the justification that these

tests are robust against these violations [Fie09]. This makes it diffi-

cult for non-statistic professionals to decide when, e.g. a deviation

from normal distribution is too strong and a sample size is too

small, respectively. As a general suggestion, the measure of cen-

tral tendency and the scaling of the data should be investigated.

Different measures of central tendency comprise the mean, median

and mode. A parametric test should only be considered if the mean

is able to represent the central tendency. An example against this

assumption is the usage of a forced-choice Likert scale (i.e. a neu-

tral choice is missing) for data acquisition. Here, the mean value

could lie between positive and negative ratings yielding the neutral

choice that was prohibited in the initial setup. Thus, a misleading

result would be reported. The median would be the appropriate

measure of central tendency and a non-parametric test should be

used. The scaling of the data can either be discrete (ordinal, nomi-

nal) or continuous (interval or ratio scale). For ordinal scaled data,

such as ranked lists, the usage of a parametric test is debatable

and, if in doubt, a non-parametric test is preferable. For continuous

scaled data, a test of normal distribution accompanied by a visual

inspection of the histogram should be performed [Fie09]. A possi-

ble test for this is the Shapiro–Wilk test, which examines whether

the collected data came from a normally distributed population.

Here, outliers should be considered as well. The additional visual

inspection is necessary, since common small sample sizes in med-

ical visualization rarely result in normally distributed data. Again,

if the data significantly deviate from a normal distribution and the

visual inspection is debatable, a non-parametric test is the preferable

choice.

4.2. Independent, dependent and confounding variables

The controlled variation on the independent variable (also called

factor) leads to changes to the dependent variable. In medical vi-

sualization, a typical independent variable is the visualization tech-

nique, whereas the different techniques are the respective condi-

tions (Figure 5, Stage 4). The number of conditions affects the

option to realize a post hoc test (see Section 4.6). A possibility for

the controlled variation is the usage of an established visualization

technique and a new one. This variation influences the dependent

©©
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Figure 5: Guidelines represented as a decision tree with focus on quantitative evaluation (Stage 1). In Stage 2, the researcher decides if

statistical significant findings are relevant or descriptive statistics are sufficient. The chosen statistical test depends on the collected data

(Stage 3), the number of conditions (Stage 4) and the type of study (Stage 5). If more than two conditions were tested, post hoc tests are

possible (Stage 6).

©©
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variable, which can be measured. Examples for dependent variables

are objective measures, such as required time, or subjective ratings,

such as preferability. The possibilities of an unwanted influence to

the dependent variable are called confounding variables. General

examples are participant’s motivation and study duration, which in-

fluence the performance [CW11]. Important confounding variables

in medical visualizations are differences in the perception of par-

ticipants, e.g. colour blindness, or differences on the used output

device, e.g. display brightness, size and contrast. Usually, differ-

ent domain experts, i.e. highly specialized physicians, are asked to

participate in the study. Their varying experience also influences

the measurement. A general method to reduce the influence of con-

founding variables is to keep them as constant as possible. This is

easier for some than for others. Display types, lighting situation and

an overall equal setting can be held constant in usability labs. Dif-

ferences in experience can be controlled by using questionnaires,

which try to quantize the experience to a certain degree. Then, it

is possible to restrict the study to participants with similar expe-

rience. Another problem arises if a new visualization technique is

compared to an established one, which could lead to a novelty bias

against the new visualization. Here, thorough training sessions can

reduce the bias. Ideally, they are carried out until the learning curve

reaches a plateau. In summary, the approach of keeping confound-

ing variables constant does not eliminate them, but exposes every

participant equally to them. Thus, variations in the results, e.g. re-

garding accuracy, are theoretically explained by the studied factors

alone. However, by controlling every aspect of an experiment, the

external validity is reduced, i.e. how good the results are trans-

ferable to clinical practice. Here, researchers have to find the right

balance between control and realism or perform several studies with

different degrees of external validity.

4.3. Tasks and data sets

An evaluation task should represent main challenges of typical tasks

as realistic as possible [CW11]. For medical visualizations, this

assumption strongly limits the number of possible participants. A

task imitating a real clinical scenario would require the know-how

a physician gained during his education, training and experience.

This aggravates in case of a special medical field, e.g. cerebral

vessel pathologies. Here, an even smaller number of specialized

surgeons and radiologists could participate. As a result, statistical

analyses would lose power due to the small sample size. Therefore,

the task is often approximated such that non-expert users can provide

valuable test results. Typical examples for tasks related to medical

visualizations are the estimation of size of pathologic structures for

diagnosis or perceptually motivated tasks such as depth ordering

of complex medical structures for intervention planning [PBC*16].

However, this limits the relevance and possibility for generalization

[Bae15].

In conclusion, multiple similar tasks should be implemented to

strengthen the result’s plausibility and to enhance the external valid-

ity and reliability. For example, different aneurysms can be shown

to evaluate a single aneurysm visualization technique. Here, par-

ticular care should be taken to create tasks with similar difficulty.

Otherwise, this can be the reason for a higher variance in the results.

Also, the aggregation of this acquired data should be analysed either

run- or participant-related, which is explained in Section 4.5.

4.4. Experimental design

The type of experimental design can be divided into repeated mea-

sures design (within-subject), aiming at the variability of a particular

value for the same individuals under different conditions, or the in-

dependent measures design (between-subject), aiming at differences

between groups (Figure 5, Stage 5).

The choice of experimental design depends on the available

participants and the evaluation goal. Independent measures studies

avoid learning effects and the evaluation time is reduced for each

participant compared to repeated measures design. However, groups

of similar participants (w.r.t. age, experience, knowledge, etc.) have

to be recruited. In the medical domain, these prerequisites are not

easily met. Between-subject studies may suffer from interpersonal

differences. Within-subject studies avoid these differences. Since

they may suffer from learning or sequence effects, special care

must be taken for the definition of tasks (e.g. the order of condi-

tions across participants should be balanced) [CW11]. Although

repeated measures designs are influenced by intra-personal

differences (e.g. getting tired during the experiment), they may be

superior to between-subject studies. When the same participants

are involved and repeated measures are acquired, the overall

variance is reduced and, thus, statistical significance can be reached

more easily [Fie09].

In conclusion, repeated measures studies are recommended for

the evaluation of medical visualizations due to the reduced vari-

ance and a lower number of required participants. However, certain

evaluation goals such as the impact of surgical techniques on pa-

tients are not possible with repeated measures, since this surgery

could only be carried out once for a single patient. An independent

measures design should also be used if the risk of strong learning

effects is too high. In medical visualization, this occurs if only a few

data sets are available, which should be visualized with different

techniques. Here, participants are able to recognize the data set and

answer according to previous knowledge. Furthermore, an indepen-

dent measures design is mandatory if the conditions are exclusive

properties of the participants, e.g. physicians are either experts or

novices. Differences regarding these groups can only be analysed if

they are considered independently.

The chosen design ultimately influences the necessary statistical

test that should be used to reveal differences between conditions. For

example, acquired data that fulfill the requirements for a parametric

test with more than two conditions and a within-subject design need

to be analysed with a repeated measures ANOVA (an analysis of

variance). An overview of the different test possibilities can be found

in Figure 5.

4.5. Data aggregation choices

The acquired data of the study can be related to participants and to

runs of a study, respectively. Data sets should be related to partic-

ipants if the impact of the studied factors (e.g. different visualiza-

tions) on participants is investigated. In contrast, if general features

of a technical system are evaluated, the results are independent of

the participants and, thus, the data sets should be related to single

runs. Depending on this distinction, the data should be aggregated

or not.
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For example, a medical visualization technique should be eval-

uated. To improve the reliability of the measured results, five runs

with different medical data sets are performed. After presenting all

data sets, five results are obtained. A common mistake is to han-

dle these five results independently. However, since this evaluation

scenario is participant-related, the results must be aggregated to

a single value for each participant. Inappropriate data aggregation

might bias the results of statistical tests. If ignoring the aggregation

of participant-related evaluations, the sample size is artificially en-

larged. This leads to an underestimation of the true data variance.

Both artificial enlargement of the sample size and the underesti-

mation of variance reasoned by the lack of data aggregation make

statistical testing considerably more liberal, i.e. statistically signifi-

cant results are obtained although no true effects exist [LSM16].

4.6. Using post hoc tests

Post hoc tests can be used optionally and are only possible if more

than two conditions exist (Figure 5, Stage 6). More precisely, two

conditions can be directly compared with each other (recall the tests

contained in Figure 5, Stage 5). For more than two conditions, a

first test reveals whether a statistically significant difference exists

amongst them. Next, a pairwise comparison is carried out to compare

the conditions against each other. For example, a repeated measures

ANOVA for three conditions might reveal a significant difference

between the conditions. If the researcher wants to identify which

condition performed best or worst, the Bonferroni post hoc test is

an appropriate method. This test compares pairwise mean values

between each two groups with t-tests. A wide variety of post hoc

tests exists [18 in SPSS 22.0 (IBM, New York, NY, USA)], making

the right choice difficult. Figure 5 provides an overview of common

statistical tests for this purpose. For more details, readers are referred

to the book of Andy Field [Fie09].

5. Evaluation of 3D Aneurysm Surface Visualization

In the following, our exemplary quantitative user study is presented.

We apply our guidelines described in the previous section.

5.1. Participants

The participants were recruited from visitors of the Long Night

of Sciences in Magdeburg, Germany. During this event, scientific

institutes present their research to the general public. The majority

of our participants were from the university’s computer science

and medical engineering departments. As a result, we were able to

conduct a user study with 34 participants comprising five female

and 29 male participants, with an age ranging from 16 to 66 years.

5.2. Independent and dependent variables

For our application, the independent variable is the aneurysm surface

visualization with the three conditions VisA, VisB and VisC described

in Section 3. The influence of experience with medical visualizations

is used as a second independent variable. Here, we differentiate the

medical visualization experience into the two conditions MedVisExp

and NoMedVisExp. The two dependent variables comprising user

objective performance are required task completion time and accu-

racy. The required time is logged after each completion of a task.

We instructed our participants to take the time they needed. Accu-

racy is defined as the number of correct answers, i.e. the number of

right decisions whether aneurysm ARef or AComp is larger. As user

subjective ratings, we used suitability and preferability. The ratings

were assessed with a 5-point Likert scale ranging from−− (i.e. not

suitable/preferable at all) to ++ (i.e. very suitable/preferable).

5.3. Technical setup

The study was realized with MeVisLab. Thus, each participant was

presented with a graphical user interface (GUI), which guided the

participants through the study. The user interface was created with

a TabView object using hidden tabs. Each time the participant an-

swered a question, the next tab was shown. At first, the TabView

comprises slides for medical background information. Since all vi-

sualization techniques were implemented in MeVisLab, they could

be easily integrated in the TabView GUI as well. Selection of visu-

alization techniques and data sets for the participants was automat-

ically carried out via Python scripts. The logging of participant’s

inputs and time required for each task were stored as text files.

5.4. Procedure and tasks

The GUI was presented to each participant, starting with a slide for

the medical background information. Afterwards, examples of the

three different visualizations VisA, VisB and VisC were shown. Each

of the visualizations as well as the interaction, e.g. zooming and

rotating, were explained in detail by the supervisor. The participants

were also encouraged to explore the scene and get familiar with

the user interface for 3D exploration provided by MeVisLab. The

test number ti was assigned to the ith participant. Each participant

had to solve 18 questions q1–q18, i.e. six per visualization, and

had to decide which aneurysm possesses the larger volume. Finally,

the participants answered a questionnaire comprising demographics

questions and user subjective ratings.

5.5. Experimental design

For the comparison of the 3D visualizations, we use a repeated

measures design. Here, each experiment is carried out such that

all participants are confronted with each visualization technique

six times. Thus, the amount of different visualization techniques

shown is balanced. As a result, we repeat the question whether

ARef is larger than AComp 18 times, which enhances the external

validity. To reduce the influence of training or sequence effects, we

change the order of the shown visualization techniques as well as

the employed patient and segmentation data with a priori pseudo-

randomization. The pseudo-randomization is provided in detail in

our previous work [GSB*16]. In general, for the ith test ti with

questions q1–q18, each visualization VisA, VisB and VisC was shown

six times in the pseudo-randomized order. The patient data P1 – P5

as well as the order of segmentations were alternated. The pseudo-

randomization ensures that each participant evaluates different data

sets with varying segmentations, i.e. the participant does not see the

same visualization technique with the same data sets for ARef and
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AComp twice. This also holds for the demonstration of visualizations

during the introduction (recall Section 5.4), where the combinations

of patient data and visualization techniques were not identical to the

ones used in the test.

For the comparison regarding the medical experience, an indepen-

dent measures design is used. This is necessary, since a participant

cannot belong two both groups at the same time.

6. Results

Since our evaluation is participant-related, we aggregate the results

of single participants (recall Section 4.5). The participants’ answers

form the set of observations for VisA, VisB and VisC . We count for

each participant how many times he or she correctly answered for

each visualization yielding numbers from 0 to 6. We also collect

the set of averaged required times tA, tB and tC that each partici-

pant needed for VisA, VisB and VisC . For each investigated aspect,

we formulate the null hypothesis (H0) and alternative hypothesis

(H1) explicitly. In the following, we explain the evaluation process

according to our guidelines presented in Figure 5. We carry out

inferential statistics (Figure 5, Stage 2) for all dependent variables:

r Non-parametric versus parametric tests (Stage 3). We test if the

samples fulfill the requirements for a parametric test (properly

scaled and normally distributed).
r Analysis of number of conditions (Stage 4). Based on the number

of conditions, an appropriate test is chosen.
r Experimental design (Stage 5). We carry out the statistical test

depending on the experimental design over all conditions.
r Post hoc test (Stage 6). If the statistical test indicates significant

differences amongst the conditions, we carry out a post hoc test.

Each condition is compared pairwise to assess the highest and

lowest performing condition.

All statistical tests were carried out with SPSS 22.0.

6.1. Accuracy

6.1.1. Differences regarding visualization

The first analysis determines whether there exists a significant dif-

ference between the three visualization techniques w.r.t. the amount

of correct answers, which range from 0 to 6. Box plots for the

accuracy for VisA, VisB and VisC are provided in Figure 6 (left).

Non-parametric versus parametric tests (Stage 3) We employ

the Shapiro–Wilk test separately for VisA, VisB and VisC to determine

whether the amount of right answers is normally distributed. The

Shapiro–Wilk test yields the following significance levels:

r 0.003 for VisA,
r 0.037 for VisB and
r 0.000 for VisC .

Since all visualizations differ significantly from a normal distri-

bution (p < 0.05), we use the non-parametric test for comparison.

Figure 6: Box plots of the accuracy (left) and the required time

(right) for VisA, VisB and VisC including the median m, the mean x̄

and the standard deviation s are shown.

Analysis of number of conditions (Stage 4) The independent vari-

able visualization has the three conditions VisA, VisB and VisC .

Therefore, tests for more than two conditions are considered.

Experimental design (Stage 5) According to our guidelines, we

use the Friedman test, which compares the conditions based on ranks

[non-parametric test, more than two conditions, repeated measures

design (recall Figure 5)]. Here, we investigate if the visualization

techniques lead to different results regarding accuracy. We define

the hypotheses:

H0: The participants achieve a similar accuracy with each visual-

ization technique.

H1: The participants achieve a different accuracy with the visual-

ization techniques.

The Friedman test reveals that the accuracies significantly differ

for the three visualizations (χ 2(2) = 25.38, p < 0.05). Therefore,

the hypothesis H0 must be rejected.

Post hoc test (Stage 6) Since the visualizations lead to significant

differences regarding accuracy, we compare each technique pair-

wise to identify the most suited. We use the Wilcoxon signed-rank

test for VisA, VisB and VisC , which tests if their mean ranks dif-

fer. Because of the multiple tests, we use the Bonferroni correction

method, i.e. adjusting the alpha by the number of comparisons (three

comparisons yield one-third of 0.05 = .0167). The amount of cor-

rect answers is significantly higher for VisA (m = 4.5) than for VisB

(m = 3.0) (Z = −3.76, p < 0.0167), where m denotes the median.

Also, the amount of correct answers is significantly higher for VisC

(m = 5.0) than for VisB (m = 3.0) (Z = −4.07, p < 0.0167). How-

ever, there is no significant difference between VisA (m = 4.5) and

VisC (m = 5.0) (Z = 0.95, p = 0.354). Additionally considering

the descriptive results, VisC (x̄ = 4.47, s = 1.16) performed better

than VisA (x̄ = 4.06, s = 1.67).

Since VisB lead to the lowest results, we analysed how it com-

petes with random guessing, where guessing would result in three

correct answers. A Wilcoxon signed-rank test yields a significant

difference (Z = −2.09, p < 0.05 with x̄VisB < x̄guessing). Thus, VisB
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may systematically influence the participants to provide wrong

answers.

6.1.2. Differences regarding medical experience

We want to investigate if there are significant differences regarding

accuracy reasoned by experience with medical visualizations. The

values of all three visualizations were averaged to a single value for

each participant.

Non-parametric versus parametric tests (Stage 3) Every partic-

ipant was assigned to one of the two experience groups. Only 10 of

34 participants had experience with medical visualization. Because

of the small sample size in the experienced group, a non-parametric

test is used.

Analysis of number of conditions (Stage 4) The independent vari-

able MedicalExperience has the two conditions MedVisExp and

NoMedVisExp. Therefore, tests for two conditions are considered.

Experimental design (Stage 5) Since each participant could be

clearly matched to one of the experience groups, the measures were

not repeated (between-subject). Thus, the Mann–Whitney test was

used, which compares the sum of ranks of each group. We define

the following hypotheses for experience with medical visualization:

H0: The experience with medical visualization has no impact on

accuracy.

H1: The experience with medical visualization has an impact on

accuracy.

The experience with medical visualization had no impact on

accuracy (Z = −0.99, p = 0.34, MedVisExp x̄ = 3.75, s = 0.83;

NoMedVisExp x̄ = 3.40, s = 1.03). Thus, we cannot reject H0 and,

thus, not accept the alternative hypothesis H1. Since only two con-

ditions were tested, no post hoc test and fifth stage is necessary.

6.2. Required time

6.2.1. Differences regarding visualization

We want to analyse whether there is a significant difference between

the three visualization techniques w.r.t. the required time. Box plots

for the required time for VisA, VisB and VisC are provided in Figure 6

(right).

Non-parametric versus parametric tests (Stage 3) Similar to the

previous analysis, we first determine whether there is a statistically

significant difference between tA, tB and tC . We employ the Shapiro–

Wilk test to determine whether the required times are normally

distributed yielding the following significance levels:

r 0.029 for tA,
r 0.007 for tB and
r 0.006 for tC .

All three variables significantly deviate from a normal distribution

(p < 0.05). Therefore, we use a non-parametric test for comparison.

Analysis of number of conditions (Stage 4) Since the independent

variable visualization has the three conditions VisA, VisB and VisC ,

tests for more than two conditions are considered.

Experimental design (Stage 5) For the analysis of accuracy re-

garding the visualization techniques, we use the Friedman test. The

corresponding hypotheses are:

H0: The visualization technique has no impact on the required

time.

H1: The visualization technique has an impact on the required

time.

As a result, the Friedman test reveals no significant difference

(χ 2(2) = 2.8, p > 0.05). Thus, H0 cannot be rejected. Since no

statistically significant difference could be shown, we do not carry

out a pairwise comparison of the required time. Comparing the de-

scriptive data tA, tB and tC , the participants performed the tasks on

average faster with VisC (x̄ = 20.54, s = 8.83) compared to VisA

(x̄ = 23.80, s = 11.06) and VisB (x̄ = 24.04, s = 10.17), respec-

tively. Comparing the mean values of tA and tB , the participants

required more time to fulfill the tasks with VisB .

6.2.2. Differences regarding medical experience

Similar to the accuracy, we want to investigate if there are signif-

icant differences regarding the required time reasoned by medical

visualization experience.

Non-parametric versus parametric tests (Stage 3) and analysis

of number of conditions (Stage 4) Both stages are identical to

the one used for the accuracy (Section 6.1.2). Therefore, a non-

parametric test for two conditions is used.

Experimental design (Stage 5) We define the following hypothe-

ses:

H0: The experience with medical visualization has no impact on

the required time.

H1: The experience with medical visualization has an impact on

the required time.

Participants with experience in medical visualization performed

the task faster (x̄ = 20.67 s, s = 7.23) than participants without ex-

perience (x̄ = 27.90 s, s = 8.02). This was reflected in a significant

result of the Mann–Whitney test (Z = −2.55, p < 0.05) and the al-

ternative hypothesis H1 can be accepted. Since only two conditions

were tested, no post hoc test is necessary.

6.3. Suitability and preferability

We want to investigate if there are significant differences in users’

subjective ratings regarding our three visualization techniques.

The collected data including the mode value, i.e. the answer

(−−, −, 0, +, ++) that was given most often for each question

as well as the amount of participants that provide answer ++ and

+ are shown in Figure 7.
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Figure 7: Evaluation results of the participants regarding suitability and preferability of VisA, VisB and VisC . The mode value, i.e. the answer

that was given most often for each question, is marked. Furthermore, the sum of answers ++ and + is provided.

Non-parametric versus parametric tests (Stage 3) Since the

users’ subjective ratings were taken with a Likert scale representing

an ordinal scale, a non-parametric test is used.

Analysis of number of conditions (Stage 4) Since the independent

variable visualization has the three conditions VisA, VisB and VisC ,

tests for more than two conditions are considered.

Experimental design (Stage 5) Given three conditions and re-

peated measures, a Friedman test is used. We define the following

hypotheses:

H0: Participants perceive the visualizations equally suitable.

H1: Participants perceive the visualizations differently suitable.

H0: Participants like the visualizations to similar extent.

H1: Participants like the visualizations to different extent.

Participants mostly rated VisC with++ for suitability and prefer-

ability, VisA with + for suitability and preferability as well as VisB

with − for suitability and preferability. The amount of participants

rating VisC as suitable and very suitable (i.e. answers are + or ++)

was highest with 27, followed by 21 for VisA and nine for VisB . Sim-

ilarly, the amount of participants rating VisC as preferable and very

preferable (i.e. answers are+ or++) was highest with 29, followed

by 16 for VisA and 11 for VisB . These differences were reflected in

a significant result for both suitability (χ 2(2) = 21.76, p < 0.05)

and likeability (χ 2(2) = 18.37, p < 0.05). Thus, we accept both

alternative hypotheses.

Post hoc test (Stage 6) Next, we compare the visualization tech-

niques to identify the most suitable and the most preferable one. We

apply the non-parametric Wilcoxon signed-rank test. Reasoned by

multiple testing, we use the Bonferroni-adjusted alpha (one-third

of 0.05 = 0.0167). Participants perceived VisC significantly more

suitable than VisB (Z = −3.94, p < 0.0167) and VisA significantly

more suitable than VisB (Z = −2.68, p < 0.0167). VisC and VisA

do not differ in terms of suitability (Z = −1.86, p > 0.0167). Al-

though participants consider VisC and VisA equally suitable for size

comparison of aneurysms, they like VisC significantly more than

VisA (Z = −2.80, p < 0.0167). Moreover, participants liked VisC

significantly more than VisB (Z = −3.66, p < 0.0167). No differ-

ences in terms of likeability could be found between VisA and VisB

(Z = −1.84, p > .0167).

7. Discussion

The quantitative statistical analysis revealed significant differences

of VisA, VisB and VisC w.r.t. accuracy, suitability and likeability. The

pairwise comparison identifies that VisB performed worst regard-

ing accuracy and suitability. For the required time, no significant

differences were revealed. An explanation for this is that the par-

ticipants were instructed to take as long as they need to choose

the larger aneurysm. Although VisA and VisC were better than VisB

and achieved similarly good results regarding these aspects, the

participants liked VisC significantly more. Considering the central

tendency measures alone, VisC is superior concerning all aspects

and is therefore the best visualization technique for comparing two

aneurysm surfaces. A possible conclusion might be that a derived

quantity, i.e. the distance, improves the identification of the larger

aneurysm. Additionally, VisC is the only visualization combining

both surfaces into one. This may reduce the mental workload and

supports perception of differences at the cost of information loss.

However, the results indicate that this loss is acceptable.

Our analysis regarding medical visualization experience showed

interesting results. Although no statistically significant differences

could be identified with or without experience regarding accuracy,

participants with experience performed tasks significantly faster.

This indicates that participants benefit from prior knowledge.

Remarkably, VisB achieved a lower success rate than guessing.

We assume that the participants did not understand the design of

VisB . They might wrongly interpret the ghosting view and did not

focus on the border areas but instead on areas facing towards them.
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These areas are pre-dominantly colour-coded in cyan, since the

AComp aneurysm is always drawn after the orange ARef aneurysm.

Hence, VisB is inappropriate for comparison of aneurysm surface

volumes.

8. Conclusion

The ultimate goal of medical visualization is the application in clin-

ical practice to support diagnosis, treatment planning and fulfill

information needs. Beneath qualitative evaluation, which is primar-

ily applied in visualization [IIC*13], it is necessary to quantify

the improvement of a new visualization technique with measurable

and comparable properties, especially in accordance with the clini-

cal approval procedure. In consequence, researchers should aim at

quantitative evaluations whenever possible. In contrast, usually a

small amount of physicians can participate in a study specialized

in a sophisticated medical application. To overcome this limita-

tion, the tasks of the user study should be simplified such that

they are feasible for a broader range of participants and, thus, a

quantitative evaluation. However, this happens at a loss of practical

authenticity.

Our proposed guidelines allow for the comparative evaluation of

three visualization techniques for the specific application of cerebral

aneurysm volume assessment. For the evaluation of the aneurysm

volume, the visualization should be reduced to basic information, i.e.

no ghosted view techniques should be employed. Providing a colour-

coded surface visualization with quantitative distance information,

such as our new technique VisC , supports the users in detecting the

largest volume. This was reflected by a statistically significantly

higher accuracy and better subjective ratings.

For future work, different approaches can be pursued. The visual-

izations can be improved, for example by including depth cues such

as ambient occlusion. Furthermore, a systematic analysis of the in-

fluence of the aneurysm volume difference could identify whether

a visualization may be well-suited for the depiction of large vol-

ume differences, but rather improperly suited for small differences.

Finally, we are interested in a more comprehensive analysis on the

influence of medical experience. Thus, a more differentiated ac-

quisition should allow for investigation of a possible dependency

regarding accuracy and required time. In the bigger picture, a dis-

cussion of effect sizes for each result would provide the strength of

a significant result and, thus, benefit the comparison of evaluation

results across different user studies.
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