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Abstract. 4D PC-MRI enables the measurement of time-resolved blood
flow directions within a 3D volume. These data facilitate a comprehensive
qualitative and quantitative analysis. However, noise is introduced, e.g.,
due to inhomogeneous magnetic field gradients.
Blood is commonly assumed as a non-Newtonian fluid, thus, incompress-
ible, and divergence should be zero. Divergence-free filters enforce this
model assumption and have been shown to improve data quality.
In this paper, we compare binomial smoothing and three of these tech-
niques: The finite difference method (FDM) [1], divergence-free radial
basis functions (DFRBF) [2] and divergence-free wavelets (DFW) [3].
The results show that average and maximum velocities tend to decrease,
while average line lengths tend to increase slightly. We recommend FDM
or DFW divergence-free filtering as an optional pre-processing step in 4D
PC-MRI processing pipelines, as they have feasible computation times
of few seconds.

1 Introduction

4D phase-contrast magnetic resonance imaging (4D PC-MRI) [4] allows to acquire
blood flow information as a 3D+time velocity vector field. Unfortunately, the
data are prone to noise for various reasons. Proper pre-processing is essential to
improve both subsequent qualitative and quantitative data analysis. Yet, simple
image smoothing methods do not provide a sufficient correction. Therefore,
customized methods were developed for each type of noise. For instance, the
expected maximum velocity is a pre-scan parameter that has to be estimated
based on experience and literature. If chosen too low, image values may flip and
blood seemingly runs in the opposite direction (called phase wrap). If chosen too
high, the measured vectors’ accuracy and angular resolution suffers. Another
cause for noise are inhomogeneous magnetic field gradients.

Blood is typically modeled as non-Newtonian, incompressible, laminar fluid.
Divergence should be zero and a fluid element’s density constant over time.
However, noise in the data causes that the obtained divergence is non-zero. A
specialized group of filters was established for 4D PC-MRI named divergence-
free filters [5]. As the name suggests, they try to enforce this model assumption,
which results in a smoother, theoretically more correct flow field.
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In this work, we assess the results of three selected methods while using
simple binomial smoothing as reference. The finite difference method (FDM)
[1] reduces noise by projecting the data to a divergence-free vector field. The
projection is reduced to a 7-point stencil Laplacian problem (two points on x, y
and z plus the center) and is solved with a fast Poisson solver using fast Fourier
transformations. Divergence-free radial basis functions (DFRBF) [2] employs a
combination of normalized convolution and divergence-free radial basis functions
in an iterative least-squares algorithm [6]. Divergence-free wavelets (DFW) [3]
propose a soft divergence-free enforcement since it might be non-zero at the
vessel boundaries due to partial volume effects.

Our comparison of 15 diverse datasets is based on both quantitative and
qualitative criteria. We evaluate resulting pathlines according to different criteria,
such as their length. Moreover, we assess measures, e.g., average velocities, for
measuring planes in the vessels’ cross-sections and perform side-by-side com-
parisons of the vector fields. Our results suggest that divergence-free filters
perform better than binomial smoothing and might be a useful addition in a
corresponding 4D PC-MRI pre-processing pipeline.

2 Methods

2.1 Data Acquisition and Pre-Processing

Our 15 datasets were obtained with a 3 T Magnetom Verio MR at the Heart
Center in Leipzig, a hospital specialized in diagnosis and treatment of heart
diseases. The data comprise both healthy volunteers as well as patients with
different cardiovascular diseases, such as aneurysms and aortic valve defects. The
image sizes and scales are about 140×190×15–70 (1.8×1.8×1.8–3.5 mm) with 15–
20 temporal positions (40–60 ms). The expected maximum velocity was chosen
between 1.5–3.0 m/s, depending on the patient-specific situation, and phase
unwrapping was performed [7]. A vessel surface is extracted from a binary seg-
mentation via marching cubes and then smoothed. Centerlines were extracted [8]
with the Vascular Modeling ToolKit (VMTK). Blood flow-representing pathlines
are integrated using Runge-Kutta-4. Köhler et al. [5] provide a comprehensive
overview about the general 4D PC-MRI data processing pipeline.

2.2 Implementation and Parameters

All methods were implemented in C++. The three divergence-free filters are
based on MATLAB code provided by Ong et al. [3]. OpenMP was used to
parallelize the computation of individual time steps (each algorithm considers
one temporal position at a time). Optimization was set to -O3.

For binomial smoothing (Binom) we used an isotropic kernel size of 3. Analo-
gous to the divergence-free filters, each temporal position is processed separately.
The finite difference method (FDM) requires no further settings. SureShrink [9]
was used as threshold for Divergence-free Wavelets (DFW) with spin = 2, both as
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suggested by the authors [3]. For divergence-free radial basis functions (DFRBF)
we used an isotropic convolution kernel of size 3. This rather small size limits
the smoothing effect that comes with RBF. In our examples, convergence was
observed experimentally at about 20 iterations, which we use as default.

2.3 Comparison

We calculate all of the criteria below for each dataset in every configuration
(original, different filterings) and then calculate ratios where the original is
the reference. The ratios indicate whether the corresponding criterion decreases
(values < 100 %) or increases (values > 100 %) after filtering. The ratios’ distribution
(one ratio per dataset per filtering) will be presented as box plots. The criteria
were inspired by divergence-free papers [1,2,3].

Our first employed measure is the average divergence within the vessel seg-
mentation. For this, we manually chose the time step that represents peak systole
(when the blood is pumped).

Four equidistant measuring planes were placed, starting inside the ascending
and ending in the descending aorta, where higher and lower velocities are ex-
pected, respectively. Besides a qualitative comparison of the in-plane vector
fields, we evaluated the average and maximum velocity vector magnitudes. To
increase robustness, we use the 95 % quantile as maximum.

We integrate one pathline for each voxel of the vessel segmentation in 3
temporal positions: peak systole and its predecessor and successor. For these
pathlines, we calculate their absolute length as accumulation of Euclidean dis-
tances between subsequent line segments. The temporal components are ignored.
Also, we calculate their relative length by projecting all pathline points onto
the vessel’s centerline and then determining the centerline’s arc length between
the two projected points closest to the beginning and end of the centerline.
This measure resembles the distance of end points while taking into account
the curved vessel as domain. If there is a significant deviation of absolute and
relative line length, this is an implicit indicator for increased curvature, e.g., due
to vortex flow. The last measure reuses the measuring planes. It describes how
many pathlines connect the first and the last plane. An increase of this measure
indicates that less lines prematurely abort because they run out of the segmen-
tation due to noisy flow directions.

3 Results and Discussion

This section starts with a performance assessment of the employed divergence-
free methods. We proceed by comparing results of 15 datasets according to
the previously described criteria. Fig. 1 illustrates the ratios how each criterion
increases or decreases relative to the unfiltered dataset.

The tests were performed on an Intel i5-6400 quad core with 3.4 GHz. Generally,
computational effort depends on the image size. DFRBF additionally depends
on the number of iterations. DFW computation time increases with higher spin
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values. On average, FDM was performed in 1–3 s, DFW in 15–45 s, and DFRBF
in 5–15 min. We consider up to 1 min as feasible for integration in a processing
pipeline of a corresponding evaluation tool. Thus, DFRBF is not appropriate in
this respect.

Fig. 2 shows an exemplary comparison of resulting divergence fields. Binomial
smoothing consistently lowers the divergence as velocities and their derivatives
become smaller. To our surprise, FDM increases the divergence by median +16.3 %
(see Fig. 1(c)). DFW and DFRBF both have decreased the divergence for every
dataset by median −11.3 % and −28.1 %, respectively. The comparably strong
decrease of DFRBF might be due to the general smoothing that comes with
using RBF. For DFM and DFW the decrease is not as strong as we expected.
The high remaining divergence values at the segmentation boundaries are a
known problem in the corresponding papers [2].

The results from Figs. 1(a)–(b) indicate that both the mean and maximum
velocities are decreasing for all methods, though, not as strongly as with simple
binomial smoothing. There are mostly minor changes up to 10 %. This seems
plausible since a certain degree of smoothing comes with application of the
filters. The smoothness of DFRBF is comparable to binomial filtering, FDM
has the least degree of smoothing and DFW is in between. Fig. 3 shows an
exemplary measuring plane. Velocity changes can be crucial, since velocities
directly influence quantitative measures, such as net flow volumes, that assess
the flow passing a measuring plane.

FDM significantly increases both the pathlines’ absolute and relative length
up to +36.4 % and +34.7 % maximum and +15.1 % and +10.1 %, respectively
(see Figs. 1(d)–(e)). DFW produces approximately the same absolute and relative
line lengths as the unfiltered datasets (median −1.9 % and −0.4 %), so does

(a) Mean velocity. (b) Maximum velocity.

(c) Divergence. (d) Absolute line length.

(e) Relative line length. (f) #Lines connecting first and last plane.

Fig. 1. The box plots depict how each criterion (see Sec. 2.3) changes w.r.t. the
unfiltered original. Black vertical lines mark the reference at 100 %. Orange lines are
median values. Blue boxes are interquartile ranges. Red crosses are outliers.
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(a) Original. (b) Binomial. (c) FDM. (d) DFW. (e) DFRBF.

Fig. 2. Divergence field of a healthy volunteers aorta during systole in sagittal
orientation. Binomial smoothing (b) decreases, FDM (c) slightly increases, DFW
(d) slightly decreases, and DFRBF (e) strongly decreases the divergence field. The
divergences at the vessel boundaries remains comparably high (c-e), which is a known
behavior in the corresponding papers.

(a) Original. (b) Binom. (c) FDM. (d) DFW. (e) DFRBF.

Fig. 3. Velocities (rainbow color scale) of a measuring plane inside the ascending
aorta of a patient during systole. The general velocity distribution is preserved in
all approaches, however, the degree of smoothing strongly varies. The DFRBF result
is the smoothest, which is confirmed by the highest decline of average velocities.

DFRBF (median −1.1 % and +2.7 %). For the latter two approaches, visual
pathline changes are not noticeable. For FDM we could observe situations where
laminar pathlines, starting in the ascending aorta, followed the vessel course
longer than before, i.e., they reached farther into the descending aorta, which is
physiologically expected. This is underlined by the number of lines connecting
the first and last measuring plane (see Fig. 1(f)). Here, FDM achieves a median
improvement of +38.5 %. Interestingly, DFRBF even reaches +43.4 % improvement
although the line lengths were not significantly increased. This could be explained
by a straightening of the pathlines. DFW had a decline of −18.1 %. For all three
line-related criteria, DFW is closest to the binomial smoothing result.

4 Conclusion and Future Work

In this work we have evaluated three state-of-the-art divergence-free filters (FDM,
DFW, DFRBF) for their influence on the resulting flow field and pathlines.
Velocity values decreased up to 10 % with all methods, which we consider as
a reasonable margin. The pathline quality improved in many cases, which was
observable via increasing line lengths and more lines being able to follow the
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vessel course correctly. Divergence did not decrease as strongly as we expected
and even increased using FDM. However, standard binomial smoothing, which
was used as a reference, produced worse results, e.g., by strongly altering vortex
flow patterns. This underlines the value of divergence-free filters.

A drawback of our comparison and 4D PC-MRI data in general is that there
is no ground truth. Thus, it is not clear to what extent the differing results are
improvements or not. A future work could be to employ 2D PC-MRI, which
measures only one slice over time within the vessel, but with a higher spatio-
temporal resolution. One could argue that this should produce more accurate
results than the same measuring plane in 4D PC-MRI. Hence, if quantification
results, e.g., for net flow volumes, come closer to the 2D PC-MRI reference after
divergence-free filtering, this should indicate a definite improvement.

We cannot recommend divergence-free filtering as a mandatory pre-processing
in corresponding 4D PC-MRI evaluation software. Yet, we think it should be
provided as an optional step to facilitate getting more experiences with these
techniques. With respect to the computation times, FDM (≤ 3 s) and DFW
(≤ 45 s) are feasible, whereas DFRBF (≥ 5 min) is not.
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