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Abstract

Epidemiological cohort studies investigate the cause and development of diseases
in human populations. Conventional analyses are challenged by recently increasing
study sizes, which is why the incorporation of machine learning gains popularity.
State-of-the-art classifiers are however often hard to interpret – an important re-
quirement in medical applications. This thesis addresses the gap between predictive
power and interpretability in the context of cohort study analysis. Main contri-
bution is the development of an interactive visual interface for the interpretation
and comparison of probabilistic classifiers. It supports the analysis of important
features at both global and individual level, computation of partial dependence,
and iterative construction of meaningful feature groups. To analyse the longitudinal
influence of features, the user can modify the feature set by removing a feature
or replacing its value by a previous examination record. The developed visual
interface is evaluated in two case studies in order to test its effectiveness for the
generation and validation of research hypotheses. The case studies include a real-
world epidemiological cohort study and synthetic data. The results indicate the
interface’s usefulness for epidemiological research, but also reveal necessary further
work for the deployment into a productive environment.
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1. Introduction

Epidemiology is concerned with the occurrence and development of diseases in hu-
man populations. Epidemiological studies are for example responsible for detecting
the relation between smoking and various diseases such as lung cancer and cardiac
infarction, which caused a social and political rethinking of smoking. The standard
epidemiological workflow for the generation and validation of hypotheses is driven
by expert knowledge and statistical methods. With a continuously increasing size
of population studies and comprising attributes, the standard workflow becomes
time-consuming and is likely to miss relevant information.

A remedy to this challenge may be data mining. Here, the population’s data
is analysed automatically by machine learning models. Data mining algorithms
often perform very well, as they are explicitly designed to handle complex, high-
dimensional data. In medical areas such as epidemiology however, it becomes
relevant to understand the classifier’s reasoning behind a prediction. This allows to
validate the prediction or find new casual relation. The requirement of interpretabil-
ity is often neglected in machine learning research, where the primary interest is
setting new benchmarks in terms of classification accuracy and solving increas-
ingly complex problems. As a result, classification models become more and more
unintuitive, causing a growing gap between predictive power and interpretability.

Thus, techniques are required which explain the reasoning behind a prediction to
the user. This demand has recently been recognised by the scientific community,
which is reflected by an increasing number in dedicated publications and new
summits like the IJCAI 2017 Workshop on xAI1. Several political entities accelerate
this development, too: The American agency for advanced research projects for

1http://home.earthlink.net/∼dwaha/research/meetings/ijcai17-xai/, visited 2018-03-15

http://home.earthlink.net/~dwaha/research/meetings/ijcai17-xai/
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defense (DARPA) launched a program on explainable artifical intelligence2, and
the European parliament demands a “right to explanation” in automated decision-
making3.

While some literature interprets complex machine learning models for other medical
areas such as diabetes diagnosis, no work has been done to support epidemiological
research and particularly the analysis of cohort studies. Here, model interpretation
suggests to be very promising, as a classifier may reveal meaningful features (or
feature combinations) by which an expert can generate or validate hypotheses.

This thesis aims to close the gap between predictive power and interpretability
by studying the applicability of visual model interpretation for epidemiological
data. Visual model interpretation improves the process of understanding predictive
models by utilising reasonable visualisations and user interactions, and has been
successfully applied in previous work to other medical areas. The contributions of
this thesis are as follows:

– Identification of requirements for the interpretation in an epidemiological
context. Respective studies share certain characteristics, which need to be
specifically considered in the classification and interpretation.

– Review on recent model interpretation techniques with regard to the degree
of fulfilment of the identified requirements for epidemiological applications.

– Development of an interactive, visual interface which combines several in-
terpretation techniques. It is suited to analyse classifiers trained on cohort
studies by considering the defined requirements. Instead of designing novel
interpretation approaches, the capabilities of existing techniques are leveraged
and tailored to the specific needs of epidemiological applications.

– Evaluation of the developed interface with respect to the usefulness of its
components for understanding the classifier’s reasoning. Validation with an
internal interpretation.

Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides background information on epidemiological research, cohort
studies and explains the need for data mining in this field. It then gives a basic
introduction into classification and presents several classification models.

2https://www.darpa.mil/program/explainable-artificial-intelligence, visited 2018-03-15
3General Data Protection Regulation, Recital 71

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.privacy-regulation.eu/en/r71.htm
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Chapter 3 formulates five requirements, which a model interpretation system in an
epidemiological context should satisfy.

In Chapter 4, an overview to the state of the art in model interpretation is
given. It consists of a theoretical discourse of the objectives on interpretability
and narrows the literature research down to model-independent interpretation
techniques. Special attention is given to interactive visual interpretation techniques.
The chapter concludes, that the development of a novel interface is required in
order to satisfy the requirements of Chapter 3.

A novel interpretation interface is presented in Chapter 5. It explains the single
components of the framework along with their aim to improve interpretability.

Chapter 6 evaluates the proposed interface with respect to its effectiveness. The
evaluation methodology is explained and classification hyperparameters are pre-
sented. Two case studies are performed in order to assess the interface’s quality,
and a discussion on the results is given.

Chapter 7 summarises the motivation, contributions and insights of this thesis and
gives an outlook to potential future work.
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2. Background

This chapter aims to make the reader familiar with the background of the thesis. It
gives an introduction to the area of epidemiological research, explains the need of
data mining in epidemiology, and describes classification as a subfield of machine
learning along with several selected types of classification models.

2.1 Epidemiology

The explanations and definitions given in this section are largely based on the
descriptions given by Friedman [28] and Preim et al. [70].

Epidemiology is a scientific discipline that studies the “disease occurrence in human
populations” [28]. In contrast to clinical medicine, epidemiologists are not concerned
with the treatment of a single patient, but capture analyse the causes and effects
of health-related conditions in populations. Such a population may be for example
the citizens of a certain region, or people who are exposed to presumed risk factors
of certain diseases. This allows to investigate topics like disease outbreaks and
aetiology (i.e. detection of risk factors), health trends, or recommendations for
medical check-ups. Despite not directly curing particular patients, epidemiological
studies strongly contribute to clinical practices by revealing knowledge about
diseases, which can be applied to their diagnosis and treatment.

To understand the relation between a disease and other variables, i.e. potential risk
factors, an epidemiologist usually starts by defining a hypothesis, which is derived
from his expertise or previous studies. The hypothesis is validated by statistical
models, which evaluate the effect of the risk factors to the disease’s prevalence and
incidence. The prevalence is the portion of people suffering from a disease at a
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given point in time; The incidence is the portion of people developing a disease
in a given time period. If the expert does not have data about the investigated
population at hand, he first needs to assemble it. As it is not feasible to examine
the health conditions of all population members, usually a representative, random
sample is drawn.

2.1.1 Common Observations

Population studies often gather many different characteristics describing the popu-
lation members, as this allows to analyse a variety of possible relationships. Some
of the most common characteristics are described in the following:

Socio-Demographic Information Socio-demographic information, usually as-
sessed by personal interviews or questionnaires, provides a basic understanding
of the participant’s background. It not only allows to divide the population
into simple subpopulations, but is often relevant factors for disease occur-
rences. Typical socio-demographic information is the age, sex, marital status,
education or income.

Medical Examinations Simple medical examinations are for example somato-
metric measurements like height and weight, or blood pressure and heart rate.
They give a first assessment of the general health condition of the participant,
but are somewhat limited in their significance.

Laboratory Data More detailed and reliable information is revealed by laboratory
tests. By analysing blood or urine samples for example, experts can determine
the glucose level, a known predictor for diabetes.

Medical Imaging Incorporating image data such as MRI or X-ray to an epidemi-
ological study is timely and financially challenging, but provides high-quality
information in areas like cardiovascular diseases or liver condition.

Clinical History While the previous observation types measure the participant’s
health conditions at the time of examination, the clinical history contains
much information about previous diseases, diagnoses and treatments, by
which the epidemiological expert may explain the current health state.

Of course the observation types used in a study strongly depend on the hypotheses
the expert attempts to investigate.
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2.1.2 Cohort Studies

This thesis aims to interpret classifiers trained on cohort studies. In the following, a
short distinction of different types of epidemiological studies is described, allowing
the reader to put cohort studies into context. Then, difficulties in the conduction
of cohort studies are discussed.

Study Taxonomy

There are two basic approaches to analyse the behaviour of variables: Observational
studies do not intervene into the health conditions of the study participants, but let
“nature take its course”. Changes in a variable can then be explained by changes in
other variables. Experimental studies on the other hand actively intervene. Here,
the experimenter may for example give a drug to a portion of study participants
and observe its influence.

Observational studies can be divided into descriptive and analytic studies, which
again can be subdivided into prevalence, case-control and cohort studies. A
descriptive study performs, as the name already suggests, only a description of
occurring diseases or disease-related phenomena. It gathers information of study
participants by conducting tests (such as those described in the previous section)
and summarises it into a database. Descriptive studies do not attempt to directly
validate hypotheses, but give potential to generate new hypotheses. In contrast,
analytic studies test existing hypotheses and therefore seek to explain a disease.

Prevalence (or cross-sectional) studies analyse the relation between a disease and
other given variables at one particular moment in time in a predefined population.
Case-control studies differ from prevalence studies in the way that they study
the relationship of an existing disease and other variables; Therefore, case-control
studies observe only subjects with the disease-of-interest. Cohort studies follow
a population over a particular time. This allows to monitor the development of
diseases. Here, the same participants are examined multiple times over the time
period of observation.

Challenges

The analysis of cohort studies in order to understand the development of diseases
and temporal influences is promising. However, the conduction process comes
with several challenges, which have an impact on the data quality: (1) Not all
participants are tested on the same variables. This may have different reasons:
Some individuals for example can not be recorded in an MRI, as they have tattoos,
dental braces or metallic implants. Others simply decline some examination types.
Some variables are sex-specific: Women may be asked about menstrual information
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and childbirth status; Men may be tested towards erectile functionality. (2) Not
each examination moment in a cohort study necessarily contains the same attributes.
Some instruments such as MRI or ultrasound may be added in a later moment,
or removed at some point. (3): Often, participants drop out of the observed
population, because they move, decease, or do not react to the epidemiologists’
invitations any more. (4): In interviews and questionnaires, participants tend to
lie, if they are ashamed of their health and social circumstances (e.g. alcohol or
drug use). To guarantee a sufficient degree of statistical reliability, cohort studies
are therefore required to start with a large population sample.

2.1.3 Data Mining in Epidemiology

In their “call for biological data mining approaches in epidemiology”, Lynch and
Moore [61] explain that traditional epidemiology focuses on univariate analysis and
validation of simple hypotheses, which consider only a small number of risk factors.
Recently, due to the complex nature of many diseases, new population studies grow
in size and number of captured attributes. Standard epidemiological workflows
can often not cope any more with the data volume and possibilities of existing
risk factors. Epidemiology is therefore in the need of “more powerful modeling
approaches” [61], which are able to handle large-scale, heterogeneous data.

Several publications follow this argumentation and apply data mining to epidemi-
ology. Buczak et al. [17] for example predict dengue fever with fuzzy association
rule mining; Li et al. [58] use decision trees and classification rules to detect risk
patterns in medical data sets. They argue their choice of classification method with
its interpretability: “In general, medical practitioners and researchers do not care
how sophisticated a data mining method is, but they do care how understandable
its results are”.

Many relevant publications use ruled-based algorithms or decision trees, likely due
to their interpretability. Other model types such as neural networks or support
vector machines are rarely used, despite their predictive performance.

2.2 Classification

Conventional hypotheses-driven epidemiological studies are challenged by increasing
data sizes, which is why recently data mining approaches are incorporated into
the evaluation of population studies. This section explains the fundamentals
of classification, a discipline in data mining. Then, it presents a selection of
classification model types, which will be used in the evaluation.
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2.2.1 Fundamentals

The following explanations are based on Tan et al. [82], if not specified otherwise.

Let X be a set of instances, each described by a set of attributes A, and C be a
set of discrete and mutually exclusive classes. Then classification denotes the task
of learning a function f that maps an instance in X to an element of C1:

f : X 7→ C (2.1)

Such a function is usually called classification model (or classifier). Many ap-
proaches have been developed to automatically determine a classification model,
usually by employing a learning algorithm. Such an algorithm takes as its input a
set of instances with known class assignment, and attempts to identify a model
which fits the relationship between input data and class attribute best. A key
objective of a classification model is generality: Not only is the model supposed to
correctly classify instances of the input set, but also new, unknown instances. A
model which is trained to only predict the instances of the input set well is said to
be overfitted.

Evaluating the Performance

To test the generality of a classifier, the input set is usually divided into a training
set and a test set. A classification model is then developed based only on the
training set. Afterwards, its quality is analysed by classifying the instances of the
test set and comparing the predicted classes with the true class information. Here,
the most popular evaluation metric is the accuracy. It is computed as the ratio of
correctly classified instances and the size of the test set:

Accuracy(X) =
1

|X|
|{x|xY = xC , x ∈ X}| (2.2)

where xY and xC are the predicted and true class of instance x, respectively. While
the model accuracy is simple to determine and very popular in the literature, it is
prone to imbalanced data, i.e. data sets where the classes are not evenly distributed
[54]. As an example imagine a data set, of which 98% of the instances belong to
the negative class, and only 2% belong to the positive class. A classifier always
predicting the negative class would achieve a very high accuracy of 0.98. Such an

1This notation will be used consistently throughout this thesis, and extended where necessary.
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imbalance is not unusual for medical data, as even common diseases are rare when
compared to the population’s health.

McHugh [65] advises researchers in health-related areas to additionally measure
the kappa statistic (or Cohen’s kappa), which takes class imbalances into account.
Kappa quantifies the agreement between two raters (e.g. classifiers) into the interval
[-1, 1], where a value of 0 denotes the amount of agreement that can be expected
from random chance, and a value of 1 denotes perfect agreement. Values below
0 indicate agreement even worse than expected. It is commonly used to compare
a classifier to the ground truth. Kappa compares the observed agreement (i.e.
accuracy) to the expected agreement :

ExpAgreement(X) =
1

|X|2
∑
c∈C
| {x|xY = c, x ∈ X}︸ ︷︷ ︸

instances predicted as c

|| {x|xC = c, x ∈ X}︸ ︷︷ ︸
instances belonging to c

| (2.3)

Kappa(X) =
ObsAgreement(X)− ExpAgreement(X)

1− ExpAgreement(X)
(2.4)

Probabilistic Classification

In contrast to standard classification, where the classification task is to predict
the class of an instance, in probabilistic classification the model computes the
probability of an instance belonging to class c:

fc : X 7→ [0, 1] with
∑
c∈C

fc(x) = 1 (2.5)

Probabilistic predictions potentially offer more information about an instance, as
they allow for a more detailed comparison. Imagine two instances, which are
classified by a non-probabilistic and a probabilistic classifier. The non-probabilistic
classifier predicts that both instances belong to the same class. The probabilistic
model however additionally estimates that the first instance belongs to the predicted
class with a probability of 90%, while the second instance belongs to the predicted
class with a probability of 60%. Hence, the classifier is more certain about the first
instance than about the second instance.

2.2.2 Classification Models

This section introduces five types of classification models. The selection of presented
types is based on their interpretability: Four of the five described types are well-
interpretable or already provide metrics for interpretation. This appears to be



2.2. Classification 11
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Figure 2.1: Simple decision tree

in contradiction with the objective of explaining unintuitive models. However, it
allows to compare the techniques, which will be used in the developed framework,
with model-specific interpretations. The fifth selected model type – neural networks
– are difficult to interpret without proper techniques and are therefore a reasonable
representative of a true “black-box” model.

Decision Tree

A decision tree is a simple and popular model type for both classification and
regression of instances with numerical, categorical or mixed-type attributes. A
decision tree is a tree-like graph, where each node represents a question (decision)
with respect to the value of an attribute, and each edge represents a possible outcome
of this question. An exemplary decision could be: Has the patient diabetes? with
possible outcomes Yes and No. Each leaf of the tree represents a prediction with
respect to the target variable. An instance is therefore classified by – starting at
the root node – following the decisions, until it arrives at a leaf, where a class is
assigned to the instance. Figure 2.1 shows an exemplary decision tree.

Decision trees are induced by a simple, iterative strategy: In each step, the induction
algorithm iterates through the attributes and estimates, how much each attribute
reduces the impurity with respect to the class attribute. The attribute with
the highest impurity reduction (gain) is selected as the next node. Continuous
attributes need to be discretised into intervals before, either manually by the user
or automatically.

Random Forest

While decision trees are a simple, intuitive way to classify instances, they have
several disadvantages. If they do not use any regularisation, they tend to become
very deep, resulting in overfitting caused by high variance [34]. This problem has
been addressed by Breiman [14], who developed bootstrap aggregating (bagging).
Here, instead of a single classifier, an ensemble of classifiers is learned, each on a
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different data subset. An instance is predicted as the class which the majority of
ensemble members supports. Often, decision trees are used as the base classifiers.
Although bagging reduces the variance, it suffers from correlation between the
classifiers [34]. Random forests reduce the correlation between the underlying
decision trees by taking a random selection on the features for each bootstrap
sample, resulting in a better variance reduction.

Gradient Boosting

Another type of ensemble learning is gradient boosting. In contrast to bagging and
random forests, the classifiers are not learned independently and simultaneously.
Instead, a stagewise additive model is learned, i.e. a model created by successively
incorporating “weak” classifiers. Again, decision trees are a common choice as the
underlying classifiers. In each iteration, a tree is added to the model such that
a loss function, for example the mean squared error, is minimised [29]. To avoid
overfitting, a regularisation term is usually used.

Logistic Regression

Logistic regression is, despite its name, not only a regression model, but can be used
for classification. Its goal is the same as that of other regressions techniques: Finding
a function that represents and generalises the data. In contrast to other techniques,
the target variable is restricted to be binary or dichotomous [39]. The idea of
logistic regression is to express the relationship between a set of numerical attributes
and the class attribute by the logistic function (Equation 2.6 and Figure 2.2). The
result of the logistic function can be interpreted as the probability of belonging to
the positive class.

Learning a logistic regression model means to estimate the coefficients β0, β1 . . . βn,
usually via maximum likelihood estimation [39]. Here, a logit transformation is per-
formed first, which allows to turn the optimisation into linear form (Equation 2.7).

f(t) =
et

1 + et
with t = β0 +

|X|∑
i=1

βiXi (2.6)

g(x) = ln

(
f(x)

1− f(x)

)
(2.7)

The formula and descriptions above are related to the standard, binary classification
task. Logistic regression however can also be extended to fit one or multiple logistic
functions to classify data with more than two classes [39]. Due to its simple
mathematical formulation and potential for interpretation, logistic regression is
popular among scientists in various fields, including epidemiology [48].
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Figure 2.2: Logistic function

Neural Network

Neural networks are inspired by the human nervous system. They consist of several
units, the neurons, which are grouped into layers. A neuron processes information
with an activation function on their input and translates the output to the neurons
of the next layer. The output of the last layer then determines the classification. A
network consists of at least two layers: One input layer and one output layer, with
potentially several so-called hidden layers in between them. To fit a neural network
to a classification problem, the weights of the connections between the neurons
are adjusted. This is done by gradually propagating the error, i.e. the difference
between output and expected output, back through the network [53].

2.3 Terminology

The thesis at hand covers aspects of epidemiology, machine learning, statistics and
visualisation. This interdisciplinarity comes with a pitfall: While studying related
publications of the different scientific communities, as well as in discussion with
experts, it became apparent that there is sometimes no agreement on terminology.
Sometimes, communities use different terms, which have essentially the same
meaning, or where the difference is not relevant in the context of this thesis. On
the other hand, some terms are shared by several communities, but differ in their
meaning depending on their context. In the following, some of the most important
terms are defined and explained for the given context. Note, that this glossary
does not attempt to be complete with respect to the technical vocabulary used in
this study, but is only concerned with terms that may cause misunderstanding or
confusion to some readers.

Prediction and Classification

The definition of a prediction is controversial. Generally, it denotes the assignment
of a missing value to an instance, based on domain knowledge (e.g. a learned
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model). Some authors distinguish a prediction from a classification in terms of the
target attribute: Classification assigns categorical values, prediction continuous
values [33]. Other authors use prediction in the context of time series and streams,
where future events and conditions are estimated, such as in weather forecasting [5].
This thesis however is neither concerned with future events nor regression tasks,
but only classification. Thus, the terms prediction and classification will be used
interchangeably, if no other context is specified.

Attribute and Target Attribute

An attribute is a describing property of an instance. In an epidemiological study
for instance, each study participant is characterised by various properties such as
age, sex or blood pressure. In machine learning, attributes are also denoted as
feature, predictor or simply variable. In the context of regression, attributes are
usually called covariates, explanatory variables or independent variables [39].

In a prediction task, each instance is assigned a value, which belongs to the target
attribute. Again, different terms can be found, such as class, label or output
attribute. In regression, the term dependent variable is popular.

Binary, Multi-Class and Multi-Label Classification

The simplest scenario in classification is a binary classification. Here, the set of
classes only consists of two elements, often denoted as the positive and negative class.
A generalisation is multi-class classification. Here, the target variable may contain
an arbitrary number of elements. Another variant is multi-label classification, which
drops the constraint of labels being mutually exclusive. Hence, an instance may be
assigned to multiple classes.

Interaction

Epidemiological studies often analyse interactions. Here, an interaction exists,
if a variable’s value may “depend in some way on the presence or absence of
another [variable]” [86]. In computer science, the term interaction is often used on
the context of human-computer interaction or interactive systems. The different
background of this term has previously led to some confusion in discussions2.

A clear explanation of the term seems to be necessary for this thesis, as it is
concerned with both contexts: The proposed interactive visual interface aims to
support epidemiological experts in finding feature interactions. In the following,
the term interaction is used to describe human involvement in a visual interface.
The dependence between variables is instead denoted as feature combinations.

2Bernhard Preim, personal communication, 2017-10-26.



3. Requirements

The interpretation of classification models learned on epidemiological data requires a
consideration of several characteristics. Before reviewing the related work on model
interpretation, it is necessary to make oneself familiar with these requirements in
order to discuss properly, how existing approaches can help.

Requirement 1: Handle multivariate, heterogeneous data sets .
Epidemiological studies contain information on the background and the health
conditions of their participants. Study members may be characterised by various
factors, such as socio-demographic factors, medical examinations or laboratory
data. For a single individual, dozens or even hundreds of features may be collected.
Hence, an analytics tool working on such data needs to be reasonably scalable to a
high number of attributes per instance. Furthermore, the collected features may
contain binary (e.g. sex), real-valued (e.g. age) or categorical (e.g. education)
information.

Requirement 2: Support longitudinal features .
In cohort studies, participants are repeatedly examined over time, in order to
observe their development. This results in multiple values per attribute, one for
each examination moment. This information needs to be considered, especially in
distinction to values of other attributes.

Requirement 3: Be independent in the choice of the used classification model .
Data-driven methods for epidemiology use a variety of machine learning models,
such as decision trees, neural networks or support vector machines [42]. To make
an interpretation tool applicable to many epidemiological experts, it should not be
restricted to a certain type of classification model.
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Requirement 4: Allow multi-class classification.
Epidemiological studies are not restricted to binary classification, but often investi-
gate problems with multiple outcomes, e.g. diabetes type detection [42].

Requirement 5: Provide a visual model interpretation system.
Krause et al. [49] plead for using visual analytics in model interpretability for two
reasons: (1) Humans are better than machines in solving some tasks, and (2) human
understanding and interpretation is desired. A more theoretic argumentation is
given by Weld and Bansal [88]. They encourage the development of interactive
explanation systems, as they allow follow-up questions and actions of the user
and thus enable a “dialogue” between the user and explainer. This suggestion is
supported by research in psychology, which shows that an explanation is most
effective in a conversation between explainer and explainee [66].



4. State of the Art in Model
Interpretation

Machine learning has recently led to dramatic success in various applications such
as image classification [52], epidemiology [68], or winning complex board games
against human champions [76]. With over 500 journals and yearly conferences1, it
is one of the most dynamic research areas not only in classical computer science,
but also many applied disciplines benefit from analysing large amounts of data.

Especially in those applied areas, a key requirement is being able to interpret the
data mining system. A physician, whose machine learning model has classified a
patient to suffer from cancer, needs to scrutinise and justify this diagnosis, before
any treatment can be started. The ability to explain a prediction is therefore
a highly desired feature for a decision-assisting system [13]. Unfortunately, this
aspect is often neglected in new advances in machine learning, as the primary
interest is only to push towards a higher accuracy. New state-of-the-art models
become hard to interpret properly, causing a gap between prediction accuracy and
interpretability [54].

By now, the need for explainable artificial intelligence has been acknowledged by
the scientific community, and an increasing number of research groups dedicate
their work to close the gap between accuracy and interpretation in machine learning.
This chapter aims to give an insight into the different aspects of model explanation
and discusses, which techniques are appropriate for the topic of this work, and which
are not. Due to the extensive literature on the investigated topic, this overview
does not attempt to be complete, but only highlights the most relevant work. For

1http://www.scimagojr.com/journalrank.php?category=1702, visited 2018-03-13

http://www.scimagojr.com/journalrank.php?category=1702
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a comprehensive survey on model interpretation, the reader may be referred to
Guidotti et al. [32].

4.1 Objectives of Interpretability

Before an overview of existing work in the area of model interpretation is presented,
it may be worth to clarify what interpretability in the context of data mining means
and what its objectives are. Doshi-Velez and Kim [24] define interpretability as
the “ability to explain or to present [a machine learning system] in understandable
terms to a human”, and state that it is used to confirm other desiderata. A list of
such desiderata is given by Lipton [59]:

Trust Trust is often defined as the confidence that the model performs well. The
performance of a model is usually quantified on hold-out data tested on the
learned classifier. However, the resulting measures are prone to the data being
biased. To build trust into a system, it might be therefore interesting, too, to
understand why examples are classified correctly or why certain mistakes are
made.

Informativeness The purpose of using data mining is to gain useful information
about instances. While this is mainly done by computing a prediction, other
information may be equally relevant, such as (not) similar instances, outliers
etc. As such information is often not provided by the model itself, it can be
mined by interpreting the model.

Causality Machine learning models do not find causal associations, but only
correlations and data-based associations. However, by interpreting a model,
domain experts may generate or find evidence for a hypothesis. Here, the
motivation is to use the ability of classifiers of finding complex feature inter-
actions that are hard to find in the data itself. Supporting epidemiologists in
inferring and validating causal relationships in cohort studies is the motivation
of this thesis, which is why causality may be seen as the main desideratum in
this work.

Fair and Ethical Decision-Making Of special interest for consumer advocates,
politicians and ethicists is to ensure that automated decision-making follows
ethical standards. Model interpretation can for example help to understand,
if the classifier has any bias towards any ethnicity or gender.

Transferability In real-world applications, classification models are learned with
the purpose of being deployed later into a productive system, where it has to
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classify new, unknown instances. If the learning data is biased, or the real-
world data alters, the classifier may lose its predictive power. Transferability
ensures that the model is robust and general enough to withstand a slightly
changing environment. Model interpretability can help to investigate whether
the classifier has achieved the desired generalisation or not.

Note that this list of desiderata is not complete. Certain applications may have
different or additional objectives, for example privacy in a data protection setting.
Generally, it can be stated that interpretability is needed wherever the sole predic-
tion is incomplete for satisfying the objective, i.e. where a gap between the formal
error optimisation and the original application purpose exists.

4.2 Dimensions of Model Explanation

Existing approaches for the explanation of classification differ in several dimensions:
Some are only designed for specific model classes or data types, some require the
model to be already learned, etc. This section introduces the different categories of
model explanation and discusses, if they are applicable for the scope of this thesis.

Transparency vs. Post-Hoc Explanations

Lipton [59] distinguishes techniques by whether they try to improve the trans-
parency of a prediction model, or give post-hoc explanations. Here, transparency
is considered as the understanding of how the mechanism behind a model works.
Such transparency can be achieved on different levels: The whole model can be
understood (simulatability), single components like the neurons in a neural network
can be understood (decomposability), or at least the learning strategy can be
understood (algorithmic transparency). Post-hoc explanations on the other hand
extract, as their name already suggests, information from an already-learned model.
They do not elucidate how the model mechanism works, but instead look for other
useful information. Post-hoc explanations can for example compute the importance
of a feature for the prediction, deliver similar instances for a given prediction, or
visualise the classification space and relevant areas therein.

Model-Gnosticism

Another way of classifying model interpretation techniques is to differentiate,
whether they have knowledge about the internal algorithmics of a model or not
(model-gnostic vs. model-agnostic explanation). A model-gnostic explanation has a
significant advantage over a model-agnostic explanation, as additional knowledge
about the prediction process is available. A popular example for model-gnostic
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explanation is the Neural Interpretation Diagram, a visualisation of neural networks,
where the edge thickness and shading depends on the edge weights [69]. In an
agnostic setting, the model is treated as a black-box, where only input and output
can be observed. Any information about the model can therefore only be obtained
by interpreting the changes in the output for certain input. This comes with
a benefit: Model-agnostic approaches can be easily added to, exchanged in, and
removed from a data mining pipeline, as they can be treated like an abstract module.
A common example of model-agnostic techniques is to quantify the importance of
features to the prediction.

These two ways of dividing interpretation techniques into groups correlate strongly
with each other. Giving transparency to a model requires knowledge about its
mechanism; Techniques aiming for transparency are therefore model-gnostic. For
the same reason, model-agnostic strategies can only give post-hoc explanations,
as they are only able to observe the output of a learned model and cannot look
into it. On the other hand, model-gnostic approaches can also aim for post-hoc
explanations and vice versa.

Explanation Scope

Another dimension to be considered is the scope of explanation. A method may
either attempt to explain the whole model, allowing the interpretation of all inputs
and outputs. This is called global interpretability. In other cases, a method explains
the logic behind the prediction of a single instance, i.e. allows for a local (or
individual) interpretation.

Data Type

Some methods target specific types of data. Several publications investigate for
instance, which regions in an image are decisive for a prediction [22], others are
concerned with text mining [63]. For tabular data, methods may be restricted to
binary data, while others support both continuous and categorical data.

4.3 Model-Agnostic Interpretation

This thesis does not intend to restrict epidemiological experts in their choice of
the used data mining technique, as stated in Requirement 3. Instead, it aims to
support an expert in understanding the prediction model’s outcomes, regardless of
the chosen model type. Hence, the literature review will focus on model-agnostic
interpretations. Furthermore, Requirement 1 demands the capability of handling
heterogeneous data, as cohort studies contain various attributes. For simplicity, it is
assumed that this information is processed to raw, tabular data. Hence, publications
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only targeting image or textual data are not introduced. Requirement 4 asks for non-
binary classification: Some of the methods in the following overview are originally
applied to binary classification, but can be adjusted to the multi-class setting.
Section 4.4 addresses interactive frameworks, as stated in Requirement 5.

The overview is divided into four categories, depending on the underlying funda-
mental idea of explanation. Feature importance methods analyse, how a single
feature contributes to the prediction(s). Another concept is to find the optimal
feature grouping in a data set. Other approaches again explain a classification or
classification space by surrogate models, often rules or decision trees. Few pub-
lications consider incorporating the user into the analysis process by suggesting
interactive visual analysis.

4.3.1 Feature Importance

One of the most popular ideas to gain understanding of a classification model
is to analyse how important a feature is, i.e. how much the model relies on its
value during the prediction process. This information is highly relevant in many
applications: Medical experts may detect critical health risk factors; Advertisement
companies may conclude, which information about consumers explains their shop-
ping behaviour best; Car salesmen may understand, which car property is the most
critical to the customers, etc.

Partial Dependence

The relationship between the value of an attribute (or subset of attributes) and the
target value, also known as partial dependence (PD), has been first computed and
visualised by Friedman [29]. Let S be a subset of the attributes in a dataset, S ⊆ A,
and let R = A \ S be the complementary subset, i.e. the remaining attributes.
Moreover, let f be a binary, probabilistic classifier. The partial dependence of
subset S is the expectation E over the marginal distribution of the complement
subset R. In other words, it is the prediction probability of an instance x with a
fixed value S = s, integrated over all possible values of R:

PDS(s) = ER [f(x← S = s)] =

∫
f(x← S = s)dR (4.1)

As iterating over the marginal distribution is not computable in reasonable time, a
Monte-Carlo approximation is performed, where the PD value is estimated as the
average over all instances in the data:

P̂DS(s) =
1

|X|
∑
x∈X

f(x← S = s) (4.2)
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Figure 4.1: Partial dependence plots. Grey dots represent the classifier results.
(a): The PD correctly captures the relation between feature value and prediction
probability. In (b), two subpopulations exist, but are averaged out in the PD. (c):
An ICE plot preserves the subpopulations.

The values s are determined by sampling from the value range of S. The results
are visualised in a line chart called partial dependence plot (PDP). Two examples
are shown in Figures 4.1(a) and 4.1(b). Originally applied to gradient boosting
classifiers, the concept of a PDP has been adopted to various other classification
techniques, most famously random forests [26].

Goldstein et al. [31] argue that a PDP does not work well if the investigated
variable contains subpopulations, as the averaging removes such information (see
Figure 4.1(b)). Their extension, individual conditional expectation (ICE) plots,
replaces the average partial response curve by one curve for each input (see Fig-
ure 4.1(c)). As pointed out by Krause et al. [49, 50], ICE plots are prone to visual
clutter. For the basic PD, they present an improved sampling technique which takes
the feature value distribution into account. Apley [7] proposes another type of visu-
alisation called accumulated local effect (ALE) plot, which is less computationally
intensive than a PD plot and avoids the problem of depending variables.

Line charts like PDP, ICE or ALE all share a major disadvantage: They scale
badly, if one wants to investigate not only the impact of one feature, but multiple
features simultaneously. While it is still possible to display the interaction of two
features in a three-dimensional surface plot, the visualisation of more than two
features becomes difficult and unintuitive. Nonetheless, partial dependence plots
are very common for a first analysis of a classifier’s reasoning and often found in
implementations and scientific studies.

Global Importance Values

The aforementioned approaches are qualitative measures for the importance of a
feature; The interpretation of the resulting curves is left to the analyst. If the feature
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importance computation is part of an automated analytics pipeline and needed for
subsequent stages like feature selection, it may however be necessary to provide a
measure that quantifies the global impact of a variable. A possible solution for this
problem is a sensitivity analysis, which studies the relation between the input’s
uncertainty and the uncertainty in the classification output [32, 75]. Here, the
classifier’s response to a varying input (e.g. the partial dependence) is aggregated
to a single value by applying a sensitivity measure, for example the output range
or variance. Sensitivity analysis has been used to explain black-box models by
Cortez and Embrechts [19, 20], but is also applied to feature selection in an iterative
optimiser [27]2. Lemaire et al. [57] state that sensitivity analysis is misleading, if the
sensitivity response is not monotonous. They propose an importance measure that
takes the integral of the response function and the empirical probability distribution
of the variable into account.

Other studies criticise that only the direct feature influence is measured, but not
the indirect influence, which additionally indicates the dependence between features
[1, 79, 89]. As an example, one may consider a classifier that decides on granting a
housing loan or not. While a direct feature importance measure could suggest that
an applicant’s race is not relevant to a decision, an indirect importance measure
may reveal that the property’s zipcode correlates with the race. To compute this
influence, one can either iterate over all feature combinations (marginalise) [79, 89]
or impute a feature from the remaining features [1].

Local Importance Values

Most of the publications described above address the overall importance of attributes
in the model’s decision process. For an expert it is however often equally relevant
to understand, which features contribute to the prediction for a single instance, e.g.
a patient. Robnik-Šikonja and Kononenko [74] observe how a binary prediction
probability changes if a feature Ai is ignored by the classifier. First, the “absence”
of the feature x \ Ai is approximated by cloning the inspected instance, each with
a different value of the investigated feature, and weighting the prediction results
with the probability of the replacement value:

f(x \ Ai) =
∑
a∈Ai

f(x← Ai = a)P (Ai = a) (4.3)

2Feature selection aims to reduce computational costs and improve the classifier quality by
removing features from the data before the learning phase, usually by detecting highly correlated
attributes or attributes that do not explain much variance. In contrast, feature importance
analyses, which features are relevant to the classifier after it has been trained.
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Numerical values can not be directly processed by this technique, but are discretised
into intervals beforehand. After determining the “ignoring effect”, the prediction
difference between original probability and ignoring probability is computed. The
authors propose three different ways of computing this difference: The direct
probability difference (Equation 4.4), the difference in information (Equation 4.5),
or the weight of evidence (Equation 4.6). Thus, the maximum difference depends
on the original prediction probability.

predDiffi(x) = f(x)− f(x \ Ai) (4.4)

predDiffi(x) = log2 f(x)− log2 f(x \ Ai) (4.5)

predDiffi(x) = log2(odds(x))− log2(odds(x \ Ai)) (4.6)

with odds(x) = f(x)/(1− f(x))

The resulting importance values are displayed in a horizontal bar chart called
explainVis, as shown in Figure 4.2. In a follow-up study, Štrumbelj et al. [79]
address the indirect influence of a feature by marginalising it, i.e. iterating over the
power set of all feature combinations. As the computational costs grow exponentially
with an increasing number of attributes, reasonable sampling and approximation
schemes become necessary [77, 78].

Another way of formalising the feature importance is from a game-theoretical point
of view. Here, the Shapley value determines how much a player contributed to a
coalition and assigns his share of the game’s output. The contribution of a player
is defined as the difference in the game output with and without the player. Again,
the challenge is to find a good approximation. Štrumbelj and Kononenko [77]
estimate the Shapley value using Monte-Carlo simulation; Lundberg and Lee [60]
use weight kernels and linear regression.

4.3.2 Feature Grouping

Henelius et al. [35] aim to find the optimal feature grouping of a learned classifier
as an approach to detect meaningful feature combinations. Starting with a group
containing all features, their algorithm GoldenEye iteratively constructs a solution
tree by removing one feature at a time from the group and measuring the impact
to the prediction quality. If the quality drops below a threshold, the tree branch
is exhausted. The final group is the best group among the leaves. An exemplary
grouping process is shown in Figure 4.3. Once the final group is discovered, the next
best group is determined from the remaining attributes. The prediction quality
of a grouping is computed by within-class random permutations: All features of
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Figure 4.2: ExplainVis plot [74] of a classifier predicting the survival of a Titanic
passenger. Blue bars represent the individual feature importance, green bars the
average feature importance. The left axis spine displays all available feature; The
right spine shows the corresponding values for the individual. A bar in right
direction indicates a feature’s contribution towards a survival, and vice versa.

the same group are permuted mutually with respect to the predicted class. The
effect of the grouping G is then characterised as the fidelity, which is the fraction
of matching predictions between the original (unrandomised) data set X and the
randomised data set X∗G:

fidelity(X,X∗G) =
1

|X|
|{i|f(xi) = f(x∗G,i), i = 1, . . . , |X|}| (4.7)

Figure 4.3: Illustration of the grouping process in GoldenEye. For the threshold
∆ = 0.8, the best group is {a,b}. Visualisation inspired by Henelius et al. [36].
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Table 4.1: Within-class permutations. The data set is characterised by the
attributes A = {A1,A2,A3} and class attribute c. (a): the classifier has correctly
learned the relation y = f(A) = A1 XOR A2. (b): A1 and A2 have been permuted
independently, causing mistakes in the new predictions y∗ (circled instances). (c):
permuting the attributes together preserves their relationship.

(a) Original Data

c y A1 A2 A3

− − 0 0 0
− − 0 0 1
− − 1 1 0
− − 1 1 1
+ + 0 1 0
+ + 0 1 1
+ + 1 0 0
+ + 1 0 1

(b) Randomised

y y∗ A1 A2 A3

− ⊕ 1 0 0
− ⊕ 0 1 1
− − 0 0 0
− − 1 1 1
+ + 0 1 0
+ 	 1 1 1
+ + 1 0 0
+ 	 0 0 1

(c) Randomised

y y∗ A1 A2 A3

− − 1 1 0
− − 0 0 1
− − 1 1 0
− − 0 0 1
+ + 0 1 0
+ + 1 0 1
+ + 1 0 0
+ + 0 1 1

An example of within-class permutations is shown in Table 4.1. In a follow-up work,
Henelius et al. [36] replace the fidelity measure by correlation goodness, as fidelity is
susceptible to class imbalance. Here, correlation goodness is the “similarity between
the predicted class membership probabilities of the original and the randomized
datasets”. No other work has been found that specifically searches for meaningful
feature combinations.

4.3.3 Surrogate Models

Some authors propose to reproduce the behaviour of a non-interpretable classifica-
tion model by another, interpretable model or representation. These alternative
representations are called surrogate models.

Local Interpretable Model-Agnostic Explanations

Ribeiro et al. [72] introduce local interpretable model-agnostic explanations (LIME ).
Their assumption is that any prediction space can be locally explained by a linear
model. For a given instance, several perturbed instances are generated (e.g. by
greying out some parts of an image) and weighted by their similarity to the original
instance. Then, a simple interpretable model, for example a linear regression, is
learned on the perturbed instances. This model explains the original instance.
Figure 4.4 shows a toy example for such local interpretation. To gain a global
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Figure 4.4: Toy example of LIME. The red (blue) area represents the space of the
positive (negative) class. An instance, here the bold red cross, is locally explained
by sampling similar instances and weighting them by similarity (here represented by
size). The dashed line represents the locally learned model. Visualisation inspired
by Ribeiro et al. [72].

understanding of the model, a set of diverse and non-redundant explanations
can be picked. LIME has gained much popularity and is implemented in many
programming languages and analytics tools. Ribeiro et al. [73] point out that the
explanations generated by LIME and other local approaches do not sufficiently
inform about their generality, i.e. whether they also apply to new, unseen instances.
In their work, they developed an algorithm that produces anchors. Anchors are
explanations sufficient enough for the prediction. In other words, any instance for
which the anchor holds will be predicted equally.

Rule Extraction

Another common idea is to extract decision rules from a trained classification model.
This approach has become popular especially for specific model types such as neural
networks [6] or support vector machines [62]. A model-agnostic strategy has been
proposed by Kim and Seo [46]. They create a contribution matrix containing the
individual feature contributions by applying LIME. By applying a non-negative
matrix factorisation, the resulting column vector then contains information about
groups of features that simultaneously affect the prediction, i.e. rules. Bastani
et al. [9] approximate any black-box model by a decision tree – a well-interpretable
model. For the extraction, a sample of instances labelled by the trained classifier is
used.

Other work addresses the extraction of rules for a single instance. Turner [85]
designed a model explanation system that assigns a score to an explanation and
uses Monte-Carlo to find an approximately optimal solution. Tamagnini et al.
[81] find explanations for binary-encoded instances by iteratively “removing” one
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feature at a time, until the prediction changes. Here, “removing” is defined as
changing the value of a present feature to not present. This obviously only works
for binary-encoded data. The set of remaining features is then an explanation. The
explanations are visualised in an interactive interface, allowing for more detailed
information.

Case-Based Explanations

Commercial applications often classify new instances by comparing it to similar,
already classified instances. This method, called case-based reasoning (CBR), can
be extended to elucidate the reasoning behind a prediction by naming similar cases
and their difference to the new instance. In their study, Cunningham et al. [21]
conclude that CBR is more convincing than rule-based explanations. Kim et al.
[44] propose a variant of a Bayesian network that explains predictions with cluster
prototypes. However, these approaches are not model-agnostic. To apply the idea
of case-based explanations to any prediction model, one has to find representative
samples of the prediction space. This has been solved in a cluster-based strategy
by Bien and Tibshirani [12]. Kim et al. [45] state that good prototypes are not
enough to explain a model properly. By using the maximum mean discrepancy, a
distance measure for distributions, they not only find appropriate prototypes, but
also examples that are not well fitted by the model, so called criticism samples.
Similarly, Duivesteijn and Thaele [25] are interested in understanding where a
learned model is not working well. Their proposed model evaluator searches for
subsets in the data that interact in an unusual way, i.e. differ from the ground
truth.

A more mathematical surrogate is presented by Baehrens et al. [8]. They create
explanation vectors, which are based on the derivative of the conditional prediction
probabilities. Such vectors can be visualised in a surface plot, allowing to interpret
which regions on the surface have the highest prediction probability.

While a surrogate model may help understanding the general reasoning of the
underlying black-box model, it has several major drawbacks. For one, it often only
correctly predicts the majority of instances, but neglects special cases. For another,
it often simply can not capture the structure of the model space, thus becoming
misleading. Imagine a simple decision tree. The decision function created by this
tree can only contain decision boundaries parallel to an axis. Hence, if the model
space of the underlying black-box model contains diagonal decision boundaries, the
approximation tree will either classify instances incorrectly, or is overfitted. The
domain expert may infer wrong conclusions from this approximation. An exception
of this argumentation is the usage of local surrogates like LIME. They do not suffer
from global approximation, as they only claim to be locally faithful.
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Figure 4.5: Visualisation of classified instances with ModelTracker [4].

4.4 Interactive Visual Analysis

Most of the approaches discussed so far provide concepts or algorithms for automat-
ically computing a measure about how important a certain feature is, which feature
combinations are meaningful, or suggest interpretable surrogate representations.
Only few publications provide interactive visual analysis interfaces, which allow
users to modify feature values or focus on specific regions and immediately see the
results of their interactions in the framework.

Several interfaces can be found that support the user in analysing the general
performance of a classifier. Exemplary, Amershi et al. [4] present ModelTracker,
an interactive visualisation for the analysis of learned binary classification models.
To gain an overall understanding of the model performance, several well-known
evaluation metrics such as the ROC curve and confusion matrix are visualised. For
a more detailed inspection, they show the classified instances as coloured boxes in a
panel, ordered by their assigned prediction probability (see Figure 4.5). Using the
colour coding and hovering over instances, the user can analyse how instances are
classified, which instances are misclassified and find similar instances. Interfaces like
ModelTracker can improve the general understanding in a classification model, but
do not specifically support the user in understanding the reasoning for a prediction.

A more specialised interface is developed by Kulesza et al. [55]. Their interactive
machine learning system explains to the user the reasoning behind a prediction and
allows to manually correct a false prediction. The framework is restricted to text
classification by multinomial naive bayes. It explains a classification by showing
the most influential words and a-priori probabilities using bar and pie charts. An
example is shown in Figure 4.6. Similar work can also be found for other model
types, for example deep neural networks [41]. Such interfaces provide great visual
support for the explanation of classifiers, but rely heavily on their restriction to
certain models and are merely adaptable to other model types.

A model-agnostic visual analytics tool for model interpretation is presented by
Krause et al. [50]: Prospector. It combines multiple new ideas. The partial
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Figure 4.6: Explanation of classifying a message as Hockey [55].

dependence plot is enhanced by a smart sampling strategy and a histogram of the
feature value distribution (see Figure 4.7(a)). It also supports multiple curves per
plot, which enables it for comparison between different models. Using additional
sliders called partial dependence bars, a user can change any feature value of a
single instance and observe, how its prediction and PD changes (see Figure 4.7(b)).
A new local feature importance metric is introduced that measures, where a small
change in the feature value causes a significant change in the prediction. Prospector
is an advanced framework for model explanation supporting both global and local
analysis. However, Prospector’s ability for model comparison is somewhat limited
to multiple curves in the PDP. In addition, for data sets with many attributes
the framework becomes confusing due to the number of partial dependence bars.
Furthermore, Prospector only allows the analysis of binary classifiers.

In another work, Krause et al. [51] introduce a workflow for visual diagnostics of
binary classifiers. Their framework is divided into three areas: A statistical summary
view, a global explanation view, and an instance-level inspector. The summary
view provides general information about the classifier’s performance: A confusion
matrix, ROC curve and a histogram of the prediction score distribution. In the
global explanation view, explanations generated by the procedure of Tamagnini
et al. [81] are displayed along with some statistics such as a confusion matrix.
This panel is shown in Figure 4.8. The most granular inspection of the model is
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(a) Enhanced PDP (b) PD bars

Figure 4.7: Prospector. (a): The PDP uses a sampling strategy based on the
data distribution, as shown in the histogram beneath. (b): Partial dependence bars
allow to inspect the effect of modifying a variable [50].

available in the third panel, the instance-level inspector. Here, an unordered matrix
of all instances and features is shown, allowing to find patterns in items or find
information about misclassified instances. The framework only supports binary
input data and classification.

A visual interface specifically designed for the comparison of classification models
with respect to model interpretation is proposed by Kahng et al. [40]. They argue
that comparing two models just by their overall predictive power, i.e. accuracy or
other metrics, is often too coarse, but only inspecting individual instances is too
time-consuming and not scalable for big data sets. They suggest a compromise
by comparing models on a subset level: The data is split into different subgroups,
for example by age group or sex. The quality of the models is then compared
by visualising how they perform in each subset. The user can specify multiple
and custom subsets, or change the evaluation metrics (see Figure 4.9). The
presented approach is not limited to binary data, but can handle both numerical
and categorical data. It also theoretically supports multi-class prediction, although
this has not been tested by the authors. While the main contribution of it is to
discover well-predictable data subsets, it does not necessarily explain any prediction;
Instead, it could be also categorised as a method for subspace discovery.
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Figure 4.8: Visualisation of binary explanations in Krause et al. [51].

Figure 4.9: Comparison of classification models via subsets [40].
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4.5 Summary

This chapter provided an overview of existing literature in the area of model
interpretation, focusing on model-agnostic interpretation and the explanation of
tabular data, as required by Requirements 1 and 3. Related work is concerned with
assessing the importance of a feature, finding meaningful feature combinations, and
approximating a black-box model with an interpretable surrogate model. While
some previous work is restricted to binary data or binary classification, other
approaches appear to be well-applicable for the interpretation of classifiers trained
on epidemiological data. Visual interfaces for interpretation are rare; They often
only provide a general understanding of the classification performance, or are
limited to certain model types. No work has been found that specifically addressed
the challenge of interpreting data with longitudinal information (Requirement 2).

Summarising these findings, the development of a novel visual interface to specifically
interpret classifiers trained on cohort study data – in order to satisfy the declared
requirements – seems to be justified.
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5. Visual Interface for Model
Interpretation

5.1 Overview

The previous chapter gave an excursus to the research field of model interpretation
and visual interfaces for model interpretation, and discussed that existing visual
approaches do not satisfy the requirements declared in Chapter 3. This work
presents a new visual framework that targets previous shortcomings. Its key
features are:

– Analysis of binary, categorical and numerical features

– Support of longitudinal features

– Classification into binary and multi-class target attributes

– Model-agnostic interpretation at global and local level

– Comparison of two independently learned models

An exemplary overview of the proposed framework is shown in Figure 5.1. As
can be seen, the interface can be roughly divided into four parts, each pursuing a
different objective:

1. The data panel at the top left allows to select two data sets to be analysed
independently from each other, as well as a classification model to be learned
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1

3

2 4
Figure 5.1: Overview of the proposed visual interface. The shown data set is
described in Section 6.2.

on each data set. It supports a detailed selection of the attributes to be
considered in the learning process by giving the user the option to remove
attributes from the data or to replace them by related attributes. Once a
classifier is learned, this panel shows two general metrics about the classifier’s
performance as well as global feature importance scores, and ranks the
attributes based on their scores. If both models are learned, the panel
compares the score rankings with a bipartite graph.

2. The individual importance panel allows for a detailed analysis of individual
instances. It displays all instances in a table and provides a simple filtering
mechanism, including functionality to show only incorrectly classified instances
or instances that were classified differently in the two models. A horizontal
bar chart displays the selected individual’s feature importances per class and
allows to compare them with the mean importances as well as the feature
importances of the other model.

3. The partial dependence panel shows an enhanced partial dependence plot
and a histogram of the feature distribution. It supports the visualisation of
numerical and categorical features, and is suited to multi-class classification
scenarios.
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Figure 5.2: Data selection panel. Left and right area each allow to select a data
set. Its attributes are shown in a list, allowing for modification. After modifying
the data, the user can select and train a classification model.

4. The feature grouping panel contains a novel approach to detect meaningful
feature combinations. A tree view presents the intermediate results of the
analysis and ranks feature groups based on their “combination goodness”.
The user can choose to increase a group by an additional feature or to analyse
other possible groups.

The following sections cover the functionality of the four panels in more detail.

5.2 Data Selection

Amershi et al. [3] state that users like to experiment with the input of a model and
compare the output of multiple models. This not only allows to find the best model,
but also to investigate the change of small modifications in the data. Following
this argumentation, the proposed visual interface provides two widgets, in order to
learn two classifiers on two (potentially different) data sets (Figure 5.2, left and
right area). If not specified otherwise, the following descriptions apply to both
widgets.

At the start of an analysis the user selects a data set. The visual interface supports
any data in tabular form, i.e. binary, categorical and numerical features1. Once a
data set is selected using the upper combo box, its attributes are displayed in the

1Binary features are a special case of categorical features. In the remainder of this work,
descriptions of categorical data include binary features.
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table. The table contains three columns: (1) The Score column displays the global
feature importance score of each feature, once the classifier is learned; (2) In cohort
studies, examinations of certain features are potentially repeated in follow-ups. If
such information is available, the Time column displays the examination that will
be used to train the classifier. By default, the latest examination is chosen. For
features that do not have time-related multiple values, this column is redundant;
(3) The Name of the feature.

Using the list view, the user can inspect the existing features and manually modify
them. The available operations for modification are:

Remove a Feature If the user removes a feature from the data set, the feature
is not given to the classifier and therefore not considered in the learning
process. If the feature has values of multiple examinations, none of them are
considered. This operation may be useful if the user has prior knowledge
about the attribute, or wants to analyse if the classifier can compensate the
missing information using other features. This becomes especially relevant, if
the removed feature is expensive to acquire, for example only via f-MRI.

Replace a Feature If a feature has multiple values from repeated examinations,
the user can choose, which of the values he wants to give to the classifier. In
the current implementation, such related values need to be of longitudinal
nature; The underlying idea however also applies to features which share
another kind of relation with each other. To clarify the usefulness of this
operation, consider a feature which is expensive to acquire. If removing the
feature does harm the classifier’s quality, i.e. can not be compensated by other
features, it may be still sufficient to use the result of a previous examination,
thus saving the efforts and expenses of a fresh acquisition.

To simplify the process of comparing two modified data sets, the data selector
of the right widget contains an additional option to copy the current attribute
information in the left widget and continue with further modifications. Throughout
the framework, a consistent colour coding scheme is used, which allows to ascribe
emphasised rows, lines and bars the respective classifier. The model specified in
the left widget uses blue colours. The model specified in the right widget uses the
complementary colour orange.

In addition to comparing the same data set with different selected features, the
framework also has limited support to compare different data sets. This ability
is intended to compare subsets of data sets with mostly congruent features, for
example male and female members in a cohort. Naturally, not all parts of this
interface support this type of comparison: Analysing the differences between the
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Figure 5.3: Feature importance ranking and comparison of two rankings. The
features of each widget are ranked in descending order by their importance score.
In between the lists are general model quality metrics displayed. A bipartite graph
connects attributes between the ranked feature lists.

models on an individual level is only possible if an individual is present in both
models.

As required by Requirement 3, the framework is model-agnostic and theoretically
accepts any type of classification model. However, several techniques used in
the analysis of feature importances are based on prediction probabilities, i.e. the
probability of an instance belonging to a certain class. As a consequence, the
objective of model-agnosticism has been softened to support any probabilistic
classification model, or models which can simulate prediction probabilities2.

5.3 Model Quality and Feature Importance
Model Quality

Once the classification model is learned, two measures are displayed in the panel,
which allow for a first impression of the general model quality (see Figure 5.3): The
accuracy as the most popular quality metric as well as Cohen’s Kappa score as an
imbalance-aware metric (see Section 2.2.1).

Feature Importance

In addition, the individual and global feature importance scores are computed. To
allow a comparison, the importance scores for global and local importance should

2For example, the non-probabilistic classifier k-Nearest-Neighbour can return prediction proba-
bilities by computing the ratio of each class in an instance’s neighbourhood.
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be computed by the same method. From the literature discussed in Chapter 4,
two techniques have been identified as qualified for this requirement: LIME [72]
and the approach by Robnik-Šikonja and Kononenko [74]. LIME learns simple,
locally faithful models. To get a global understanding of the model’s reasoning, a
set of representative instances may be selected. Preliminary tests showed that the
representative selection for LIME is not computationally efficient enough for the
analysis of complex instance spaces, such as in cohort studies.

The algorithm by Robnik-Šikonja and Kononenko [74] computes individual impor-
tance scores by computing the prediction difference with and without a feature.
They approximate a global importance by taking the average score over all instances,
and compare local and global score in a bar chart. Their application however is
limited to binary classification, which simplifies the averaging process, as only one
score exists per instance and feature. In the multi-class scenario considered in
this thesis, the local feature importance is characterised by one score per class.
Therefore, an additional mean aggregation over all classes is required. Here, the
absolute value of a score is used, as the class average would be mutually eliminated
otherwise. The new formula for computing the global approximate of attribute Ai

is:

globalPredDiffi(x) =
1

|X|
∑
x∈X

1

|C|
∑
c∈C
|predDiffi,c(x)| (5.1)

Robnik-Šikonja and Kononenko [74] propose three different formulas for the predic-
tion differences. A preliminary evaluation of this work did not reveal any notable
qualitative differences between the formulas, which is why the direct probability
difference is used in the remainder of this work (see Equation 4.4). Here, the
maximum importance depends on the original prediction probability, but can not
exceed a value of 1. In follow-up studies, the importance score computation has
been modified to determine the marginal importance, i.e. removing influences of
conditional dependences between features. This extension requires iterating over
the power set of feature combinations, making it infeasible from a computational
complexity point of view.

Comparing Global Feature Importance Scores

Are both classification models learned and the feature importance scores computed,
a bipartite graph visualises the differences in the importance ranking (see Figure 5.3).
Blue lines connect a feature to its counterpart in the other ranking; Features which
are currently not visible in the list are connected via grey, dashed lines. It therefore
provides an intuitive way to get an early overview of the differences between the
models.
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Figure 5.4: Individual analysis panel. Top: A table displays all individuals with
their attribute values. Bottom: An enhanced explainVis plot shows the feature
contributions for the prediction of a single individual.

The bipartite graph is a simple form of parallel coordinates, which have been
already used in the literature to compare time-related ordered data [84]. Other
work specialised on comparing ordered data is space-consuming and requires a
training period to get accustomed with (for example Behrisch et al. [11]), and has
therefore been rejected in favour of the bipartite graph.

5.4 Individual Analysis

The importance score rankings and their comparison allow to understand, which
features contribute to the overall classifier reasoning. As already stated, often a
local inspection is equally relevant to the expert. This is provided in a second panel.
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It consists of two main parts: A table displaying all individuals and a visualisation
showing the individuals’ feature importance scores.

The table at the top of the panel shows each individual in the test set along with its
feature values, its true label and its predicted label. A simple filtering mechanism
allows the user to view only instances above, below or in the range of self-defined
feature values. Additionally, the user can choose to only display incorrectly classified
instances in the table, and instances which are classified differently between the
two learned classification models.

Beneath the table a horizontal bar chart is displayed. Its design is based on
explainVis [74], but has been extended in several ways:

Comparison to the Average and Another Classifier

The original visualisation plots two bars for each feature: The individual’s feature
importance and the average importance. This option is provided in the visualisation
of this work, too. In addition, the user can replace the average importance with a
bar displaying the feature importance in the second classifier. This requires that
both classifiers are learned on the same data set. The comparison enables the user
to analyse, how the classifiers differ on an individual level.

Ordering the Individual Importance Chart

Three ways of ordering the features in the data are available to the user:

Alphabetically This is the original sorting order for the features in the chart. It
allows the user to quickly locate a feature in the graph based on its name.

Feature Importance This allows to directly overview, which features contribute
towards a prediction, which features are not affected or even counteract a
prediction. Additionally, in high-dimensional data sets such as epidemiological
cohort studies, most features are often not used by the classifier at all. Here,
the remaining important features are spread over the visualisation, making
it hard to directly compare them. Ordering features by their importance
prevents this, as it automatically clusters relevant features.

Difference As explained in the previous paragraph, the user can compare an indi-
vidual’s feature importance to the average importance or the other classifier.
By ordering the data by the difference to the average score, features can be
detected that were interpreted in another way for this particular instance
than for others. This may indicate for an outlier or subpopulation.
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Multi-Class Classification

Due to the limitation of the original algorithm to binary classification, the visualisa-
tion is not suited for multi-class settings, as it only shows the prediction difference
with respect to one class. As a consequence, a combo box has been added to select
the class, of which the prediction difference is displayed. While this solution does
not display all given information at once, it may be seen as a step towards visual
inspection for multi-class settings.

Highlighting a Feature

By selecting a feature in the global attribute list (see Figure 5.3), it is highlighted
in the individual importances visualisation, allowing to quickly find the feature.
This is useful in many-variate data sets.

5.5 Partial Dependence
The panels described above allow the selection and modification of data, as well as
the inspection of global and individual feature importance scores. An importance
score itself however does not give an insight into the relation between the feature’s
value and the prediction probability. In Chapter 4, the partial dependence plot
and related charts have been introduced, which visualise such relationship. This
framework uses the basic PDP, as presented by Friedman [29] instead of more
advanced techniques. The partial dependence plot is standard in the literature and
has the advantage of a simple, intuitive computation. Thus, it does not require
intensive training to the expert. Nonetheless, it has been slightly modified to fit
the requirements of this application:

– The PDP supports categorical data by switching to a bar chart whenever a
categorical feature is inspected (see Figures 5.5(a) and 5.5(b)).

– Similar to the individual feature importance visualisation, the PDP comes
with a combo box to select, of which class the prediction probabilities are
to be shown. The user may also see the partial dependencies for all classes
simultaneously. In this case, categorical features are displayed in a stacked
bar chart (see Figures 5.5(c) and 5.5(d)).

– A histogram beneath the PDP shows the data distribution, which gives an
understanding of which values are common, or whether there are outlying
subgroups. This concept is borrowed from Krause et al. [50], but modified to
see only the data distribution of the inspected class (or all classes, if selected).

– Different features can be directly compared in the same chart. This is
motivated by analysing features which share the same unit and range, for
example hormone levels or age-related conditions.
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(a) Continuous feature (b) Categorical feature

(c) Continuous feature, all classes (d) Categorical feature, all classes

Figure 5.5: Available variations of the partial dependence plot and distribution
histogram.
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Figure 5.6: SilverEye visualisation. The goodness at a given feature represents
the model’s fidelity for the group containing the feature and all of its parents.

5.6 Feature Grouping

As argued by Henelius et al. [35], the discovery of meaningful feature combinations
is a desirable ability in interpreting a classification model. Their work finds the
optimal grouping of the features in a data set, but is computationally inefficient in
high-dimensional data sets. To integrate their idea into the framework of this work,
an interactive and iterative approach has been developed. It does not aim to find
the overall best grouping, but tries to find the best group for a given feature. In
reference to the name of the original algorithm, the modified version will be named
SilverEye. It works in the following way:

The original algorithm groups all features together and removes one feature at a
time, until the goodness criterion approximates the naive goodness, where only
singletons exist (i.e. only groups of size 1). In contrast, SilverEye starts at the
naive goodness. For a selected feature Ai, it computes the goodness values for
all possible groups containing Ai and a second feature. All other features remain
as singletons. The resulting values are displayed in a tree structure and can be
sorted alphabetically or by goodness (see Figure 5.6). This way the user can
inspect which features performed well together with Ai. To continue with the
analysis, the user can select a feature Aj in the new tree level, which will cause
the algorithm to compute all goodness values for the group {Ai,Aj} and a third
feature. Alternatively, he can start with a new feature. SilverEye has no termination
criterion, as it is user-driven. Instead, the user may decide himself, if he wants to
look further for more group members or not. Ending an analysis may be reasonable
if the group is satisfied, i.e. the goodness value does not increase significantly any
more by adding a feature. As a hint, the naive goodness value is displayed below the
tree. It should be noted, that SilverEye is based on randomisation. Thus, goodness
values can vary for identical groupings, especially if the classifier does not perform
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well or the test set is small. This also infers that values lower than the naive
goodness may be computed. SilverEye comes also with the advantage of integrating
expert knowledge: The user may reject the best performing attribute in favour
of another attribute, if the best feature is a known redundancy or expensive to
acquire. SilverEye also allows the free choice between exploration and exploitation,
as the user can investigate other features at any time.

The goodness function used in SilverEye is the fidelity, a measure introduced by
Henelius et al. [35]. In GoldenEye++ [36], an alternative goodness metric has been
developed that uses the correlation between probability vectors. However, this is
restricted to binary classification. During the work on this thesis, an extension of
GoldenEye++ for the multi-class scenario has been tested, which compared multi-
dimensional probability distributions instead of single probability vectors based
on distance correlation [80]. Unfortunately, it resulted in a high computational
complexity and is thus not a reasonable choice for the framework.

5.7 Technical Details

The proposed framework has been developed in the script programming language
Python3. Data sets are loaded and managed via pandas4, which supports database-
like and vectorised operations. Additional scientific computations, for example in
the computation of the feature importance scores, are realised via numpy5. The
individual importance bar chart, the partial dependence plot and its histogram
are created via matplotlib6. The available classification models are implemented
with scikit-learn7. An exception is gradient boosting, for which the XGBoost8

implementation is used. The graphical interface is built with PyQt59, a Python
port for the application framework Qt5.

The source code is freely available at https://github.com/tsabsch/vmi. Function-
ality for SilverEye is provided in the goldeneye package, which can be found at
https://github.com/tsabsch/goldeneye.

3https://www.python.org/, Version 3.6
4https://pandas.pydata.org/, Version 0.22
5https://www.numpy.org/, Version 1.14.2
6https://matplotlib.org/, Version 2.2.2
7http://scikit-learn.org/, Version 0.19.1
8https://github.com/dmlc/xgboost, Version 0.71
9https://pypi.python.org/pypi/PyQt5, Version 5.10.1

https://github.com/tsabsch/vmi
https://github.com/tsabsch/goldeneye
https://www.python.org/
https://pandas.pydata.org/
https://www.numpy.org/
https://matplotlib.org/
http://scikit-learn.org/
https://github.com/dmlc/xgboost
https://pypi.python.org/pypi/PyQt5


6. Evaluation

This chapter describes the evaluation performed on the proposed visual interface.
First, it briefly introduces the methodology of evaluating visual analytics interfaces
and provides details to the used classification design. Then, the evaluation is
performed. It consists of two case studies, one being a real-world epidemiological
cohort study, and the other being a synthetic data set. Finally, the results of the
evaluation are discussed.

6.1 Prerequisites

6.1.1 Methodology

The following description on evaluation methodology is based on the explanations
given by Keim et al. [43].

Proper evaluation in visual analytics is challenging, due to the broad range of
aspects that can be evaluated. An evaluation should concern the “assessment of the
quality of artefacts” [43], where artefacts include for example analytics techniques,
models or theories. The key aspects for the quality of an artefact are effectiveness,
efficiency and user satisfaction. In other words: Do the artefacts fulfil their aims
with reasonable resources and meet the expectations of the end user? Evaluating
these aspects is not always trivial: While an evaluation of the effectiveness can be
performed straight forward (Does the technique produce the desired results? ), other
questions are hard to quantify, such as a comparison to existing tools.

Keim et al. [43] introduce several methods for the evaluation of interactive tech-
niques: Quantitative and qualitative methods primarily analyse the effectiveness
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and efficiency of interfaces using controlled test environments. Usability studies on
the other hand analyse the ease of using the interface. Informal evaluations discuss
with users about their experiences with the tools, allowing for feedback.

The novel interface presented in Chapter 5 will be informally evaluated in terms of
effectiveness. Here, the question to be answered is: How useful is the interface for
the generation and validation of epidemiological hypotheses?

To answer this, a real-world epidemiological cohort study is analysed. This simulates
the application of the interface in a productive environment. The steps in the
analysis will be described, and the generated findings about the cohort study
presented. A comprehensive analysis of the real-world data in order to test the
quality of the interface for exploration (e.g. generation of hypotheses) is not feasible,
due to the high-dimensionality of the data. Instead, a second case study on an
artificial data set is performed. This complements an explorative analysis.

A usability study and informal evaluation with an epidemiological expert are not
part of this evaluation. This is due to time constraints, but should be addressed in
future work.

6.1.2 Classification

Classification Models

The presented interface is model-agnostic in theory. As discussed however in the
previous chapter, several techniques require probabilistic classifiers in order to work.
In this evaluation, five classifiers have been implemented and are available for use:
A decision tree, random forest, gradient boosting, logistic regression and a neural
network. A description of these models is given in Section 2.2.2.

All of these classification models require certain hyperparameters, which have been
empirically determined in preliminary tests. As an explanation and review of
all parameters would exceed the scope of this evaluation, they are only briefly
presented in the following for sake of reproducibility:

Decision Tree The algorithm used for the tree induction is CART [16]. To
assess the information gain at each node, the gini split criterion is used. For
regularisation purposes, the tree is restricted to have a maximum depth of
five and at least four samples per leaf. To obtain class probabilities instead
of single predictions, the fraction of instances with the same class within a
leaf is used.

Random Forest Critical hyperparameters for the performance of a random forest
are the number of decision trees and the fraction of features randomly selected
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Table 6.1: Hyperparameters used in the neural network

Parameter Value

Activation function Logistic function
L2 penalty (α) 0.1
Learning rate Adaptive
Number of hidden layers 2
Number of hidden units 20, 4
Solver Adam [47]
Number of epochs 2000

in each data subset. Although a forest is not sensitive to overfitting with an
increasing number of trees, it affects the learning time and should be chosen
carefully. In this evaluation, 100 trees and a maximum fraction of features
per subset of 50% are used.

Gradient Boosting The gradient boosting classifier is built upon 1000 decision
trees. The loss function to be minimised is the probabilistic softmax criterion
[30]. The used implementation XGBoost only supports binary categorical
attributes, which is why categorical attributes are one-hot-encoded.

Logistic Regression The optimisation of the logistic coefficients is done with
SAGA [23] and Lasso regularisation [83]. The inverse penalty factor is set to
C = 1. Equivalently to gradient boosting, categorical features are one-hot-
encoded.

Neural Network Neural networks require various hyperparameters, such as the
number of hidden layers, number of units per layer or learning rate. A list of
the chosen parameters is given in Table 6.1. For parameters not listed in the
table, the default parameters in scikit-learn are used.

Train / Test Split

Once the user has specified his desired data set and type of classification, a classifier
is trained. In before, the data set is randomly split into a training and a test set,
where 80% of the data is used for training and 20% of the data for testing. A
third validation set, which can often be found in machine learning applications for
hyperparameter optimisation, is omitted in this work, as parameter optimisation
is not within the scope of this work. Other common techniques for assessing
the general quality of a classifier, such as bootstrapping or cross-validation, are
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not applicable in this framework, as they average the quality of multiple models.
The proposed interface however analyses a single classification model. To ensure
comparability between learned models, the splitting function uses a constant random
seed. This also contributes to reproducible results. Furthermore, the random split
is stratified with respect to the class, i.e. the class proportions are preserved in
both training and test data.

6.2 Case Study: Study of Health in Pomerania

The first case study interprets a classification model which is learned on a real-world
epidemiological cohort study. The target of the classification is to detect, whether a
study participant has hepatic steatosis (short: HepStea, and common: Fatty liver),
which is an increased fat percentage in the liver. A medical introduction into the
risk factors of hepatic steatosis is for example given by Bedogni et al. [10].

Before the proposed interface is evaluated on the data, a brief overview of the
cohort studies and previous investigations is given, as well as a description of the
preprocessing steps.

6.2.1 Study of Health in Pomerania

The study of health in pomerania (SHIP) is a population-based cohort study.
Designed and managed by the Institute for Community Medicine, University of
Greifswald, Germany, it investigates the health conditions of the northeast German
region Pomerania [87]. SHIP has two main objectives: (1) To assess the prevalence
and incidence of risk factors, subclinical disorders and clinical diseases; (2) To
investigate complex associations among risk factors, subclinical disorders and
clinical diseases.

An outstanding property of SHIP is, that it does not address a specific disease,
but rather generally describes health-related conditions. As a result, the attributes
contained in the study are highly heterogeneous: Acquired features contain, but are
not limited to personal interviews, laboratory tests, ultrasound, dental examinations,
f-MRI and sleep monitoring. Follow-up examinations are performed every five years.
At the time of this writing, SHIP contains the baseline examination SHIP-0, which
was assessed between 1997 and 2001 with 4308 eligible subjects, and two follow-up
examinations: SHIP-1 (2002-2006, 3300 subjects) and SHIP-2 (2008-2012, 2333
subjects). A second cohort called SHIP-TREND has been created from 2008-2011
with an initial population of 4420 [87].
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Previous Studies

The Study of Health in Pomerania has been extensively analysed, for example
with respect to the prevalence of health conditions like overweight, gall stones,
arterial hypertension or hepatic steatosis [87]. At the Otto-von-Guericke University
Magdeburg, Germany, SHIP has been analysed with data-driven approaches and
visual analytics to support epidemiologists in classifying participants and finding
subpopulations. While a comprehensive overview of previous studies would extend
the scope of this section, few approaches may be mentioned which particularly
address the longitudinal nature of the cohort study.

Hielscher et al. [38] propose a mining workflow for longitudinal epidemiological
data. The key of their approach is the generation of sequence features for each
participant. First, they create for each instance and feature a sequence containing
the feature’s values of all examinations, along with the associated class. Then, the
sequences are clustered via DBSCAN. The cluster ID of each sequence is added to
each individual as a new sequence feature. Niemann et al. [68] construct so-called
evolution features to improve a classification task, as they assume that similar
participants evolve similarly. The evolution features are generated by grouping the
participants at each moment on similarity. The clusters and participants are traced
on the time axis, thus capturing their evolution. Then, the cluster membership
information and several cluster properties are added to the individuals as their
evolution features. Mayer [64] presents a visual analytics interface to find and
validate subpopulations. Using a classification rule miner developed by Niemann
et al. [67], he compares the development of a subpopulation to the entire cohort’s
development using line, bar and box plots. This allows for further validation of the
subpopulation’s significance.

6.2.2 Data Preprocessing

The SHIP data used in this thesis consists of 886 participants, and 251 different
features. In order to use it in the evaluation, several preparation steps have been
necessary, which are described in the following.

Several attributes have been removed, which are uninformative for the given
classification task:

– Attributes containing the same information, for example a participants’ age.

– Date and location of an examination.

– Blood withdrawal times.

– Mortality information, such as life duration or main cause of death.
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Table 6.2: Class distributions of SHIPM and SHIPW

SHIPM SHIPW

Class Absolute Relative Absolute Relative

0 198 46 321 70
1 110 26 65 14
2 118 28 74 16

– Attributes containing the status of hepatic steatosis. As the classification
task for this evaluation is to predict HepStea, the data set may not directly
address this condition.

Several participants are not examined on all attributes. To include them in the
analysis, missing values are imputed, i.e. derived from the feature’s distribution,
which is approximated from the remaining participants. For this case study, it is
sufficient to simply use the most frequent item in the feature distribution, called
mode. There are however more advanced (but also more extensive) approaches
available (see for example Alemzadeh et al. [2]).

One of the main considerations in this work is to test, whether using a previous
examination of a value suffices to achieve reasonable classification results. As a
consequence, only features are considered in this work, which have examination
values for all recordings, i.e. SHIP-0, SHIP-1 and SHIP-2.

The target value is computed via the attribute mrt_mean, which contains the average
liver fat percentage in a participant, acquired via an MRI in SHIP-2. Reddy and
Rao [71] explain that hepatic steatosis is diagnosed if the lipid content in the
liver exceeds 5-10% of its weight. Therefore, mrt_mean is discretised into three
classes: Class 0 represents low fat percentage (mrt_mean < 5%), class 1 represents
medium fat percentage (mrt_mean between 5 and 10%) and class 2 represents high
fat percentage (mrt_mean > 10%).

Partitioning

Previous studies detected substantial differences in the class distributions between
the sex [37], which is why the data set is split into two subcohorts containing the
male (in the following denoted as SHIPM) and female study participants (in the
following denoted as SHIPW ), respectively. Table 6.2 shows the class distributions
for both subcohorts. As one can see, male participants are more likely to have fatty
liver than female participants.
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In addition to different class distributions, the sex-specific partitions also differ
from each other with regard to the available attributes. Female participants were
additionally asked about previous pregnancies, menopause-related information and
hormone replacement therapy.

Summary

Summarising the preprocessing steps, the final data set has been partitioned into
two subcohorts: SHIPM contains 426 participants with 42 unique features (each
consisting of three examination values), SHIPW contains 460 participants with 46
unique features (each consisting of three examination values). A complete list of
all features is given in Table A.1.

6.2.3 Evaluation

This section contains an informal evaluation on the interface’s usefulness for analyses
on epidemiological data. An exemplary research question has been formulated,
which is to be answered: How do biomarkers in blood serum influence the prediction
of fatty liver? Are recent laboratory tests necessary?, given that such tests are more
expensive than simple somatometric features or socio-demographic information.

General Classification Quality

As a first step, each classifier is trained on both subsets to determine, which
model works best without further modifications. The attributes are not changed:
All available attributes are used with their latest examination value (SHIP-2).
While the interface is model-agnostic and therefore works on any of the available
model types, the starting point for an insightful interpretation is a well-performing
classifier. Table 6.3 presents the resulting quality metrics. As one can see, the female
population is classifed better by all models, likely caused by the difference in class
distribution. The male population achieves only poor accuracies. Apparently the
data does not contain enough information for the classifier to properly distinguish
the classes. The kappa values estimate the agreements between classifier and ground
truth as being fair and moderate [56], which is a relatively weak result.

It should be pointed out that these classifiers are inferior to the approaches of
Hielscher et al. [37, 38]. However, their algorithms are dedicated to achieve a high
classification accuracy. Contrary to that, this study does not focus on achieving
the highest-ever classification quality, but instead only uses the quality metrics to
get a first general impression.

The best classifier, among both subpopulations, is gradient boosting. In the
following, an exemplary interpretation of this classifier, trained on SHIPW , is
described in order to test the research question.
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Table 6.3: Classification results on SHIP

SHIPM SHIPW

Model Accuracy Kappa Accuracy Kappa

Decision Tree 0.55 0.26 0.62 0.17
Random Forest 0.59 0.33 0.75 0.37
Gradient Boosting 0.62 0.37 0.78 0.44
Logistic Regression 0.56 0.27 0.73 0.31
Neural Network 0.57 0.30 0.71 0.32

Figure 6.1: Global feature importance scores

Feature Importance

Figure 6.1 presents the ranked list of global feature importance scores, which allows
to get a first insight into which features have contributed to the classifier. As
one can see, all importance scores are relatively small. This indicates that the
classifier does not heavily rely on the value of a single or few features, but uses a
variety of contributing factors. The most important features to the classifier are
somatometric features like waist circumference and body mass index, as well as
age and biomarkers in blood serum. This is mostly in compliance to the findings of
Bedogni et al. [10].

Partial Dependence

To gain a further understanding of how the features influence the classifier, the
partial dependence can be used. With respect to the research question on the
influence of blood serum biomarkers, the two most important blood biomarkers
are analysed: Triglyceride (tg_s) and gamma-GT (ggt_s) level. The partial
dependence plot for triglyceride (Figure 6.2(a)) shows that the probability of
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(a) tg_s (b) ggt_s

Figure 6.2: Partial dependence plots of tg_s and gg_t. All classes are displayed.

predicting class 1 increases with an increasing tg_s value, while the probability
for class 0 decreases. Due to an outlier, parts of the PD curve are uninformative.
This sensitivity towards outliers is even more apparent in the PDP of gamma-GT
(Figure 6.2(b)). Here, an outlier removal before the analysis would achieve more
insightful PD plots. It can be seen however, that the a-priori probability of not
having fatty liver prevails (class 0).

Feature Combinations

One of the aims of the proposed framework is to analyse, whether grouping features
together affects the prediction performance. Based on the algorithm GoldenEye,
a user-driven strategy called SilverEye has been developed in order to reduce the
computational complexity. However, in this evaluation no results could be obtained
in reasonable time. This shows that SilverEye is not applicable to data sets such
as SHIPW with 46 attributes. A further analysis of its usefulness had therefore to
be omitted.

Individual Analysis

A promising technique of the proposed interface is to analyse, how single participants
have been classified. Here, especially the investigation of incorrectly classified
instances suggests to be useful. Exemplary, the participant with ID 487 is selected.
She does not have hepatic steatosis, but has been classified as belonging to class 2, i.e.
having a high liver fat percentage. The explainVis plot reveals the reasoning behind
this misclassification: The prediction of class 0 is mostly supported by her relatively
young age and low triglyceride level (age_ship=38, tg_s=0.92). This is visualised
in Figure 6.3(b). In comparison, predicting the participant as having a high liver fat
percentage is mostly carried by a high waist circumference and aspartate enzyme
level (som_tail=109.7, asat_s=0.95). This is visualised in Figure 6.3(a). The
features indicating a high liver fat percentage are considered more important by
the classifier, which likely caused the corresponding classification.
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(a) Class 0

(b) Class 2

Figure 6.3: Feature contributions of participant 487 for classes 0 (a) and 2 (b).

Comparing Classification Models

As has been seen in the global importance ranking as well as in the individual
analysis, biomarkers in the blood serum are relevant to a classifier. It could be
however possible, that the classifier does not rely on these attributes, but can
replace them if they are not available. Thus, a second gradient boosting classifier
is trained, where all blood serum features are removed in before. It turns out that
this model can not fully compensate the loss of the attributes, but still achieves an
accuracy of 0.75 and a kappa score of 0.41. The bipartite graph connecting the
importance score rankings shows, which features gained and lost importance (see
Figure 6.4). The new classifier still uses a participant’s waist circumference as its
most importance feature. The new global importance score of som_tail is more
than twice in comparison to the original model. Other features such as the age
(age_ship) and the total thyroid volume (sd_volg) become more important.

Longitudinal Information

Apparently, the information given in serum biomarkers can not be obtained from
other attributes. Maybe it is however sufficient to use the attribute values of a
previous examination, which could save time and expenses. Thus, another classifier
is learned, where the values for blood serum are taken from SHIP-0. The remaining
attributes still use the latest examination values (i.e. SHIP-2). One could assume
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Figure 6.4: Comparison of importance scores. Left: Blood serum biomarkers are
included in the data. Right: Blood serum biomarkers are excluded from the data.

Figure 6.5: Comparison of importance scores. Left: The most recent values for
blood serum biomarkers are used. Right: The values of SHIP-0 are used for blood
serum biomarkers.

that the classification quality is worse than using the most recent values, but better
than not having the values at all. One could also assume that old blood serum
information is less important to the classifier than more recent laboratory results.

These assumptions can not be confirmed in the evaluation. Using the SHIP-0
values for all serum attributes reduces the accuracy to 0.72 and kappa score to
0.31. The most important features did not change much (see Figure 6.5); som_tail
however gained importance. A more detailed evaluation of the differences in the
global importances, as well as between the partial dependences, is omitted for
sake of brevity. Instead, the trained classification models are exemplarily used to
investigate differences on an individual level:

Participant 637 does not have hepatic steatosis. This has been correctly predicted
by the original classifier (using the latest blood serum values), but is incorrectly
predicted by the second classifier (using the blood serum values of SHIP-0), which
classifies the woman as belonging to class 2, i.e. having a high liver fat percentage.
Using the explainVis plot, this difference can be explained: The second classifier
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(a) Old blood serum values

(b) Recent blood serum values

Figure 6.6: Comparison of feature contributions towards class 2 for participant
637. (a): Old blood serum values. (b): Recent blood serum values.

justifies its prediction with the participant’s high triglyceride and gamma-GT levels
in SHIP-0 (see Figure 6.6(a)). These levels however changed over time, and are in
SHIP-2 at a lower, normal level (see Figure 6.6(b)). Here, one could argue that
only using serum levels from ten years ago is not sufficient to classify, whether the
participant has hepatic steatosis today.

6.2.4 Comparison with Internal Interpretation

The classification models presented in Section 2.2.2 and implemented in the frame-
work all offer – with exception of the neural network – some internal interpretation,
i.e. interpretation methods inherently contained due to the model design. A
comparison of the interface’s findings to the findings of the internal interpretation
allows for an additional validation. Furthermore, the internal interpretation is
likely applied in a real-world settings, where no sophisticated model interpretation
is used. It may be therefore regarded as the “status quo”.

The model used in the evaluation of the previous section was gradient boosting, a
tree-based ensemble classifier. Ensembles are more difficult to interpret than single
models, as there are many classifiers in the “black box”, all predicting independently.
However, multiple strategies have been developed to rank the features based on
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(b) No blood serum biomarkers

Figure 6.7: Ten most important features in SHIPW , as computed internally by
the gradient boosting classifier.

their importance to the boosting ensemble1. For one, it can be measured how often
a variable has been selected for splitting in a tree, or how much it reduced the
impurity. These values are then averaged over all trees. For another, one can use
the data not used for building a tree (out-of-bag samples) as a test set for said tree.
The importance of a predictor is then the prediction difference between the tree
and a randomly permuted tree, tested on the out-of-bag samples [15].

XGBoost offers several of these method to assess the feature importance. Here, the
relative number of times a feature is used for splitting is computed. Figure 6.7(a)
shows the ten most important features in SHIPW , Figure 6.7(b) shows the ten
most important features, if blood serum biomarkers are removed. As one can
see, roughly the same attributes are considered as important. Several differences
exist however: For example, sd_volg has not been considered as a meaningful
attribute by the framework, but is estimated as the most important attribute
by the classifier. Notable is also som_tail: The proposed interface assigns it an
importance score of 0.17, if no blood serum features are used. This is almost thrice
the importance of the second-most import feature. The internal interpretation also
assesses som_tail as the most important feature; However, the difference to the
second-most important feature is much smaller.

1The following explanations also apply to other tree-based ensembles, for instance random
forest.
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6.3 Case Study: Synthetic Data

In the previous section, the proposed interface has been evaluated towards its
usefulness to answer a given research question. Another application of the framework
is its ability for exploration, i.e. generation of new hypotheses. Here, an evaluation
on SHIP would be exhausting, due to its size and heterogeneity. Instead, a
synthetic data set will be introduced. The evaluation task will be to get a general
understanding of the influence of the features, and formulate new hypotheses if
possible.

To simulate an authentic evaluation setting, the data set has been created by a
scientist who is not familiar with the characteristics of the visual interface and all of
its functions. This avoids the creation of data specifically fitted to the framework’s
properties. In contrast, the evaluator is familiar with the visual interface, but has
no prior knowledge about the data.

Similar to the case study on SHIP, the following evaluation first gives a description
of the data, then the evaluation steps are presented.

6.3.1 Data Description

The data set consists of 1000 observations and 10 attributes named V1 to V10. V10
stores the binary class information, i.e. is either 0 or 1. As a convenience it is
renamed to Label. The remaining attributes are numerical. Other information,
such as relations between the attributes, is not known. The data is almost perfectly
balanced with respect to the class attribute: 512 instances are labelled as positive
(Label = 1) and 488 as negative (Label = 0). Each feature contains only one
value (in contrast to cohort studies, where multiple values exist due to repeated
examinations).

6.3.2 Evaluation

General Classification Quality

Equivalently to the evaluation of SHIPW , the first step in this evaluation is to
train all classifiers on the data set, to analyse which classifiers perform well and are
therefore worth interpreting. As can be seen in Table 6.4, the tree-based models
can be trained perfectly on the data and predict the test instances without any
error. The logistic regression and neural network are almost perfect, too, and fail
on few instances only.

For the remainder of this evaluation, the decision tree is used as the selected
classification model, due to its perfect score and simplicity.
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Table 6.4: Classification Results on the synthetic data

Model Accuracy Kappa

Decision Tree 1 1
Random Forest 1 1
Gradient Boosting 1 1
Logistic Regression 0.98 0.96
Neural Network 0.97 0.95

Figure 6.8: Global feature importance scores

Feature Importance and Partial Dependence

In Figure 6.8, the resulting global feature importance scores are displayed. Ap-
parently, the classifier only uses two features in its prediction process: V3 and V9.
To understand, in which way these features influence the model, one can use the
partial dependence plots. Figure 6.9 shows the PDPs for the two relevant features.
Here, it becomes obvious that V3 influences the prediction in the following way:
V3 < 7000→ Label = 0; V3 > 12, 000→ Label = 1. In the interval [7000,12000],
V3 does not influence the prediction. For V9 can be said that a positive classification
is more likely, if it is at least 0.

(a) V3 (b) V9

Figure 6.9: Partial dependence plots of V3 and V9. All classes are displayed.
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Figure 6.10: Comparison of importance scores. Left: All features are used. Right:
V3 has been removed.

Feature Combinations

The SilverEye panel allows to analyse, whether any feature combinations are
exploited by the classifier. This is – in contrast to the evaluation of SHIPW –
doable in reasonable time. If the classifier however only utilises two features, there
can be only one feature combination between V3 and V9, which has been accordingly
detected by SilverEye.

Comparing Classification Models

In a next step, it is explored whether the decision tree can be properly learned on
a subset of attributes, e.g. if some attributes are removed. First, V3 as the most
influential feature is removed. With a resulting accuracy of 0.94 and a kappa of 0.87,
the model is still very predictive, but can not fully compensate the loss of V3. The
global feature importance scores reveal, that a number of other attributes is used
to replace V3, mainly V4, V6 and V1. V9 actually lost importance (see Figure 6.10).
SilverEye reveals, that V4 interacts with V1, but only barely with V6 or V9. V6 on
the other hand does not interact with any other attribute (see Figure 6.11).

The apparent interaction between V1 and V4 can be inspected by browsing through
the individuals. Here, one may notice that the two features are usually not
used together. Instead, V1 is often relevant to a prediction if V4 is not relevant.
Thus, it can be assumed that they somehow complement each other. Respective
visualisations are omitted for sake of brevity.

By removing V9 (but keeping V3 this time), the classifier does not worsen, but
fully compensates the attribute loss of V9 with V1. The classification accuracy
and kappa score stay at 1. Apparently, these features are highly correlated and
contain the same amount of information, which is why only one of them is needed
for classification.

6.3.3 Comparison with Internal Interpretation

Equivalently to the first case study, a comparison to the internal interpretation of
the evaluated classifier is drawn. The classification model used in the evaluation is
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Figure 6.11: SilverEye scores for V4 and V6. Left: All features are used. Right:
V3 has been removed.

a decision tree. This model type can be interpreted by drawing the inducted tree as
a graph. Here, the expert can see, which features have been used for splitting, and
which consequences a split has. Depending on the classification problem and used
regularisation, trees may overfit and grow very deep. In this case, an interpretation
becomes unintuitive.

This problem does not exist in the simple synthetic data set. The inducted tree
is shown in Figure 6.12. One can clearly validate the findings of the previous
section: V3 perfectly classifies all instances outside the interval of [6297, 11268];
The remaining instances are classified via V9.

V3 ≤ 6297.299
value=[390,410]

value=[242,0]
class = 0

True V3 ≤ 11268.178
value=[148,410]

V9 ≤ −7.625
value=[148,167]

value=[148,0]
class = 0

value=[0,167]
class = 1

value=[0,243]
class = 1

False

Figure 6.12: Decision tree trained on the synthetic data set.
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6.4 Discussion

The evaluation showed, that the proposed interface is able to analyse the relevance
and influence of features in a data set. The first case study tested, whether the
framework works on a real-world epidemiological cohort study and can answer a
research question. This can be confirmed. The second case study tested, whether
the framework can be used for a general evaluation of a data set. This can be
confirmed, too. In comparison to the interpretation techniques internally contained
in the classifiers, the visual interface offered much more support and insight into
the classifier’s reasoning.

The global feature importance scores allowed to give a first insight into which
features are relevant at all. It would have been useful, if the scores are put in
relation to the maximum achievable importance (which depends on the original
prediction probability). The bipartite graph was useful to compare the rankings.

Of particular usefulness has been the individual analysis, despite not being directly
focus of the research question. Understanding, why a classification model has
assigned a label to a specific participant, is insightful and promising for a productive
application. The filtering mechanism allowed to quickly navigate to certain instances,
for example incorrectly classified instances. The individual analysis was especially
useful in conjunction with the partial dependence panel: Here, the evaluator
can compare individual’s feature to the feature distribution and global prediction
probability. A link between these panels, which synchronises the selected class and
highlights the feature, would have been advantageous.

The partial dependence plot and the distribution histogram have been useful, too.
They allowed to understand the influence of a feature to the prediction probability,
while showing the data distribution. In the first case study, outliers restricted the
partial dependence plots, because they caused parts of the plot to be uninformative.
Here, more preprocessing in terms of outlier removal would have been useful. For
the second case study, it would have been also beneficial if the partial dependence
computation can be restricted to a subpopulation.

SilverEye has not been of much usefulness. In the first case study, it could not
be used due to the high-dimensionality of the data. Here, feature selection would
have been of advantage. On the synthetic data set, SilverEye detected existing
combinations between features. However, the detected combinations were mostly
expected, as they only revealed the overall important attributes. The original
idea – finding features which are only meaningful in combination – could not be
confirmed. Problematic is in particular the influence of randomness: If goodness
values fluctuate despite being based on the same grouping, it is hard to estimate
which grouping actually worked well.
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The incorporation of longitudinal information is somewhat limited, too. By replacing
the value of a feature with a previous record, the user can compare the importances
of two models. The effectiveness of this has been shown in the first case study.
This process takes however time, if the user wants to explore the data instead of
only validating existing research questions.
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7. Conclusion

7.1 Summary

Epidemiology studies the cause and spread of diseases by collecting and analysing
health-related conditions in human populations. In epidemiological cohort studies,
population members are monitored over a time span and repeatedly examined,
allowing to track the development of health conditions. As the standard workflow
to analyse such population studies is challenged by increasing data sizes, researchers
successfully started the incorporation of data mining into their analyses, most no-
table classification algorithms. State-of-the-art classifiers often lack interpretability
– an important desideratum for medical experts.

This thesis attempts to support epidemiologists in understanding trained classifica-
tion models. Five requirements have been identified, which specifically address the
characteristics of cohort studies: The support of multivariate and heterogeneous
data, the independence towards the used classification model including multi-class
scenarios, the consideration of longitudinal features, and the aggregation into an
interactive visual interface.

As no existing work satisfies all of these requirements, a novel visual interface
has been developed. It supports any tabular data, as well as any probabilistic
classification model. Several methods are integrated in the interface, allowing for a
model interpretation at different levels. The first key component is to determine,
which features of an individual have contributed to its classification. This is
computed by observing the change in prediction, if the feature is averaged out. The
resulting importances are displayed in a bar chart and compared to the average
importance. To get a comparable global feature importance score, the individual
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scores are averaged over all instances and classes. The relation between the value
of a feature and the prediction probability is analysed by the partial dependence,
which is displayed in an enhanced plot. A novel technique called SilverEye has
been developed, which allows to successively construct meaningful feature groups
by measuring, how their mutual random permutation affects the classification.
Another key concept is the comparison of two trained classifiers, which are learned
on different feature sets. A feature set can be modified by removing features or
replacing a feature’s value by a previous record. Thus, the user can interpret how a
classifier behaves if no recent information about a feature is available. The ability
for comparison is present in all components of the framework.

The proposed interface has been evaluated with respect to its effectiveness for
interpreting classification models in an epidemiological context. Here, two case
studies have been presented and performed. In the first case study, the evaluator
had to validate a research question on SHIP, a real-world cohort study. The
research question required the usage of virtually all interface components, including
a comparison of multiple models in order to evaluate the influence of previous
examination recordings. Due to the large size of the SHIP data, a second case
study was performed on a smaller, synthetic data set. Here, the ability of the
visual interface for exploring new, unknown data was evaluated. No specific
research question has been given; Instead, the evaluator was asked to gain a general
understanding of the features and their influence in the classifier.

The results of the evaluation confirm the usefulness of the interface for the desired
tasks. Both case studies discovered insights into the classifier’s reasoning, but also
revealed the potential and necessity of further work. For one, not all components
have been relevant in the evaluation, and should be improved. Also, the components
could interact more with each other, allowing for simpler interpretations. To be
employed in a practical application, the visual interface needs to be adjusted and
tested against the requirements of epidemiological workflows.

7.2 Future Work

The work discussed in this thesis forms a basis for future research.

One aspect addresses the components of the interface. Here, several modifications
may be considered due to the evaluation results. For one, SilverEye has not been
very useful in the case studies and should be either redesigned, or removed in
favour of other strategies. One could also consider the usage of more sophisticated
visualisations in the multi-class scenario. The current solution – combo boxes in the
partial dependence and individual panel – does not always allow a direct comparison
between the classes. In general, the framework may be further developed to allow
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more linkage and interaction between the components. As already mentioned, one
could for example synchronise the inspected class in the individual and PD panel.

The components in the interface have been carefully selected with respect to the
stated requirements and their diversity. Here, one could also implement and evaluate
more ideas. Krause et al. [50] for example allow the user to modify an individual’s
feature value and observe, if the classifier reacts to the modification. With respect
to the epidemiological context, this idea is promising.

The aspect of longitudinal features has been addressed in the framework in the
ability of using old examination values. Therefore, only one value per feature can be
included in the classification process. Future work could discuss, how to incorporate
and interpret feature sequences, where all previous recordings are included.

Another aspect concerns the adjustment of the framework to fit into an epidemi-
ological workflow. Cibulski [18] defined several requirements for visual analytics
in this area. Here, functionality such as a history log with undo operation, a text
editor or the storage of preferred settings is relevant and should be added to the
interface. In order to evaluate this aspect, a usability study with an epidemiologist
should be performed. His feedback will likely give much insight into the expert’s
point of view.

The model-agnostic property of the visual interface allows the integration into
standard data mining workflows. Here, the framework could benefit from previous
steps in the workflow such as preprocessing or feature selection. In addition, model
interpretation may also contribute to the feedback loop in interactive machine
learning.

The ability of the framework to replace the value of an attribute with a related value
is motivated by epidemiological cohort studies, where participants are repeatedly
examined. However, this concept may be also applied to other areas utilising time-
related or otherwise related features, for example the estimation of a company’s
liquidity by using their financial history.
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A. Appendix

Table A.1: Attributes in SHIP

Attribute Code Unit Description

age_ship Years Age at examination day
diabetes No/Yes Has diabetes
smoking 0/1/2 Never smoked / has smoked / smoking
alkligt g Monthly ethanol intake
abstain No/Yes Abstinence from alcohol (12 months)
hyperlipid No/Yes Treated hyperlipidemia
gout No/Yes Treated gout
som_bmi kg/m2 Body mass index
som_tail cm Waist circumference
som_huef cm Hip size
hgb g/l Haemoglobin
hba1c % Glycated haemoglobin A1c
quick % Thromboplastin time Quick
fib_cl g/l Fibrinogen (Clauss)
crea_s µmol/l Serum creatinine
hrs_s µmol/l Serum uric acid
gluc_s mmol/l Serum glucose
asat_s µmol/sl Serum ASAT
ggt_s µmol/sl Serum GGT
lip_s µmol/sl Serum lipase
chol_s mmol/l Serum cholesterol

Continued on next page
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Table A.1 – Continued from previous page

Attribute Code Unit Description

tg_s mmol/l Serum triglycerides
hdl_s mmol/l Serum HDL
ldl_s mmol/l Serum LDL
tsh mu/l Thyroid-stimulating hormone
jodid_u µg/dl Iodide (urine)
crea_u mmol/l Creatinine (urine)
sd_volg g Total thyroid volume
goiter No/Yes Goiter
knoten No/Yes At least one thyroid node
earm 0/1 Echonormal/abnormal thyroid pattern
atc_c07a No/Yes Beta blocking agents
atc_c07aa No/Yes Beta blocking agents, non-selective
atc_c07ab No/Yes Beta blocking agents, selective
atc_c08 No/Yes Calcium channel blockers
atc_c08ca01 No/Yes Amlodipine
atc_c08ca05 No/Yes Nifedipine
atc_c08ca08 No/Yes Nitrendipine
atc_c08da01 No/Yes Verapamil
atc_c09aa02 No/Yes Enalapril
atc_c09aa05 No/Yes Ramipril
atc_h02a No/Yes Corticosteroids for systemic use

SHIPW specific

hormonrepl_w No/Yes Hormone replacement therapy
menopaus_w Years Age at entry into menopause
menopause_yn_w No/Yes Natural menopause
parity_w No/Yes Parity, at least one pregnancy
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