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Abstract Objective: Accurate and high-quality recon-
structions of vascular structures are essential for vascular
disease diagnosis and blood flow simulations. These ap-
plications necessitate a trade-off between accuracy and
smoothness. An additional requirement for the volume
grid generation for Computational Fluid Dynamics
(CFD) simulations is a high triangle quality. We pro-
pose a method that produces an accurate reconstruction
of the vessel surface with satisfactory surface quality.
Methods: A point cloud representing the vascular bound-
ary is generated based on a segmentation result. Thin
vessels are subsampled to enable an accurate reconstruc-
tion. A signed distance field is generated using Multi-
level Partition of Unity Implicits and subsequently poly-
gonized using a surface tracking approach. To guarantee
a high triangle quality, the surface is remeshed.
Results: Compared to other methods, our approach rep-
resents a good trade-off between accuracy and smooth-
ness. For the tested data, the average surface deviation
to the segmentation results is 0.19 voxel diagonals and
the maximum equi-angle skewness values are below 0.75.
Conclusions: The generated surfaces are considerably
more accurate than those obtained using model-based
approaches. Compared to other model-free approaches,
the proposed method produces smoother results and thus
better supports the perception and interpretation of the
vascular topology. Moreover, the triangle quality of the
generated surfaces is suitable for CFD simulations.

Introduction

The reconstruction of vascular structures deserves spe-
cial attention since vascular trees are among the most
complex structures of the human body. An accurate and
high-quality reconstruction is essential for applications
in the field of diagnosis and blood flow simulation [1]. In
diagnosis of vascular diseases, the local evaluation of the
vessel cross section is essential to detect and characterize

Fig. 1 Volume rendering of a cerebral aneurysm. The sil-
houette is emphasized to illustrate the highly irregular mor-
phology of the aneurysm sack.

narrowings, such as a stenosis as well as widenings, e.g.
an aneurysm. A high quality in terms of surface smooth-
ness is important to avoid distractions caused by surface
artifacts.

Furthermore, a high surface quality as well as high re-
construction accuracy is crucial for Computational Fluid
Dynamics (CFD) to guarantee correct simulation results
and to avoid numerical instabilities. Simulations of the
blood flow enable the study of hemodynamic character-
istics such as intra-aneurysmal flow patterns or the wall
shear stress. The results could be used to decide if an
aneurysm has to be treated by coiling or stenting. We
do not discuss issues such as Non-Newtonian character-
istics of blood flow, elastic behavior of the vessel wall or
the appropriateness of laminar flow conditions. These is-
sues are discussed e.g. in [1]. Instead we focus on general
properties of grids in the preprocessing for blood flow
simulations. An additional important prerequisite for a
CFD simulation is a high triangle quality in terms of
edge ratio. Thin and elongated triangles may cause nu-
merical instabilities and need to be avoided. Moreover,
the triangle size should not change abruptly. A higher
resolution in areas with high curvature is desirable, how-
ever smooth transitions in triangle quality are required.
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Fig. 2 Vessel surface reconstruction pipeline employing MPU Implicits. The results of the polygonization are suited for
visualization tasks. The generation of volume grids for CFD simulations requires several post processing steps.

Model-based vessel visualization techniques are well
established in the field of therapy planning. The recon-
struction is based on model assumptions, in particular
a circular cross-section is often assumed. A high sur-
face quality can be achieved by explicitly fitting graphics
primitives to the centerline, (see, e.g. [2] where truncated
cones are employed) or by using implicit representations,
(see, e.g. [3] where Convolution Surfaces are employed,
see Figure 14 b). However, the accuracy of the recon-
struction is not sufficient for diagnosis and blood flow
simulation. Pathologic structures can not be captured
correctly using circular cross sections since the morphol-
ogy of such structures is highly irregular and does not
exhibit a rotational symmetric shape (see Figure 1). In
addition, the cross section of the vessel lumen might de-
viate from a circle (shaped like an ellipse or even like
an ”8”) depending on the transmural blood pressure.
A blood flow computation based on inaccurate surfaces
generates misleading results.

A higher accuracy can be achieved using model-free
approaches like Marching Cubes [4]. In principle, those
algorithms can be applied directly to the image data
and generate a surface based on a threshold. However,
this is problematic in the case of vascular structures.
Due to image noise and inhomogeneities in the contrast
agent distribution this does not always lead to accurate
results, in particular for MRI data. Furthermore, small
structures might be suppressed depending on the chosen
threshold. Hence vascular structures need to be explic-
itly segmented (e.g. with level sets or snakes) in most
cases before a surface can be reconstructed. A subse-
quent application of a model-free method suffers from
strong aliasing artifacts like staircases which might ham-
per the visual interpretation of the vessel surface and
therefore complicate the diagnosis. Furthermore, stair-
case artifacts are very problematic for CFD simulations
since they might lead to numerical problems. Common
approaches to smooth these artifacts in the segmenta-
tion mask or in extracted surface meshes especially of
filigree vascular structures mostly remove relevant de-
tail and yield reduced accuracy [5]. Volume-preserving
smoothing approaches like Constrained Elasitc Surface
Nets constrain the displacement of the vertices to pre-
vent shrinkage [6]. However, even those methods fail to
preserve small structures like thin vessels. An up to date
overview of vessel visualization techniques can be found
in [7].

Method

Pipeline Overview

The proposed reconstruction pipeline is summarized in
Figure 2. The input for the pipeline is binary segmented
image data that contains vascular structures. In the first
step of our pipeline, a point cloud is generated that rep-
resents the boundary between the segmented vessel and
the background. We developed an adaptive point cloud
generation algorithm that allows the faithful reconstruc-
tion of small vessels. To generate a signed distance field
based on this point cloud, we apply the Multi-level Par-
tition of Unity Implicits (MPU Implicits) algorithm that
was developed by Ohtake et al. [8]. The polygonization
algorithm of Jules Bloomenthal is used to generate a
polygonization of this function [9]. The result can di-
rectly be used for visualization.

To this point, the pipeline is similar to the method
described by Braude et al. [10] but targeted at the ap-
propriate representation of vascular structures. The ma-
jor difference is the adaptive point cloud generation al-
gorithm that strongly differs from the one proposed by
Braude et al. In addition we derived rules for the estima-
tion of appropriate parameter values for the generation
and polygonization of the MPU Implicits to ease and
speed up the application of our method.

To allow the utilization of the generated surfaces in
the context of CFD simulation, we add additional post
processing steps. For mesh quality improvement we ap-
ply edge collapsing and edge flipping as described in [11].
A reduction of triangles is yielded by using the Advanc-
ing Front remeshing algorithm of Schreiner et al. [12].
The result of the post processing can also be used for
visualization. This is especially reasonable for the visu-
alization of the simulation results on the surface.

Point Cloud Extraction

The point cloud extraction algorithm is aimed at the
reconstruction of small structures like thin vessels. It is
driven by the voxel grid of the segmentation result. How-
ever, to prevent aliasing artifacts, point positions are not
strictly aligned to voxel centers but distributed in the
volume of the voxels. We use those background voxels,
that are closest to the given object voxels, as the ba-
sis of point placement . We refer to those voxels as outer
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Fig. 3 Placing of points (red) for different constellations of
object voxels (blue) in the neighbourhood of an outer bound-
ary voxel (red).

boundary voxels. Based on the 3D-6-neighbourhood n6(v)
of an outer boundary voxel v, positions for one or more
points within the volume of the voxel are derived along
the following rules:

1. If there is only one object voxel in n6(v), e.g.
|n6(v)| = 1 (Figure 3 (a)), one point is placed in the
center of the boundary face (face of v that is adjacent
to the object neighbour voxel).

2. If |n6(v)| = 2 and the voxels are on two opposite
sides of v (Figure 3 (b)), two points are placed in the
centers of the boundary faces.

3. If |n6(v)| = 4 and the voxels are placed in a plane
(Figure 3 (c)), four points are placed in the centers
of the boundary faces.

4. If |n6(v)| = 5, v is in a small cavity (Figure 3 (d)).
We place one point on the center of the boundary face
that could be considered the ground of the cavity.

5. If |n6(v)| = 6, v is a hole (Figure 3 (e)). We ignore
this hole and place no points.

6. In all other cases objectvoxels in n6(v) are placed
in a staircase formation. One point is placed in the
center of v (Figure 3 (f)).

Normal Vector Computation: Once the points
for an outer boundary voxel v are placed, the related nor-
mal vectors need to be computed for the implicit surface
reconstruction. If only one point has been placed (cases
1,4 and 6), the normal vector is computed based on the
gradient of v in the segmentation result. If more points

Fig. 4 If several points have been generated for one outer
boundary voxel, the normals of the boundary faces are used
as normal vectors.

Fig. 5 Spherical artifacts occur at thin structures that are
represented by too few points.

were generated (cases 2 and 3) the gradient can not be
used, since every point would have the same normal vec-
tor. Furthermore, the gradient computation may not be
valid under those circumstances because the neighbor-
hood exhibits symmetry (see Figure 3 (c) for example).
Since the points are placed in the centers of the bound-
ary faces in those cases, the normal vectors of those faces
are used as normal vectors instead (Figure 4).

Representation of Thin Structures: The method,
that has been described so far, does not generate enough
points to represent thin structures (structures with a
cross section smaller than 3× 3 voxels). This might lead
to inaccuracy and the generation of spherical artifacts
during the implicit reconstruction (Figure 5). To increase
the density of the point cloud, we subdivide object vox-
els that represent thin structures into eight subvoxels.
First we identify thin structure voxels using a top-hat-
transformation with a 3×3×3 structure element (Figure
8 (b)). All outer boundary voxels that are next to thin
structure voxels are also subdivided into eight subvox-
els. Points and normal vectors are computed for those
subvoxels in the same manner as described before for
voxels.

Aliasing-artifacts which are introduced by this sub-
sampling step (see Figure 6 (b)) are reduced by label-
ing additional subvoxels as object-subvoxels before the
point placement takes place (Figure 6 (c)). Outer bound-
ary voxels are candidates for the addition of object-

(a) (b) (c)

Fig. 6 Due to subsampling, the constellation of points ad-
heres very strictly to the original voxel grid (b). Additional
subvoxels are labeled as object-subvoxels to further reduce
staircase artifacts (c).



4 Christian Schumann et al.

Fig. 7 Examples for the labeling of additional subvoxels
(red) as object-subvoxels.

subvoxels. We have to exclude voxels that represent small
cavities because the addition of subvoxels would fill those
cavities. For all remaining outer boundary voxels, we an-
alyze every of the eight subvoxels independently. For ev-
ery subvoxel the 3D-18-neighbourhood on the subvoxel-
level is gathered. The subvoxel is labeled as object-sub-
voxel if there is at least one pair of object-subvoxels in
the neighbourhood that fullfills all of the following con-
ditions:

– The two subvoxels do not share any face.
– One of the two subvoxels shares one face with the

considered subvoxel.

Examples for the addition of object-subvoxels are de-
picted in Figures 7 and 8 b. Figure 8 c gives an example
for an adaptivly subsampled point cloud generated by
the algorithm.

Implicit Surface Representation

An implicit surface representation is generated using
Multi-level Partition of Unity Implicits (MPU Implicits)
[8]. This algorithm utilizes an octree to subdivide the
point cloud into smaller parts which are approximated
by piecewise quadratic functions. A bivariate quadratic
polynomial is fitted to points that exhibit small varia-
tions in normal direction. If the deviations among nor-
mal vectors are large, a general quadric is applied in-
stead. After a local approximation has been determined,
its deviation from the points in the cell is calculated. If
the deviation surpasses a user defined ǫ0, the local ap-
proximation is not accurate enough and the cell is fur-
ther subdivided. This recursive algorithm is terminated
when a local approximation is assigned to every leaf cell
of the octree. A weighting function is associated with
every approximation. The influence of a local approxi-
mation at point X depends on the distance between X

and the center of the octree cell to which the approxima-
tion belongs. The global implicit function is computed
as the summation of all weighted local approximations.

The use of two groups of functions, the local shape
functions and the associated weighting functions, is the
main benefit of MPU Implicits. The computational cost
does not depend on the number of points but on the
complexity of the described object. Hence MPU Implic-
its are efficient even for large datasets.

The accuracy and smoothness of the reconstruction
can be controlled by several parameters. The octree re-
cursion depth and ǫ0 have to be adjusted for every dataset.
Inappropriate values might lead to inaccuracies, merg-
ing of neighboring structures or even the suppression
of structures. Since a manual adjustment might be time
consuming and tedious, we complement our method with
an automatic parameter estimation based on properties
of the input image and the generated point cloud (for
details see [13]).

Polygonization

For the generation of a polygonal representation of the
implicit function we use Bloomenthal’s implicit polygo-
nizer [9]. This surface tracking approach utilizes a cu-
bical space partitioning element which is moved across
the surface. The intersections of the edges of the cube
with the isosurface determine the vertex positions of the
polygonal mesh. To capture even very thin vessels us-
ing this surface tracking approach, the size of the space
partitioning element has to be chosen carefully. If the
element is too large, vessels might penetrate the faces of
the cube, but no edges. In that case, the vessel would
not be reconstructed. We set the size to 70% of the size
of one voxel and chose an isovalue which results in a sur-
face offset of 5% of a voxel diagonal to guarantee the
reconstruction of thin vessels. A detailed discussion of
the parameter selection is given in [13].

Mesh Quality Improvement: The triangle qual-
ity of the results of Bloomenthal’s implicit polygonizer is
suited for visualization tasks. However, it is not sufficient
for the generation of volume grids for CFD computations
due to the underlying space partitioning approach. Size,
shape and number of the resulting triangles rather de-
pend on orientation and size of the partition cells than
on the actual implicit surface description. In addition
to the smooth and artifact-free surface, that is provided
by the MPU Implicits, well shaped triangles are crucial
to obtain correct CFD results. Deformed triangles with
strong deviating edge lengths lead to numerical discon-
tinuities. In the worst case, the simulation process does
not converge at all. The homogeneity of triangle sizes is
also an important criterion for triangle quality. We dis-
cuss this issue in the section Triangle Number Reduction.

The equi-angle skewness S is used to describe the
triangle quality:

S = max

(

α − 60◦

120◦
, 1 −

β

60◦

)

The differences of the maximal interior angle (α) and
the minimal interior angle (β) to the optimal angle of 60
degrees (equilateral triangle) are scaled to the interval
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(a) (b) (c) (d)

Fig. 8 A detailed look at the surface reconstruction: the segmentation result (a) is adaptively subsampled (b). Additional
subvoxels (black) in the neighborhood of thin structures (dark gray) are labeled as object subvoxels. A point cloud with
adaptive density (c) is generated and approximated using an implicit surface (d).

[0, 1]. The maximum difference characterizes the triangle
quality. Well shaped, equilateral triangles provide equi-
angle skewness values equal to zero, highly acute-angled
and therefore bad shaped triangles yield values converg-
ing to one. Our experiments with the simulation soft-
ware Fluent (www.fluent.com) indicated that meshes
yielding triangle quality values lower than 0.75 represent
a good base for CFD simulations.

Triangles which do not comply with this requirement
are removed by collapsing too small edges (Figure 9 (a)).
Flipping edges leads to further mesh improvement [11].
To preserve important features during this optimization
process, feature edges (the angle between the normal vec-
tors of adjacent triangles surpasses a predefined thresh-
old) are treated especially (see Figure 9 (b) and (c)).

(a)

(b)

(c)

Fig. 9 Mesh improvement: Collapsing of too small edges and
triangles (a); Collapsing onto a feature vertex, if the corre-
sponding edge provides just one such vertex (b); Collapsing
onto the edge center, if it provides no or two feature vertices
(c). (From Bade et al. [14])

The resulting mesh of this efficient optimization step
yields a good triangle quality, but normally still con-
sists of too many, small triangles. This overrepresenta-
tion leads to slow visualization and also raises the com-
putational effort during CFD simulations unnecessarily.

Triangle Number Reduction: To reduce the num-
ber of triangles and preserve important surface features,
an Advancing Front algorithm is applied (see [15] for an
introduction to the Advancing Front method). This class
of surface meshing algorithms starts at a seed point and
iteratively grows the triangulation across the surface.
The seed point is projected onto the implicit surface
using gradient based iterative approaches like Newton
Step. An initial part of the mesh is created by projecting
additional, adjacent points onto the surface. The outer
boundary edges of the resulting mesh structure form the
initial front. This front separates meshed and unmeshed
regions. To create new mesh triangles, points are placed
near to this front. The quality of the resulting mesh is
influenced by the location of the new points. An issue
during the front propagation process is to avoid self in-
tersection. A common solution is to define a heuristic
edge length and check the distances between the new
point and the existing points which are threatened by a
possible intersection (see [16],[17]). If this test fails, the
front merges with the existing mesh and therefore two
new fronts are formed (see Figure 10).

Fig. 10 Two new fronts are formed, if no further propaga-
tion of the initial front is possible.
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Fig. 11 Due to a rapid change in size between small (green)
and big (blue) triangles, degenerated triangles (red) are cre-
ated.

The final step of the mesh creation is a full merge
where no front remains. Using this surface based ap-
proach, it is possible, to associate the triangle size with
the curvature of the implicit surface description. Fea-
tures are preserved, since small triangles are created in
regions with high curvature. The overall number of tri-
angles is reduced, because bigger triangles are applied in
regions with low curvature.

Several Advancing Front approaches are able to per-
form such curvature dependent polygonization (see [16]).
Common problems concerning these methods are rapid
local changes in triangle size due to changes in surface
curvature. Such discontinuities are undesired since they
cause numerical problems during CFD computation. Ad-
ditionally, triangles that are generated between big and
small triangles are often degenerated (see Figure 11).

To avoid these issues, the surface extraction approach
of Schreiner et. al. is used [12]. This polygonizer applies
a guidance field to provide smooth changes in triangle
size and prevents the creation of degenerated triangles.
The guidance field is a scalar function defined on the
surface, providing information about the desired length
of the edges incident to a point. For further details on
the creation of the guidance field see [18].

Results

We applied our method to four datasets including a
bronchial tree (BT), a liver tree (LT), a cerebral tree
(CT) and a cerebral aneurysm (AN). A summary of
the dataset properties is given in Table 1. The recon-
structed surfaces offer a good trade-off between accuracy
and smoothness. A careful visual examination of the sur-
faces near branchings showed that geometric continuity
was achieved for all kinds of branchings and branching
angles (see for example Figure 12 and Figure 14 (c)).
The generated surfaces do not exhibit the spherical arti-
facts that are typical for reconstructions based on point
clouds of low density. A visual comparison of the MPU
Implicits results with the segmentation results gave first
evidence that morphology and topology are represented
correctly applying MPU Implicits. No tree structures are
suppressed and no branches occur that are not repre-
sented in the data. Very thin elongated structures are

Fig. 12 Reconstruction of the thin elongated vessels of the
cerebral tree.

reconstructed faithfully using MPU Implicits due to the
proposed subsampling strategy (Figure 12). Using the
automatically selected parameters, vessels that are in
close proximity (running parallel or crossing each other)
are represented separately by the implicit function. How-
ever, the structures may not be polygonized as separate
structures and merge instead if the distance between
them constitutes less than 3 voxels (compare Figure 13
(a) and (b)). This result represents a limitation of the
Bloomenthal polygonizer and the proposed parameter
selection for the polygonization (see section Polygoniza-
tion). Using an isovalue of 0 and a sufficiently small par-

(a)

(b)

(c)

Fig. 13 Reconstruction of vessels, that are separated by only
few voxels in the segmentation result (a): Using an isovalue
larger than 0, vessels might merge (b). A correct reconstruc-
tion can be achieved using an isovalue of 0 (c).
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(a) (b) (c) (d)

Fig. 14 A detailed look at the reconstruction of the bronchial tree using Marching Cubes (a), Constrained Elastic Surface
Nets (b), MPU Implicits (c) and Convolution Surfaces (d).

Table 1 Summary of characteristics of the data sets. Voxel
sizes are given in millimeters.

Dataset Resolution Voxel size

BT 343× 193× 259 0, 57× 0, 57× 1
LT 342× 256× 81 0, 633× 0, 633× 2
CT 322× 233× 180 1× 1× 1
AN 129× 107× 45 1× 1× 1

titioning element (e.g. 50% of the size of one voxel), the
merging can be avoided (see Figure 13 (c)). However, this
would lead to a strong increase of computation times and
polygon count.

We compared the results of our algorithm with the
results of Marching Cubes, Constrained Elastic Surface
Nets [6] and Convolution Surfaces [3] when applied to
the same segmentation result. In contrast to Marching
Cubes, the reconstruction with MPU Implicits leads to
smooth surfaces and avoids staircase artifacts (see Figure
14 (a) and (c)). Our method outperforms Constrained
Elastic Surface Nets with respect to surface smoothness,
especially for very thin vessels where the Constrained
Elastic Surface Nets reconstructions exhibit volume
shrinkage (see Figure 14 (b) and (c)) even if only very
few smoothing iterations are used (we used 8 iterations
in our experiments). The quality of the reconstruction
with Constrained Elastic Surface Nets could be raised
by using more smoothing iterations. However, this leads
to further shrinkage or even the collapse of small vessels.

Using our method, subtle surface features are repre-
sented correctly in contrast to the reconstruction with
Convolution Surfaces. The latter guarantees a high geo-
metric continuity, however, due to the simplifying model
assumption of circular cross-sections the morphology is
only approximated (compare Figure 14 (a) and (d)).

Surface Smoothness

Visual inspection indicated a smooth reconstruction.
This can be validated by visualizing curvature values
directly on the surface. Figure 15 shows the Gaussian
curvature for the reconstruction of the cerebral tree us-
ing Marching Cubes, Constrained Elastic Surface Nets,
our method and Convolution Surfaces. The Marching
Cubes based reconstruction exhibits strong positive and
negative curvature values all over the surface (Figure 15
(a)). Those curvature values are associated to staircase
artifacts rather than morphologic features. The benefit
of the application of Constrained Elastic Surface Nets is
limited since only very few iterations can be applied. For
very thin vessels, the distribution of curvature values is
similar to Marching Cubes (compare Figure 15 (a) and
(b)). Other object parts exhibit less artifacts (see Figure
14 (b)). The MPU Implicits reconstructions show high
curvature values only where morphology with high cur-
vature is present (Figure 15 (c)). The smoothness of the
surfaces is comparable to the one achieved by applying
Convolution surfaces (compare Figure 15 (d)) due to the
underlying implicit description.

Reconstruction Accuracy

We analyzed the reconstruction accuracy of our method
with respect to the segmentation result that was the in-
put of the pipeline. The validation of the segmentation
procedure itself is beyond our scope. To measure the er-
ror that is introduced by our method with respect to
the segmentation result, we first generate a polygoniza-
tion of the binary segmentation result using the March-
ing Cubes Algorithm. We compute the deviation of our
method with respect to the Marching Cubes results us-
ing AMIRA (www.amiravis.com). The goal is not to
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(a) (b) (c) (d)

Fig. 15 Color coded visualization of gaussian curvature values for the reconstruction of the cerebral tree using Marching
Cubes (a), Constrained Elastic Surface Nets (b), MPU Implicits (c) and Convolution Surfaces (d).

compare the accuracy of our method with the accuracy
of the Marching cubes algorithm itself. Instead we con-
sider the result of the Marching Cubes algorithm as a
valid representation of the binary segmentation result
(although it is not the most accurate method to visual-
ize a segmentation result, Marching Cubes is considered
as the ”gold standard” to which a validation should re-
late since it is widely used in radiological workstations).

Since absolute deviations are not expressive, we de-
scribe them in relation to the resolution of the image
data. The median of the deviation is 0.19 times the
length of the voxel diagonal (voxDiag) (this corresponds
to 0.3 mm for the used datasets). The maximum de-
viation is up to 1.9 times voxDiag (3.3 mm) for the
aneurysm dataset. Those outliers occur due to small con-
cave features which are not represented by enough points
(Figure 16). Our subsampling strategy does not consider
those structures because they are less relevant for the re-
construction of vascular surfaces. Other reasons are the
limitation of the octree subdivision and the application
of an isovalue larger than 0. A comparison of MPU Im-
plicits with respect to accuracy with other state of the
art visualization methods showed that it outperforms
model-based methods like Convolution Surfaces with re-
spect to accuracy (mean deviation for Convolution sur-
faces is 0.4 times voxDiag) . Although our method suf-

0 1.91

Fig. 16 Deviation of the MPU Implicits based reconstruc-
tion to the Marching Cubes result color coded on the March-
ing Cubes surface. Values are related to voxDiag. The red
arrows highlight slight inaccuracies at small cavities.

fers from minor inaccuracies, it is almost as accurate as
other model-free methods like Constrained Elastic Sur-
face Nets (mean deviation: 0.17 times voxDiag ; for de-
tails see [13]).

Reconstruction Efficiency

Vessel surface reconstruction using MPU Implicits is gen-
erally slower than Marching Cubes or Constrained Elas-
tic Surface Nets. A reconstruction of the bronchial tree,
the largest and most complex tested dataset, was
achieved in 3 seconds using Marching Cubes and re-
quired 13 seconds using Constrained Elastic Surface Nets.
The same dataset was processed with our approach in
38 seconds. The reconstruction time using Convolution
Surfaces is 36 seconds. Using our approach, the cere-
bral aneurysm was reconstructed in 5 seconds (Marching
Cubes: 1 seconds, Constrained Elastic Surface Nets: 2
seconds, Convolution Surfaces: 11 seconds). In general,
the reconstruction times for the proposed method are
very similar to the reconstruction times for Convolution
Surfaces and depend on the resolution of the original
data, the complexity of the vessel tree, and the size of
the partitioning element (more details on reconstruction
times can be found in [13]). The time needed for mesh re-
finement including the Advancing Front remeshing and
edge collapse steps are in the range of several minutes.

In Table 2, we summarize information concerning the
geometric complexity of the resulting models. The num-
ber of polygons generated using MPU Implicits in com-
bination with the Bloomenthal polygonizer is still in a
range that modern graphics hardware may process at
interactive frame rates. Compared to Marching Cubes,
it is approximately 1.2 times larger (see Table 2) due to
the chosen size of the partitioning element. In the case of
the liver tree the amount of polygons is doubled because
of the strong anisotropy of the dataset (see Table 1).

The proposed mesh refinement leads to a reduction of
the mesh complexity up to 50% (see Table 3, rows MPUI
and AF). If the added computation time is acceptable,
visualization tasks can also benefit from this reduction
since it enables higher frame rates.
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(a) #Faces = 61K

(b) #Faces = 49K

(c) #Faces = 30K

Fig. 17 The resulting meshes: MPU Implicits (MPUI) (a), MPUI after edge collapse (b) and MPUI after an Advancing
Front remeshing step (c).

Table 2 Triangle count of MPU Implicits (MPUI) and
MPUI combined with the proposed post processing steps
(MPUI + PP) compared to Marching Cubes (MC).

Dataset MC MPUI MPUI + PP

BT 166k 180k 122k
LT 80k 167k 106k
CT 115k 142k 102k
AN 54k 61k 30k

Triangle Quality

To provide good convergence characteristics during the
CFD simulation, the worst equi-angle skewness should
be lower than 0.75 (see section Mesh Quality Improve-
ment). To achieve this triangle quality, the guidance field
driven Advancing Front polygonization of the remesh-

Table 3 Summary of the MPU Implicits (MPUI), Edge Col-
lapse (EC) and Advancing Front meshes (AF) of an aneurysm
model. The worst equi-angle skewness (S(Max)) is important
for the simulation.

Meshtype #Faces S(Max) S(Min) S(Mean)

MPUI 61314 1.0 0.01 0.63
EC 49356 0.74 0.03 0.28
AF 30112 0.72 0.0004 0.23

ing tool AFront (http://afront.sourceforge.net),
created by Schreiner et. al., was used. Results for the
cerebral aneurysm are presented in Table 3, comparing
mesh complexity and triangle quality of the Bloomenthal-
polygonization of the MPU Implicits with the optimized
meshes and the Advancing Front meshes. It is obvious,
that the optimized and Advancing Front meshes sat-
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isfy the given requirements. All three resulting meshes
are presented in Figure 17. The linear triangle artifacts
which can be observed in the standard Bloomenthal-
mesh are the result of the cell-based polygonization pro-
cess which generates small elongated triangles. These
degenerated triangles are removed by collapsing edges
during the optimizing process. This leads to a reduced
mesh complexity. Due to the curvature dependent tri-
angle size, the mesh complexity is further reduced by
applying the Advancing Front algorithm. The guidance
field approach ensures a smooth transition of triangle
size, which leads to a good quality of the resulting mesh.

Discussion

The smooth and accurate reconstruction of vascular sur-
faces based on a binary segmentation result is a demand-
ing task. Methods such as Marching Cubes result in sur-
faces that directly correspond to the underlying segmen-
tation but suffer from strong staircase artifacts. An ap-
plication of simple smoothing algorithms to the result
is problematic since shrinkage is introduced that might
even result in the suppression of small features. Vol-
ume preserving methods like Constrained Elastic Surface
Nets can reduce this effect in general but also fail in rep-
resenting thin structures. Model-based methods such as
Convolution Surfaces can produce very smooth surfaces.
However, the underlying model assumption of circular
cross sections leads to an inaccuracy that might be ac-
ceptable for certain visualization tasks, but not for many
diagnostic applications or in particular for the genera-
tion of volume grids for CFD simulations. A combina-
tion of high accuracy and high surface smoothness is cru-
cial for these applications. First results indicate that the
proposed method fulfills both requirements. The prop-
erties of the underlying implicit representation of our
method guarantee a high surface smoothness compara-
ble to Convolution Surfaces. The accuracy of the results
with respect to the binary segmentation result has been
investigated and can be considered as very high. How-
ever, this does not allow to draw conclusions about the
reconstruction accuracy with respect to the actual ves-
sels since the segmentation method itself is not part of
the proposed pipeline. The correctness of the segmen-
tation result constitutes an essential precondition of the
method. However, the combination with a dedicated seg-
mentation method might be part of future work.

The investigation of the reconstruction accuracy re-
vealed several limitations of the method in its current
implementation. Inaccuracies, that might be too large
for obtaining appropriate CFD grids have been observed
at small concave features. The impact on the simulation
still needs to be investigated. An adaption of the method
to such features might be achieved by identifying those
outer boundary voxels, that are next to those features.
First tests indicate that this can be accomplished by

applying a top-hat-transformation to the inverted seg-
mentation result. Once those voxels have been identi-
fied, a subsampling as described for small vessels can be
performed. Additional inaccuracy has been introduced
due to the usage of an isovalue larger than 0 which
also results in the merging of neighboring vessels in few
cases. This isovalue was selected because the Bloomen-
thal polygonizer may miss vessels that exhibit a diameter
smaller than the size of the polygonization element. The
usage of a smaller polygonization element would also fa-
cilitate the reconstruction of very thin vessels. That way,
the general accuracy would also be raised and neighbor-
ing vessels would be reconstructed separately. First tests
show that the application of an alternative parameter
configuration (isovalue = 0; size of space partitioning el-
ement is 50% of the voxel size) results in higher accuracy
at the cost of considerably higher computation times and
polygon counts. This might be acceptable for simulation,
but not for visualization tasks.

A common drawback of surface tracking approaches
is that only one connected surface can be reconstructed.
However, vascular systems may consist of several uncon-
nected structures. To allow a complete reconstruction,
independent structures may be identified using Connect-
ed Component Labeling [19]. In a next step the pipeline
is applied to every structure individually.

In general, the space partitioning approach of the
Bloomenthal polygonizer seems to be problematic be-
cause it generates more polygons than necessary. In ad-
dition, the generated polygons do not offer the quality
that is needed for successful CFD simulations. The worst
triangle quality of the generated meshes is equal to 1.
Improving the Bloomenthal mesh by collapsing and flip-
ping edges leads to better results. The achieved triangle
quality satisfies the given requirement. Also the number
of triangles is reduced, since small triangles are removed.

For guidance field driven Advancing Front remeshing
the software AFront is used. The remeshed surfaces
are used to create volume meshes with TGrid, a part
of the Fluent software package. These volume meshes
represent the base for finite-volume CFD simulations.
The equi-volume skewness SV is a quality measure for
volume elements and is, like the equi-angle skewness of
surface meshes, defined in the interval [0, 1]. By apply-
ing the Advancing Front remeshing on the surface mesh,
an improvement of the volume element quality could be
observed. However, the triangle size control parameter
in AFront has to be chosen carefully. If the chosen pa-
rameter value is too small, the resulting mesh consists of
more triangles than the original Bloomenthal mesh, due
to the creation of many, very small triangles in regions
of high curvature. Very big triangles might be created
in regions of low curvature if the parameter value is too
large. This might lead to big volume elements and there-
fore potentially reduce the accuracy of the simulation
result (see Figure 18).
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(a) 80.000 volume elements (b) 300.000 volume elements

Fig. 18 Color coded wall shear stress of an aneurysm and the corresponding vessels. If the volume mesh resolution is to low
(a), certain features, like the stress peaks on the aneurysm surface (b) are blurred or in worst case lost.

Using the Advancing Front approach degenerated tri-
angles (equi-angle skewness > .75) are still created. How-
ever, the amount is very small (< 0.1%). Those triangles
are improved or removed using the mesh quality im-
provement steps that have been applied to the Bloomen-
thal results (see section Mesh Quality Improvement).

To perform a CFD simulation, inlets and outlets have
to be defined. For numerical stability, these in- and out-
lets need to be sharp edged. They are created by plane-
cutting the vessels at a predefined position. While the
edge collapse based mesh improvement preserves these
sharp edges, the Advancing Front remeshing using
AFront introduces some artifacts (see Figure 19). Be-
cause of that, the in- and outlet-cuts are applied after
the remeshing. Degenerated triangles that are created
during the cutting process are remeshed locally by edge
collapse.

The proposed refinement and remeshing steps were
chosen with regard to requirements of the volume grid

(a) (b)

Fig. 19 An outlet cut: after Advancing Front reconstrution
(a). To avoid these artifacts, the cut has to be performed
after the the Advancing Front remeshing (b). Degenerated
triangles near the cutting edge are removed by edge collapse.

generation for CFD simulations. However, the obtained
optimized surfaces might also be used for visualization.
This might be of benefit for high quality visualization
of flow features in future projects. If the same mesh is
used for simulation and visualization, important surface-
based flow features like the wall shear stress can be vi-
sualized in a direct way, because the surface mesh is
directly linked to the computational mesh. That way, no
further numerical interpolation artifacts would be intro-
duced.

The parameter choice in the current remeshing pipe-
line is done manually. Based on the observation of the
simulation result the mesh is redefined to find an opti-
mal solution. In future work, these parameters should
be linked directly to the computational accuracy of the
CFD simulation, using information about the anatomic
model and the simulation modalities.

In the current implementation, the AFront software
is only used as a post processing step. The direct appli-
cation of an adaptive polygonization procedure to the
implicit function could lead to higher accuracy and tri-
angle quality combined with lower reconstruction times.
Future work should concentrate on the integration of
an Advancing Front algorithm or a comparable adaptive
polygonization method.

Conclusions

We have presented a method for the reconstruction of
vascular tree structures based on the binary result of the
vessel segmentation. The generated surfaces are suited
for visualization and CFD simulation tasks. The required
combination of high accuracy, smoothness and trian-
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gle quality can not be achieved using existing standard
methods. Model-free approaches such as Marching Cubes
guarantee a high accuracy but suffer from aliasing ar-
tifacts. The application of smoothing methods leads to
shrinkage or even the collapse of thin vessels. The model-
based reconstruction with Convolution Surfaces achieves
very high surface smoothness. However, the morphol-
ogy of the vascular structures is only approximated. Our
method represents a good trade-off between high accu-
racy and surface smoothness. In addition, a high tri-
angle quality is guaranteed. Our method is based on
MPU Implicits, a variant of implicit surfaces. With a
preprocessing step which computes a point cloud based
on the segmentation result and further refines it adap-
tively, this method is able to generate smooth recon-
structions of the vessel surface and accurately represent
even very thin vessels. We applied our method to a va-
riety of vessel trees and compared the results with other
state-of-the-art techniques regarding reconstruction ac-
curacy, smoothness and efficiency. With an average me-
dian deviation of 0.19 voxel diagonals (0.3 mm for the
tested datasets), our approach is very accurate. It rep-
resents the segmentation result more accurately than
Convolution Surfaces [3], especially for pathologic cases.
The accuracy could be further increased by adapting our
subsampling strategy for small concave features. Several
remeshing techniques including an Advancing Front [12]
algorithm have been investigated to adapt the polygon-
zation results to the requirements of CFD simulations.
First experiments indicate that the proposed pipeline
creates vessel surfaces that are appropriate for the gen-
eration of volume grids for CFD simulations of the blood
flow. Although reconstruction times of our method are
in the range of seconds, there is room for improvement.
The computational times for subsequent mesh refine-
ment steps are in the range of minutes, which is ac-
ceptable for CFD simulations but not for most visual-
ization tasks. We identified several disadvantages of the
used polygonization method. A gain in reconstruction
accuracy, quality and speed might be achieved by direct
application of an adaptive polygonization scheme to the
implicit function.
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