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Abstract—

For liver surgical planning, the structure and morphol-
ogy of the hepatic vessels and their relationship to tumors
are of major interest. To achieve a fast and robust assis-
tance with optimal quantitative and visual information, we
present methods for a geometrical and structural analysis
of vessel systems. Starting from the raw image data a se-
quence of image processing steps has to be carried out until a
3D representation of the relevant anatomic and pathologic
structures is generated. Based on CT scans the following
steps are performed: (1) The volume data is preprocessed
and the vessels are segmented. (2) The skeleton of the ves-
sels is determined and transformed into a graph enabling
a geometrical and structural shape analysis. Using this in-
formation the different intrahepatic vessel systems are iden-
tified automatically. (3) Based on the structural analysis
of the branches of the portal vein their vascular territories
are approximated with different methods. These methods
are compared and validated anatomically by means of cor-
rosion casts of human livers. (4) Vessels are visualized with
graphics primitives fitted to the skeleton to provide smooth
visualizations without aliasing artifacts. The image analysis
techniques have been evaluated in the clinical environment
and have been used in more than 170 cases so far to plan
interventions and transplantations.

I. INTRODUCTION

An accurate analysis of vascular systems in volumetric
image data is gaining increasing importance for a variety of
medical applications. Precise knowledge of the morphology
and structure of a vascular system allows for quantitative
diagnosis, surgical planning and outcome assessment, as
well as for monitoring of the progression of a vascular dis-
ease [48].

A. Planning in Liver Surgery

In this paper, we focus on computational methods for
the analysis and visualization of hepatic vascular structures
for liver surgery planning. One of the most challenging
problems in liver surgery is to assess the morphology and
branching pattern of the hepatic vasculature and their sup-
ply volume. The large variety of these branching patterns
is illustrated in textbooks on anatomy (see for example,
32)).

The development of the methods presented here is moti-
vated and guided by the following two clinical applications:
1. Living-related liver transplants (LRLT): These opera-
tions are required by the lack of organs required for trans-
plantation. LRLT is a procedure where a healthy volun-
tary donor gives a part of his or her liver to another person.
These transplantations are feasible due to the regenerative

power of the liver. A careful analysis of the branching
pattern and morphology of all hepatic vessel systems is a
precondition for LRLT. Additionally, volumetric approxi-
mations are carried out to predict the postoperative liver
function. With this analysis the decision whether a person
is suitable as donor for LRLT is supported.

2. Oncologic Resections: For patients with liver cancer or
liver metastasis, e.g. from colorectal cancer, resectability
is an essential question. Resectability and the extent of
the required resection depend primarily on the location of
tumors and the spatial relations between tumors and major
hepatic vessels.

For the planning of both operations, LRLT and onco-
logic resection, it is crucial to provide the surgeon with a
patient-individual 3D representation of the liver along with
its vasculature and lesions. Such a representation allows for
an exploration of the vascular anatomy, the measurement
of vessel diameters and distances as well as the analysis of
the shape and volume of vascular territories. All of this
is based on an accurate segmentation and analysis of the
intrahepatic vessels.

B. Overview

In this paper, we present new methods to analyze the
patient’s intrahepatic vasculature from clinical CT volume
data. As a result, a 3D model of the relevant structures
is generated which enables a more precise access to the
individual intrahepatic vasculature and builds a new basis
for preoperative planning. To achieve this, we will discuss
four steps:

1. Vessel segmentation. The intrahepatic vessels are seg-
mented with a refined region-growing algorithm to meet the
demands on runtime, robustness and level of automation
for the acceptance in clinical routine.

2. Analysis of wvessel structures. Algorithms based on
graph theoretical methods are used to analyze the geome-
try and the ramification structure of the segmented vessels.
For this purpose, the skeletons of vessels are determined.
3. Model-based approzimation of vascular territories. The
territories, which are supplied by the main branches of the
portal vein are determined. We present evidence for the
accuracy of these methods based on studies of corrosion
casts of eight human livers.

4. Vessel visualization. Based on the skeletons and the in-
formation concerning the vessel diameter, antialiased vessel
visualizations are generated by fitting graphics primitives
along the skeleton lines.
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Fig. 1. Vascular structures from the human liver. Portal vein, the
hepatic artery and bile ducts enter the liver in the bottom part and
proceed parallel while the hepatic vein enters the liver from top.

Finally, an interactive 3D visualization is provided which
allows the user to explore the previously identified and an-
alyzed structures.

The following sections describe these steps.

II. MEDICAL BACKGROUND

Because of the complex vascular anatomy of the liver,
surgical interventions are challenging. Four different vessel
systems supply and drain the liver: portal vein, hepatic
vein, hepatic artery and bilary ducts (see Fig. 1, taken from
[30]). A successful operation requires enough remaining
liver tissue supplied by all four vessel systems. Since the
portal vein, the hepatic artery and the bile ducts parallel,
the portal vein is regarded as the leading structure for these
three vessel systems.

For a surgeon it is difficult to mentally imagine the 3D-
structure of vessel systems based on planar slices of radi-
ological data (cf. Fig. 2) and to estimate which part of
a vessel system would be damaged as a consequence of a
surgical intervention [22]. In order to enable surgeons to
perform liver resections respecting the vascular anatomy, a
schematic model of the liver was introduced by Couinaud
[4]. Following this model, the human liver can be divided
into different segments which are determined according to
the branching structure of the portal vein. A liver seg-
ment is defined by the supplied territory of a third order
branch of the portal vein. Since these segments are in-
dependent from each other, they can be resected without
damaging the supply of the other segments. Applying the
wide-spread scheme of Couinaud directly, is questionable
from an anatomical point of view, since the liver segments
are highly variable in shape, size and number (see Fasel et
al. [11]). Therefore it is desirable to identify the individual
liver segments preoperatively.

III. METHODS

A. Fast and Robust Vessel Segmentation

The segmentation of the intrahepatic vessels is a prereq-
uisite for a subsequent geometrical and structural analysis.
In a preprocessing step, filter functions for noise reduction
(Gaussian, median filter) and for background compensa-

Fig. 2. 2D slice of a CT volume dataset. The applied contrast agent
provides a high vessel-to-tissue contrast and reveals the highlighted
portal vein and some branches of the hepatic vein. The two dark
spots inside the liver represent liver metastasis. Dataset provided by
Prof. Galanski, Medical School Hannover

tion (Laplace-like filters) are applied to the CT-data [43].
For background compensation the size of the filter kernel is
chosen such that it is larger than the thickest vessel inside
the liver (default is 15 x 15). The application of this filter
is restricted to an interval which is defined such that the
lower interval bound roughly corresponds to the gray value
of the liver parenchyma and the upper bound corresponds
to the brightest values inside the liver.

As a result, intrahepatic vessels can be identified
and delineated by using a threshold-based region-growing
method. Usually, region-growing segmentation must be re-
peated with modified thresholds until an appropriate result
is found. To accelerate this procedure, we refined the pro-
cedure to automatically suggest a threshold.

Initially, a seed voxel of the portal vein close to its en-
trance into the liver is selected interactively. Starting with
this seed voxel, the region-oriented segmentation algorithm
iteratively accumulates the 26 adjacent voxels with an in-
tensity equal to or greater than the intensity ., of the seed
voxel and keeps them in a list L(fpeg). Using L(Opey) as
new seed voxels, all adjacent voxels with intensities greater
or equal 6y, — 1 are collected in a list L(6yeg — 1). The
threshold is further decreased until a given threshold 64
is reached which definitively creates only voxels L(feng)
outside the vessel systems.

The generation of the voxel lists is performed efficiently
because voxel lists for the segmentation with threshold —1
have already been constructed when using the threshold 6.
In total, some 100 lists are generated which takes approxi-
mately 3-5 seconds on modern PC hardware for high reso-
lution CT datasets (512 x 512 matrix with slice distance 3
mm).

The automatic threshold selection is based on the obser-
vation that the number of voxels N(6) is approximately lin-
ear decreasing for 6 = Oop; . . . Opey (Fig. 3). At Oy the slope
changes considerably because many voxels belonging to the
liver tissue are collected for thresholds below 6,,:. A sug-
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Fig. 3. Estimation of an optimal threshold for vessel segmentation.
(©Springer 2000, originally published in [44], reprint with permission.

gestion for 6,,; can thus be found by calculating an optimal
fit of two straight lines for N(6). For this purpose, the two
characteristic parts of the curve are approximated by two
regression lines. The points (Bpeg, |N (Obeg)]) - - (4, IN(5)])
respectively (j 4+ 1,|N(G+1)]). .. (end, | N (Bend)|) are em-
ployed to calculate the correlation coefficients for both
lines. j is chosen such that the sum of the two correla-
tion coefficients is maximal.

We found, that the position of the crossing of both re-
gression lines yields a good suggestion for 6,,; in most
cases. If the suggested threshold is not satisfying it may be
changed interactively. On the basis of the generated voxel
lists L(Opeg) - . . L(Bena) the vessel system specified by any
threshold 6 can be displayed very fast by simply drawing
all precalculated voxels from the lists L(0peg) - - . L(6).

B. Graph-Based Analysis of Vasculature

The segmentation result is a set of voxels representing
the intrahepatic vessel systems. For surgery planning, a
further analysis of these voxels is required. This includes
geometric measurements of the branches (radius, length)
and the identification of the ramification pattern (e.g. to
determine the main portal subtrees supplying the liver seg-
ments).

Before the analysis of the vessel systems is carried out,
a segmentation problem due to imaging artifacts has to
be approached. Depending on the scanning protocol, usu-
ally two or more different vessel systems of the liver are
enhanced with contrast agent during the scan. Often the
portal and hepatic vein are affected, which are shown in
Fig. 4a. Therefore, the scan yields high-intensity voxels
for both vessel systems. Due to the limited spatial resolu-
tion of the scanned volume data, voxels of different vessel
systems are often adjacent to each other such that they
are segmented as one object when in reality there is only
proximity between the two. A manual separation of the
different vessel systems would be too time-consuming for
clinical routine. Therefore we analyze and separate such
”forests” of connected vessel systems automatically using
graph theoretical methods. In a first step, the voxel-based
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Fig. 4. (a) Portal vein (red) and fragments of the hepatic vein (blue)
as result of the vessel segmentation based on an underlying CT ex-
amination, in which both vessel systems are enhanced with contrast
agent. Both systems touch at the encircled points of contact and can
not be segmented separately.

(b) Graph G of two touching vessel systems. (c) Orientation of G,
which consists of directed acyclic graphs G1 and Ga.

(©Springer 2000, originally published in [44], reprint with permission.

shape representation of the vessels is transformed into an
abstract graph representation, utilizing ”skeletonization”.
The skeleton representation carries all information about
the original shape of the object and, at the same time, fa-
cilitates an algorithmic geometrical and structural shape
analysis. The principal approach is illustrated in Fig. 5.

B.1 Skeletonization

The skeleton, or medial axis in 2D, of an object in con-
tinuous 2D space is defined as the set of all points which
are equidistant from at least two points on the boundary
of the object [3]. In discrete space, this definition can not
be applied directly. Since the discretization generally pro-
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Fig. 5. The transformation of a voxel-based shape representation of
vessels in (a) into a graph is performed in three steps:

(b) Skeletonization using thinning techniques.

(c) Identification of voxels, which represent ramifications or endpoints
of the vessel system.

(d) Creation of a corresponding graph for a further analysis.
(©Springer 2000 originally published in [44], reprint with permission.

duces jagged surfaces, many irrelevant skeleton branches
would arise. We use ’thinning’ as a basic technique for
the skeletonization and thus successively erode the surface
voxels of an object, until the skeleton remains. During this
process, three aspects are crucial to preserve the properties
of continuous skeletons and to yield skeletons which reflect
the original shape of the vessel system:

1. The erosion of the voxels must not change the topol-
ogy of the original structure, i.e. the number of connected
objects, of cavities and of 3D holes must remain the same.
2. The erosion must be carried out symmetrically to pro-
vide a reliable and accurate central position of the skeleton.
3. Noisy vessel surfaces should not lead to ’irrelevant’ skele-
ton lines, which would be mistakenly interpreted as side
branches.

Although many 2D skeletonization algorithms have been
developed for applications ranging from optical character
recognition to biological cell studies (see e.g. [21] for a
survey), relatively few methods exist for the 3D case (see
Sect. V-D).

In our skeletonization approach, it is checked for each
voxel whether its deletion preserves the 3D topology of the
object. Voxels with this feature are called simple points
[19] and only these are deleted in the erosion process. Ef-
ficient methods to detect simple points are described e.g.
by Davies and Lee [6], [23].

To cope with anisotropic voxels, special care of a pre-
cise symmetric erosion was required. Therefore, we com-
bined the skeletonization with a distance transformation
and introduced a three-component distance label [5] which
is propagated during the thinning process. In each thinning

Fig. 6. (a) The distance transformation of the segmented vessel tree
is illustrated as a 3D visualization where the ridges represent the
center line. The steepest gradient can be used as indication for the
relevance of a side branch.

(b) Skeleton of a vessel tree with some side branches at the right
boundary. The side branchesare interpreted as structural information
and are represented by a skeleton line. For each point of the tree the
distance from the boundary is coded in a corresponding grey value.
(c) In this case, the side branches are interpreted as noise which are
therefore not represented by skeleton lines.

(©SPIE 2001, originally published in [45], reprint with permission.

step only those voxels with the same Euclidean distance to
the boundary of the object are eroded [43].

To deal with the varying quality of the medical datasets,
we control the creation of ’irrelevant’ skeleton lines which
usually appear due to noise. Fig. 6 illustrates a vessel tree
with several side branches at the right boundary. To distin-
guish ’relevant’ and ’irrelevant’ side branches, we consider
the gradient of the distance transformation (Fig. 6¢). The
main branches of the tree create 'mountain ridges’ in the
distances to the boundary which have a steepest gradient
close to zero. Side branches also create ridges but their
steepest gradient 6 is larger than 0 and smaller than 1.
For all other points, 6 is close to 1. Based on a thresh-
old decision on the steepest gradient 6 we define irrele-
vant side branches. In Fig. 6b, for example, all skeleton
endpoints with 6 ; 0.6 were not eroded during the thin-
ning process. This yields skeleton lines for all of the side
branches which are thus considered to be ’relevant’ struc-
tural information. In Fig. 6¢ only skeleton endpoints with
6 = 0 were preserved from erosion. Fig. 7 shows the skele-
ton of the segmented vessel systems from a clinical dataset
with different values for 6. It turned out that for clinical
data @ = 0 is most appropriate (recall Fig. 6¢) to identify
vascular structures and to avoid irrelevant branches. This
threshold means that only voxels with a local maximum in
the distance transform belong to the medial axis. We fixed
0 for clinical applications in hospitals. The skeletons which
are used for vascular analysis (see the following sections),
also use this value.
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(a) (b) (c)

Fig. 7. Skeleton of the segmented vessels. For the skeletonization a
threshold of (a) 0, (b) 0.8, (c) 0.9 was chosen for the steepest gradient
of the distance transform. Depending on the threshold more or less
skeleton lines appear. Most of the skeleton lines in (c) are due to
noise.

(©SPIE 2001, originally published in [45], reprint with permission.

B.2 Graph Analysis

Compared with the voxel-based shape representation of
the segmented vessels, the skeleton representation enables
a much easier access to the geometry of the branches (me-
dial axis and radius) and to structural information (ramifi-
cations). For further analysis, the skeleton is interpreted as
a graph G = (V, E), whose vertices V represent ramifica-
tion points and whose edges E represent the parts between
the ramifications. The average radius of the corresponding
branch is assigned to each edge.

Based on this graph representation, the problem of sepa-
rating different vessel systems can be described and solved
as follows: Given a graph representation G of the connected
portal and hepatic veins, we have to determine an orienta-
tion of G that consists of directed acyclic graphs G; with
the following properties: The root of each directed graph
G; corresponds to the root of the portal tree, to the root of
the hepatic veins, or to the roots of accessory or fragmental
subtrees of the hepatic veins (as in Fig. 4 and Fig. 8a). All
directed paths in G; lead from the root to the periphery of
the corresponding vessel system.

To determine the trees G, first of all, the root R of one of
the vessel systems is automatically chosen as root for Gj.
A reasonable candidate for the root can be found at the
edge with maximal radius. At this edge, the vertex most
distant from the center of gravity of the vessel systems is
chosen. As an alternative, the root can be set interactively.
Starting with Go = ({R},{}), for all adjacent vertices of
Gy the connecting edge with the maximal radius is added
as a forward edge to Gy. This procedure is repeated iter-
atively, also considering the new adjacent vertices of Gj.
The definition of new roots of trees or subtrees depends
on a user-defined parameter n = 1...00: If there exists an
edge in G that is not already added to Gy and that has a ra-
dius which is more than n times greater than the maximal
radius of the adjacent edges of G, a new root candidate is
determined and set as initial vertex in G;. The process of
adding adjacent edges to Gy, G4, - .. is continued until all
edges of G have been considered. The resulting directed
graphs G; have the following properties:

» Each path in G from the root of G; to G is separated
at the edge with minimal radius.

o Each cycle within G; is resolved at the edge with minimal
radius.

o Following a directed path in G; from the root to the

periphery, a once reached branch radius can increase only
n-fold. If n is chosen sufficiently large only one graph Gy is
created. For n = 1 the radius of each created tree G; never
increases along the paths from root to periphery, which
typically yields a large number of separated trees G; for
clinical data. The choice of n determines the sensitivity
of the separation into subtrees. Best results have been
obtained with n=0.5 although in a few cases, this value
had to increased or decreased slightly.

If the automatic vessel separation does not succeed com-
pletely, interaction facilities can be used to manually set the
root of a vessel system or to identify touching points. Using
the described algorithm for the skeleton shown in Fig. 8a,
the portal tree (white) and two fragmental subtrees of the
hepatic vein (blue) were detected. Besides this, the graph
representation of the vessels is also the basis for user inter-
actions such as defining the hierarchical structure of trees,
subtrees and paths. Furthermore it allows to measure the
radius, length or volume of branches. In Fig. 8b the hepatic
vein was removed automatically using the above-described
methods. The main branches of the portal vein were iden-
tified automatically by determining the 8 most voluminous
portal subtrees, which are assumed to supply the various
liver segments. The identification of these branches is a
prerequisite for the approximation of the patient’s individ-
ual liver segments (Fig. 8c), described in the next section.

C. Model-Based Approzimation of Liver Segments

For liver surgery, the knowledge of the shape and vol-
ume of the patient’s individual liver segments is essential
to estimate the risk of different resection strategies. Due
to the limited spatial resolution only the major branches of
the portal vein can be extracted. Referring to the liver, the
problem can be described as follows: Assume that L is the
set of all voxels in the medical volume data V representing
the liver. Furthermore, let B C L denote the set of voxels
belonging to the extracted portal tree. B is the union of
the main branches or subtrees B; C B, ¢ = 1,...,n, which
supply the portal segments (recall Sect. ITI-A and III-B for
the determination of B and B;).

To determine the liver segments, we have to find a func-
tion g : L — {1,...,n}, which assigns to each liver voxel
v € L a segment number ¢, provided v is supplied by the
branch B;. The set of all voxels supplied by this branch
represents the liver segment ¢ and is denoted by S;. To com-
pensate the missing information about the portal tree and
to predict the segmental anatomy, we suggest model-based
approaches to determine g, which consider the patient’s
individual anatomy represented by given L and B;.

The definition of a realistic function must reflect the
probability, that the sprouts of the various incomplete sub-
trees B; reach and supply a liver voxel v. Measures for this
‘reachability’ (illustrated by arrows dy, ..., ds in Fig.9b) can
be expressed by a metric. A voxel v then is assigned to that
branch B;, which has the shortest distance with respect to
a suitable metric. The choice of a metric is difficult since
the blood supply is realized by complex branching struc-
tures, whose formation process is not fully understood (see
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Fig. 8. (a) Skeleton of the extracted vessels from the dataset shown
in Fig. 2. The hepatic veins (blue) are separated from the portal vein
automatically.

(b) Automatic determination of the main branches of the portal vein.
(c) Liver segments supplied by the portal vein branches in (b).
(©Springer 2000, originally published in [44], reprint with permission.

[16] for a discussion). For this reason we describe and eval-
uate two approaches using two different metrics: the near-
est neighbor segment approximation (NNSA), introduced
in Sect. III-C.2, and the laplacian segment approxima-
tion (LASA), which exploits a metric derived by potential
functions in Sect. III-C.3. The use of potential functions
was inspired by recent advances in statistical physics deal-
ing with growth models for branching structures known
as Laplacian Fractals (lightning, viscous fingering, electro-
chemical deposits and other deposits driven by diffusion)
[1], [8], [9]. The LASA-method is based on a fundamen-
tal equation of physics and offers interesting venues for
a scientific understanding of the prediction method. The
NNSA-method is conceptually simple and has rather low
computational complexity.
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Fig. 9. Problem of the segment approximation. (a) ideal situation:
the detailed and dense branching structure of the mathematically
constructed tree directly indicates the supported territories s; of the
four hatched main branches. (b) clinical situation: only the main
portal branches b; can be extracted, which do not directly reveal the
liver segments. (©Springer 2000, originally published in [44], reprint
with permission.

C.1 Liver Segmentation

To extract the liver L, we developed semiautomatic seg-
mentation tools (based on live-wire techniques [50], [31],
[10]). With live-wire segmentation the user starts with se-
lecting a first contour point and moves a pointing device
(for example a mouse) to roughly sketch the object’s con-
tour. The algorithm relies on a cost-function to calculate
an optimal path between the start point and the current po-
sition of the pointing device in real-time. The cost-function
is a weighted sum which considers the magnitude of the
gradient, the direction of the gradient and the laplacian
zero-crossing. With this approach, a few user-defined con-
tour points lead to a piece-wise optimal user-steered seg-
mentation. The initial approach has been carefully refined
in order to enhance 3D segmentation. For this purpose,
live-wire is combined with shape-based interpolation [39]
between interactively segmented contours and subsequent
optimization. This new approach computes the majority
of the contours automatically and therefore reduces the in-
teraction effort. The required time can be shortened by
some 70% (depending on the slice distance up to 85% for
high resolution multi-slice CT data) [41], [42].

C.2 Nearest Neighbor Segment Approximation

For each branch B; (i = 1, ...,n) we define the Euclidean
distance

d;(v) = vrlréig.ﬂv —'||2, wherewv € L. (1)
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(b)

Fig. 10. Nearest neighbor segment approximation (NNSA) using the
Euclidean metric: (a) Euclidean distance d; (v) for the branch B;: the
darker a liver voxel, the greater is distance d;(v) to the branch B;.
The indicated lines are equidistant from B;.

(b) The minimum of the distance functions for all branches reveals
the segment boundaries (see the dotted lines).

(©Springer 2000, originally published in [44], reprint with permission.

Using this metric, liver voxels v € L are assigned to the
branches as follows:

gnnsa(v) =k, (2)
where dj,(v) = min{d;(v), ..., d,(v)}.

Finally, the set of all liver voxels assigned to b; is defined
as liver segment S;:

Si = {U cL | gNNSA(U) = ’L} (3)

In other words, d;(v) is the Euclidean distance of the
voxel v to the nearest voxel belonging to B; (see Fig. 10a).
According to this metric, the closer a liver voxel v is to a
branch B;, the more likely it is for v to be supplied by B;.

The function gynsa assigns to each liver voxel v the
nearest branch By, (cf. Fig. 10b. This figure also shows
the minimal distance min{d;(v),...,d,(v)} for each liver
voxel v. The result o the NNSA-method is shown in Fig. 8c,
which is based on the portal branches in Fig. 8b.

C.3 Laplacian Segment Approximation

The Laplacian method defines for each branch B; (i =
1,...,n) the potential function ¢;(v), which solves the

(b)

Fig. 11. Laplacian segment approximation (LASA) using a metric
based on potentials: (a) Potential ¢; for the branch B;: The potential
is set to 1 (white) for all voxels belonging to B; and to 0 (black) for
the other branches and the region outside the liver. The gray values
for the other voxels indicate the potential ranging between 0 and 1.
The lines indicate surfaces of equal potential.

(b) The maximum of the potential functions for all branches reveals
the segment boundaries.

(©Springer 2000, originally published in [44], reprint with permission.

Laplacian equation
V2¢;(v) =0 ,whenv € L, (4)

and satisfies the boundary conditions

¢i(v) =1 ,when v € B;, (5)
¢i(v) =0 ,whenv € Bj,j # 1, (6)
¢i(v) =0 ,when v ¢ L. (7)

The liver voxels v € L are assigned to the branches as
follows:

grasa(v) =k, (8)
where ¢y (v) = max{¢1(v),..., d,(v)}.

The liver segments are defined as
Si={veL|grasalv) =i}. 9)

The potential ¢;(v) for one of the branches is illustrated
in Fig. 11a. Contrary to the Euclidean distance d;(v), the
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Fig. 12. Results of the segment approximation methods:

(a) NNSA. (b) LASA.

(c) Difference of both methods. The voxels, which are assigned to
different segments are enhanced with dark colors.

(©Springer 2000, originally published in [44], reprint with permission.

potential ¢;(v) depends for each voxel v on every detail of
the completely known anatomy B and L.

The function gpasa assigns each liver voxel v to that
branch By, which contributes the largest potential ¢y (v)
to v. This assignment is indicated in Fig. 11b, which is
a rendering of the maximal potential for each liver voxel
v. The local minima of the potential, which again appear
as "dark valleys”, separate the territories dominated and
supplied by the different branches B;. The result of this
method is shown in Fig. 12b. Even though the LASA-
and NNSA-method differ strongly in their formulation and
computational complexity, they yield rather similar results
(Fig. 12¢).

C.4 Extension of the Segment Laplacian Approximation

Since the Laplacian equation describes different funda-
mental laws in physics, the LASA-method of liver segments
can be interpreted in several different ways. One way is to

think of a diffusion process: The branches B; keep up a
constant concentration of blood, which diffuses into the
liver. According to this assumption, the segment S; then
is that part of the liver, to which the branch B; contributes
the highest concentration of blood, thus having the highest
probability of being supplied by B;. This interpretation
is speculative and needs to be validated. But contrary to
the NNSA-method, this model of blood supply can be ex-
tended in quite a natural way. Since the hepatic vein drains
the blood out of the liver, one can introduce an additional
boundary condition

¢i(v) =0, (10)

when v € hepatic vein,
which defines the hepatic vein as a sink for blood parti-
cles. Furthermore, it seems reasonable, that the amount of
blood, which is delivered by a portal branch, depends on
the size of the branch. Instead of using the boundary con-
dition in Eq.5 which assumes a constant potential 1 for all
branches B;, we introduce a modified boundary condition

¢i(v) = r(v), (11)

where v € B;,
where 7(v) is the local radius of the branches at the position
v. Using this boundary condition, the influence of smaller
branches is reduced in comparison to the larger branches.
Using these boundary conditions, which incorporate addi-
tional anatomical information, the reliability and accuracy
of the LASA-method of the liver segments can be improved.

C.5 Implementation

The calculation of liver segments with the NNSA-method
relies on a distance transformation which is also employed
for the skeletonization (recall Sect. III-B.1). This algorithm
properly handles anisotropic voxels (thus a transformation
to isotropic voxels is not required).

For the solution of the Laplace-Equation relaxation
methods are used which are described in [37]. For this
purpose, the potential is regarded as a diffusion process
with a time variable ¢. Starting with an initial distribution
and the current boundary conditions the diffusion is itera-
tively calculated until it converges. The error bound used
as criterion for convergence determines the runtime of this
procedure. The approach is accelerated with multi-grid
techniques, however it still takes considerable time with
typical clinical data sets (e.g. 512 x 512 x 60 voxels). With
the error-bound 0.001 it took approximately 30 minutes
to determine the liver segments on a typical workstation.
With this error-bound 98.2% of the voxels are assigned to
the same segments compared to an error-bound of 0.0001
which is assumed to produce the correct LASA-result.

D. Visualization of Vasculature

The information derived in the skeletonization and graph
analysis (recall Sect. III-B.1 and III-B.2) can be used for a
high-quality vessel visualization. High-quality here refers
to the ability of a visualization to highlight structural infor-
mation, in particular the branching pattern of vasculature.
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Our method for vessel visualization is based on the follow-
ing assumptions: vascular systems are connected structures
and they may be represented by a circular cross-section.

The basis for the visualization of vasculature is the skele-
ton together with the information concerning the vessel di-
ameter. The edges of the resulting skeleton are smoothed
with a one-dimensional binomial filter with length 3 result-
ing in continuous skeleton lines (see Fig. 13). For all voxels
of the skeleton with two neighbors, e.g. in the absence of
branchings, the skeleton is strongly improved. However,
at branchings the simple smoothing may cause undesirable
effects. For example, in the case of a small bifurcation,
the main branch is pulled towards the small bifurcation.
Therefore, the smoothing process was modified at branch-
ings in such a way that the voxels involved are weighted as
to their relevance. As a measure for the relevance of voxel
v, the size of the subtree which is dependent on the corre-
sponding node V in the bifurcation graph G is employed.
Precisely, the total length of all sub-branches of node V is
used to assess the relevance of v.

Due to the limited spatial resolution of CT-scanners the
vessel diameter derived from the skeletonization varies very
often, in particular for small vessels. If the vessel diam-
eter is directly used for the visualization, annoying arti-
facts would occur. To eliminate these aliasing artifacts, the
strategy which has been developed to smooth the skeleton
path, is reused. A binomial filters is employed to smooth
the vessel diameter along the skeleton path. Again, empha-
sis is put to avoid that new artifacts arise at branchings by
considering the relevance of all voxels which coincide. As
smoothing operations may in principle remove important
information, the user can disable smoothing.

For the visualization of vascular structures an extension
of OpenGL, the GLExtrusions, are used. With this library,
graphics primitives with a certain shape may be extruded
along a path. For the visualization of vascular structures a
vascular tree is mapped to a set of lists L; which comprise
sequential edges of a vascular tree. The edges of each list
represent the path used for the extrusion. As the interpola-
tion of surface normals is applied to the edges of one path,
it is desirable to assign as many edges as possible to one
list. If two possible paths have the same number of edges
the path with the longest total length is chosen. The map-
ping of a vascular tree to the lists L; starts at the root of
the tree and searches the longest path to a leaf node. All
edges involved are assigned L;. This strategy is applied
recursively to each subtree until all edges belong to a list.
Fig. 14 illustrates the process for a simple 2D tree. For each
list concatenated graphics primitives are fitted to the path.
It turns out that truncated cones are able to represent the
constriction of the vessel diameter appropriately. Finally,
concatenated truncated cones are visualized by means of
the GLExtrusions library. We refer to this method as High
Quality Vessel Visualization (HQVV).The HQVV-method
and the interaction techniques for exploring vasculature are
described in detail by Hahn et al. [17].

It must be noted that this visualization method is not
suitable for virtual endoscopy because vertices inside the
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Fig. 13. Smoothing with a binomial filter. The jaggy skeleton on
the left is transformed into the smoother skeleton on the right. Small
quadrilaterals represent the voxel centers. Note, that start and end-
points of the skeleton are unaffected.

Fig. 14. Sequential edges of the vascular tree are mapped to different
lists as prerequisite for the visualization via extrusions. Edges with
the same gray value belong to the same list.

tubular structures are created at branchings which would
be annoying when a virtual camera is moved inside.

E. 3D-Visualization and Surgery Planning

After image processing and analysis steps are carried out,
all objects which have been identified and determined by
approximation are integrated in a 3D visualization. Here,
the user can choose arbitrary viewing directions and has the
flexibility of 3D interaction. The user can assign arbitrary
colors and transparency values and thus design individual
visualizations. Furthermore, annotations which inform for
example about the volume of a structure, can be displayed.

Over and above a flexible 3D-visualization, the user can
preoperatively try resection strategies to pre-estimate the
consequences of a surgical intervention. For this purpose,
two approaches have been developed:

o interactive specification of resection areas,
e automatic proposals how to resect lesions

For the interactive resection several tools have been de-
veloped which might be scaled and moved within the data
[36]. Resection tools can be applied selectively such that
only certain structures are affected (see Fig. 15).

The traditional way of segment-oriented surgery plan-
ning is to determine the localization of a tumor in one or
more liver segments and resect them entirely. However, this
approach may lead to unnecessarily large resection volumes
and suffers from the problems of determining individual
liver segments precisely. As an alternative approach, re-
section areas are suggested based on an analysis of the de-
sired safety margin around a tumor. Based on the tumor
localization and the desired margin all affected vessels are
identified. The methods described in Sect. ITI-C are used
to estimate the area which is supplied by these vessels (see
Fig. 16). As a consequence, the determined volume should
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Fig. 15. A selective resection tool is used to interactively try the
resection. The vessels are not affected by the virtual resection. Thus
it becomes obvious which parts of the vessel system are involved in
the planned resection.

Fig. 16. A sphere as a model for tumor has been placed in the 3D
model of a corrosion cast. Different colors indicate which parts of the
portal venous system are affected in the resection of the tumor with
different margins (0.5 cm - red, 1.0 cm - orange, 1.5 cm - yellow, 2
cm - green).

(©Springer 2000, originally published in [44], reprint with permission.

be removed together with the selected tumor. With this
approach, the surgeon concentrates on the tumor and may
easily try different safety margins whereas the consequences
(the devascularized territories) are computed, highlighted
and quantitatively analyzed.

The strategies for resection proposals have been applied
to CT-data of several corrosion casts as well as to some
clinical data [35]. In most of the cases, the extent and
shape of the resection volumes correspond well to clinical
practice. In cases, where a tumor is located on the central
dorsal part of the liver, the ”suggested” resection volume
is not accessible in-situ.

IV. VALIDATION AND EVALUATION

A. Anatomical Validation with Corrosion Casts

The validation of the methods for segment approxima-
tion is based on a study on vascular corrosion casts of the
human liver. The portal- and hepatic vein of unembalmed
cadavers were injected in situ with resin. After hardening
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Fig. 17. Scheme of the validation of the approximation methods.
(©Springer 2000, originally published in [44], reprint with permission.

of the injected liquid, the liver was removed from the body
and corroded, which leaves the detailed branching struc-
ture of the vessel systems.

High resolution CT scans (slice distance 1 mm) of the
eight casts allow us to extract the portal branches with an
accumulated length of about 10-18 m (contrary to in vivo
data with a length of only 1-1.5m). This yields sufficient
branching generations and allows us to determine very ac-
curately the location and geometry of the portal segments
of the liver.

For the presented study, we chose the branches B; defin-
ing the segments according to the wide-spread scheme of
Couinaud (Fig. 17, upper left). The gaps between the
branches were closed with morphological dilation and ero-
sion operations. Due to the large number of branching
generations extracted the resulting solid portal segments .S;
provide a very precise approximation of the true anatomical
segments. The derived segments have been compared with
liver segments manually specified by anatomists (Fasel et
al. [11]). To simulate the incomplete portal trees obtained
from in vivo radiological data, we systematically pruned
the trees obtained from the casts (Fig. 17, upper right).
Finally, the predictions made for the pruned casts (Fig. 17,
lower right) and the exact segment anatomy of the cast
(Fig. 17, lower left) were compared to validate the approx-
imation methods.

For the validation study, we distinguish three degrees of
pruning, covering the different ” quality levels” of the portal
vein, which are expected to be found in clinical CT data:

B# the main branches of the Couinaud-subtrees B;
(Fig. 18a). These were determined by a radiologist,
and are sometimes referred to in the literature as 3rd
order branches.

BP one more generation of branches than in B#
(Fig. 18Db)

one more generation of branches than in BZB
(Fig. 18c)
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(h) S7

(g) Bf

Fig. 18. Rendering of the portal vein obtained from a CT scan of
a human liver cast. The main subtrees in (a) are assigned different
colors revealing the liver segments.

The pruned vessels in (c), (e) and (g) simulate the rather incomplete
trees obtained from in vivo CT scans. Based on these pruning levels
the liver segments in (d), (f) and (h) are predicted with the LASA-
method and compared with the authentic anatomical segments in (b).
(©Springer 2000, originally published in [44], reprint with permission.

B. Results

The resulting vascular trees are shown for one of the
casts in Fig. 18(c,e,g). The approximated segments based
on these trees are denoted by S7, SB, S¢. Results
for the LASA-method (without extended boundary con-
ditions) are shown in Fig. 18(d,f,h) and can be compared
with the authentic anatomical segments S; (Fig. 18b) based
on the unpruned subtrees B; (Fig. 18a).

A quantitative evaluation of the accuracy of the approx-
imation methods was carried out in different ways: the vol-
umetric overlap between the approximated and the authen-
tic segments as well as the distance between the approx-
imated segment borders and the correct segment borders
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have been determined [43]. Here we focus on the volumet-
ric overlap computation. For each cast, for each pruning
level L = A, B,C and for each segment ¢ = 1,...,n we
computed the volume V' (S; N SF) of the overlap between
the authentic segment S; and the approximated segment
SE. Thus, we obtain the percentage amount of correctly
classified voxels Y"1 | V(S;NSF)/V(L)*100% for the whole
liver, where V(L) is the liver volume.

The results of the approximations naturally improve with
the level of detail available for the portal tree (see Ta-
ble I). The standard deviations specified in the table re-
fer to all segments of a cast. Larger values have found
for each individual segment (in particular for smaller seg-
ments). The amount of ramifications in portal trees ex-
tracted from clinical CT data lies between the pruning lev-
els A and C. Therefore we expect for clinical data that
the NNSA-method will predict the portal segment volumes
with an accuracy between 80% to 90%.

TABLE I
REsuULTS OF THE LASA- AND NNSA-METHODS: VOLUME OVERLAP:
MEAN (STD) FOR EIGHT CASTS

Pruning level A B C

NNSA 79.0% (3.6) | 89.9% (2.9) | 93.4% (2.9)
LASA 77.7% (3.5) | 88.6% (2.6) | 91.7% (2.9)
Ext. LASA 81.7% (3.5) | 90.8% (2.8) | 92.7% (2.9)

The effect of incorporating the hepatic vein using the
boundary condition in Eq. 10 (recall Sect. III-C.4) is il-
lustrated in Fig. 19. Comparing Fig. 19a and b, the seg-
mental boundaries are obviously attracted by the hepatic
vein (gray spots) in Fig. 19b. Since anatomical examina-
tions have shown that the hepatic vein typically proceeds
between the liver segments (this property is confirmed in
Fig. 19c¢), the accuracy of the LASA-method is improved
locally when considering the hepatic vein. In this case,
for example, the local volumetric overlap of the blue seg-
ment is improved by 10%. We refer to the LASA-method
which considers the hepatic vein as extended LASA. The
improvement which could be achieved with the extended
LASA-method is summarized in the last row of Table I. It
turns out that for pruning level A the effect is most no-
ticeable resulting in an approximation superior compared
to the NNSA-method. For pruning level C, even the ex-
tended LASA-method is slightly less correct compared to
the NNSA-method. Considering the local radius of the
branches using the boundary condition in Eq.11, we found
that the results of the LASA-method become more robust
against reconstruction artifacts of the portal tree. The sup-
plied territory of a thick portal branch, for example, is
much less affected, if some of its thinner side branches are
cut off. This situation may appear in clinical data, due to
pathological changes of the vessel structure, which impede
the flow of the contrast agent.
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()

Fig. 19. Effect of the LASA-method with consideration of the hep-
atic vein: This example shows a 2D-slice of one of the casts with
the additional hepatic vein drawn in gray and colored liver segments.
The segments in (a) are based on the LASA-method using the pruned
portal tree only, in (b) on the LASA-method with additional consid-
eration of the hepatic vein and in (c) on the unpruned portal tree
revealing the authentic liver segments.

(©Springer 2000, originally published in [44], reprint with permission.

C. Clinical Evaluation

In addition to the anatomical validation, our methods
have been evaluated in the clinical environment for more
than 170 cases until now (at Medical School Hannover, at
University Hospital Essen, and at the hospitals in Hof and
Krefeld). For the planning of liver resections in patients
with liver tumors, the liver, tumors, arteries, portal and
hepatic vein were extracted from CT-data and visualized
in 3D with our software assistant HepaVision. It has been
shown that these visualizations allow a suitable interac-
tive planning of liver resections and improve the prepara-
tion especially of complex liver resections [18]. The intra-
operative findings agree with the 3D visualizations. Espe-
cially for LRLT, surgeons at Medical School Hannover reg-
ularly use the 3D reconstruction and volumetric analysis
which are carried out by the radiologists using our system
[12].

The vascular anatomy is crucial in the evaluation of po-
tential donors. There are many different variants of the
primary branching pattern of each of the vascular sys-
tems [32]. The next three images relate to applications
in LRLT (living-related liver transplants) planning. As a
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Fig. 20. HQV visualization of the intrahepatic vascular anatomy
(hepatic vein and portal vein). The vessel diameter is smoothed.

first example, the vascular anatomy of a potential donor’s
liver is shown (Fig. 20). Two colors are employed to high-
light the portal vein and the hepatic vein. Fig. 21 depicts
an anatomic abnormality of a portal venous system and
Fig. 22 shows the separation of graft and remaining donor
liver. The vessel visualization methods, which have origi-
nally been developed to visualize vessel trees from corrosion
casts, have turned out to be useful for surgery planning.

For the acceptance in a clinical setting, the time re-
quired to carry out the image analysis is crucial. Using the
feedback provided by the clinical partners, HepaVision has
been improved significantly over the last four years and mi-
grated from Silicon Graphics Hardware to Windows-based
PCs. In this process, the graphical user interface, the fa-
cilities to generate visualizations and animation sequences
have been enhanced. With the current version, preoper-
ative planning takes an experienced user an hour on av-
erage for oncologic cases and 45 minutes for planning of
LRLT where tumor segmentation and risk analysis are not
relevant. The following times give an idea how the total
time is spread over individual steps: import DICOM data
and select a region of interest (5 minutes), liver segmen-
tation (10-15 minutes), tumor segmentation (5 minutes),
preprocessing, vascular segmentation and skeletonization
(5 minutes), vascular analysis (10-15 minutes), risk analy-
sis (10-15 minutes), generation of snapshots and animation
sequences (5-10 minutes). Risk analysis has been intro-
duced recently and can be further improved.

V. RELATED WORK

The crucial aspect of the work presented in this paper is
the integration of all aspects of vessel analysis for clinical
use. Robustness, efficiency but also interactive controlla-
bility are therefore essential. We start this section with a
short discussion of related work on liver surgery planning
and then discuss methods to efficiently and reliably solve
individual tasks of vessel analysis.

A. Liver Surgical Planning

Only a few groups world-wide deal with image analysis
for liver surgery planning. A group in France has devel-
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Fig. 21. A patient was evaluated as potential donor for a living trans-
plant. The HQVV-method reveals a trifurcation, a seldom anatomic
variant. Because of this variant an operation was considered to be
too risky.

Fig. 22. Preoperative planning of split-liver resections: The liver can
be split by separating three segments from the rest of the liver. The
HQV-method is used to display the portal vein.

oped robust methods for the analysis of clinical data for
liver surgery planning [46]. Liver segmentation as well as
the segmentation of intrahepatic structures are carried out
fully automatically (see also [47]). The underlying idea for
the automatic liver segmentation is to start with the seg-
mentation of more prominent surrounding structures (skin,
bone, lung, kidney) and thereby restricting the search space
for the liver location. The intensities of the parenchyma,
the lesions and intrahepatic vasculature are estimated by
fitting a Gaussian to the image histogram. The methods
have been applied to 30 clinical cases. According to the
literature the methods work reliable in the majority of the
cases for a precise imaging protocol of high resolution spi-
ral CT data. The drawback of the automatic approach,
however, is a lack of interactive controllability if something
fails. A group at German Cancer Research Institute Hei-
delberg developed a system for liver surgery planning ([14],
[15]) and evaluated its use [22]. Both groups also approx-
imate Couinaud liver segments using the NNSA-method
(recall Sect. ITI-C.2.

B. Vessel Segmentation

A variety of methods for the 3D segmentation of vas-
culature, in particular from intracranial [2], retinal [56],
pulmonary and abdominal volume data (see [48] for an
overview) has been developed. Region-growing methods,
similar to our approach (recall Sect. ITI-A) are widely used,
however they differ considerably in their applicability to
clinical images due to data preprocessing and the degree
of interactive controllability. considerably. For example,
in [52] the assumption that some 5% of the volume data
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are occupied by vasculature is employed. An appropriate
portion of the histogram is selected and the corresponding
voxels are used as input for the region-growing. Dokladal et
al. [7] describe a modified region-growing algorithm which
considers topological properties of vasculature for the ex-
traction of liver blood vessels. Multi-scale methods for ves-
sel segmentation, which exploit local and global features of
vessels for segmentation, have been proposed by Lorenz et
al. [26] and Martinez-Perez et al. [28].

An alternative approach to explicit vessel segmentation
is axis detection where vessel segmentation and skeletoniza-
tion are integrated (see Sect. V-D).

C. Skeletonization and Graph Analysis

Recently, 3D skeletonization algorithms have been de-
veloped as part of a vessel analysis pipeline or in order
to compute a path for virtual endoscopy. For virtual en-
doscopy a skeleton without branchings and without loops
is required.

For the analysis of vasculature, Masutani et al. [29] de-
veloped an algorithm based on mathematical morphology.
The algorithm controls irrelevant side-branches of skeletons
utilizing structure elements of different size. The segmen-
tation method of Sonka (recall [49]) is part of a pipeline for
vessel analysis. The tree structure of vessels is derived by a
dilatation along the axis. Structural features are extracted
to separate intracranial vessel systems (arteries and veins).

For vessel segmentation and vessel analysis, also the con-
cept of fuzzy connectedness has been employed. This the-
ory was originally applied to MR brain segmentation and
lesion detection (Udupa [51]) and later modified for analy-
sis of vascular structures by Lei, Rice and Udupa [24], [40].
Local fuzzy affinity (spatial nearness and region homogene-
ity) is combined with a global measure for fuzzy connected-
ness to perform vessels segmentation and the separation of
different vascular systems. A more recent paper describes
the methods and their clinical application in detail [25].

D. Combination of Vessel Segmentation and Skeletoniza-
tion

Methods to obtain a vessel axis from 3D images have
been reviewed by Wink [53]. These are subdivided into di-
rect and indirect approaches, where direct approaches track
the vessel axis in the original data without prior vessel seg-
mentation. Direct approaches, on the other hand, often
have difficulties with large variations in the size of the ob-
jects tracked (for example in the vicinity of a stenosis). An
example for a direct skeletonization approach is given in
[33] where confocal images are analyzed.

Wink et al. [52], [53] present a direct approach for me-
dial axis determination which considers the high variations
of vessel shape and size in CT and MR angiographies. The
method relies on the manual determination of two points
which define a first segment of the central axis. In each
iteration the vessel axis is extended by one point (the can-
didate point) and a plane, which is perpendicular to the
current segment is constructed. A center likelihood mea-
sure is defined to evaluate points in the plane and to detect
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the center of the vessel (the point with the maximum cen-
ter likelihood). Based on the new center point, the next
candidate point is determined by extrapolation along the
current medial axis.

The skeletonization method by Yim et al. [54] is partic-
ularly suited for small vessels in MRA. It is based on an or-
dered region-growing (ORG) where an image is represented
as an acyclic graph which may be reduced to a skeleton by
specifying desired vessels end points and by pruning small
branches. The ORG algorithm constructs a graph which
represents the connectivity of all voxels based on inten-
sity information. The drawback of this method is that all
leaves of the vessel tree have to be specified which is not
necessary with the methods described in this paper. Irrele-
vant branches are avoided by a threshold criterion on their
length. This criterion, however, is less appropriate than the
suppression of skeleton branches, described in Sect. III-B.1.
Yim et al. [55] developed a direct approach to vessel skele-
tonization as a basis for the detection and quantification of
stenosis from MRA data. They employ a deformable model
which allows for high variability in the vessel cross-section
and for high curvature of vessels.

E. Reconstruction of Vessels for Visualization

The benefits of the reconstruction of vascular structures
enabling a visualization which emphasizes the connectivity
and shape features was recognized early [13]. Vessels have
been displayed with tubes after the extraction of topologi-
cal filters [29]. A smooth transition of the tubes at branch-
ing points, however, is not considered. Methods for the vi-
sualization of cerebral blood vessels have been introduced
by [38]. The focus in this work is on shading techniques
emphasizing the curvature of vessels as well as the efficient
computation of the resulting surface-based visualizations.

VI. CONCLUSION

We have presented methods for the analysis and visual-
ization of hepatic vasculature and for the approximation
of vascular territories. Our analysis of 8 human corro-
sion casts revealed the accuracy of the methods for the
prediction of vascular territories. The approximation al-
gorithms are also employed to ”suggest” tumor resections
with respect to certain safety margins. In cases, with sev-
eral metastasis or a tumor in a central location, these sug-
gestions are helpful because it is not obvious whether the
patient is resectable at all.

The HQVV-method for the visualization of vasculature
is inspired by the visualizations in traditional teaching ma-
terial. We have attempted to create 3D visualizations of a
similar quality with two additional advantages: the visual-
izations reveal patient-specific branching patterns and can
be explored interactively.

The methods presented here are not bound to classi-
cal liver surgery planning, but may also be relevant for
minimally-invasive therapies for the ablation of liver tu-
mors. Several organs within the human body, e.g. the lung,
the kidney and the pancreas, are also characterized by hi-
erarchical vessel systems. We have applied our methods to

14

lung segment approximation and have evaluated them by
comparing the results utilizing in-vitro specimans (Krass et
al. [20]). Vessel analysis techniques have also been applied
to intracranial arteries and to quantify abdominal aortic
stents [34].

Much effort was spent on the integration of the algo-
rithms in a software assistant, called HepaVision. This
software has been used at various hospitals to plan some
130 oncologic resections and 40 living-related liver trans-
plants so far.
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