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Abstract. Diagnosis of breast tumors is not always possible with X-ray
mammography. Because of its additional information, dynamic contrast
enhanced magnetic resonance imaging (DCE-MRI) can improve classi-
fication into benignity or malignancy. In clinical research, the expert
evaluates the whole lesion, single voxels, or regions of interest (ROIs).
The presented approach focuses on ROI-based evaluation. For generation
of ROIs, i.e. groups of homogeneous tumor voxels, a spectral clustering
approach is adapted because of its ability to form spatially connected
clusters with arbitrary shape. In addition, a set of clustering parameters
is derived semi-automatically so that no user input is necessary. Based
on the clustering result, features from the most suspect region and the
whole tumor are extracted and a decision tree is learned to determine
malignancy or benignity of a lesions. A first experiment shows that this
approach is able to correctly classify 82.6% instances of the tested data.

1 Introduction

Malignant breast tumors are characterized by a “formation of new vessels and/or
the sprouting of existing capillaries in the peritumoral stroma”[Kuh07]. This pro-
cess is called neoangiogenesis. X-ray mammography is often used for evaluation
of breast tumors. However, it is not always possible to make a clear decision.
Particularly younger women have dense breast tissue that does not reveal patho-
logic masses. The additional information of dynamic contrast enhanced magnetic
resonance imaging (DCE-MRI) can improve breast tumor evaluation. Because
of its high sensitivity it even may reveal yet undetected metastasis. However,
DCE-MRI’s specificity is only moderate compared to X-ray mammography. To
improve the specificity, and therefore the automatic classification of breast le-
sions, the lesion’s heterogeneity and the lesion enhancement kinetics are evalu-
ated in clinical research [GPTP10].
Typically, newly formed vessels of the tumor yield an early contrast agent (CA)
enhancement and therefore a strong CA wash-in. In addition, a rapid CA wash-
out is caused by the highly permeable vessels. In current clinical research, ra-
diologists evaluate kinetic CA enhancement based on the whole lesion, single
voxels or regions of interest (ROIs). This approach focuses on ROI-based evalu-
ation. Therefore, The ROI’s average relative enhancement (RE) over time - the
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RE curve - is computed. From the early RE and the curve’s shape, the radiolo-
gist assesses the CA wash-in and wash-out to distinguish between malignant and
benign tumors. The manual selection of the ROI is a very cumbersome and error-
prone task. In the study of Chen et al. [CGBN06], a clustering based on fuzzy
c-means is applied to automatically identify the most characteristic RE curve
from breast lesions. Glaßer et al. [GPTP10] suggest a region merging to create
partitions with similar perfusion characteristics and to compute quantitative and
qualitative measurements to provide additional information for detecting malig-
nant breast cancer. In their recent work [GNP+13], a density-based clustering
followed by a connected component analysis is applied to detect the most sus-
pect region. In a second step, a decision tree is learned based on features of this
region to automatically distinguish between benign and malignant tumors.
The grouping of the tumor voxels into homogeneous regions in terms of their per-
fusion characteristics is a challenging task due to noise of the individual voxels’
RE curves. In this study, a spectral clustering based approach is presented that
integrates both perfusion characteristics and spatial information for a spatially
connected and homogeneous region division. In addition, a set of clustering pa-
rameters is proposed based on empirical studies and dynamic computations that
analyze the properties of the tumor, so that no user-input is necessary. Based
on the resulting partitioning, meaningful features are extracted to learn a deci-
sion tree that distinguishes between malignant and benign breast cancer. The
approach was evaluated with a data set of 68 breast tumors whose malignancy
or benignity could not be clearly diagnosed by X-ray mammography.
Spectral clustering was successfully employed in applications like image segmen-
tation ([SM00], [MBLS01], [ZTW06]), text mining [BJ06] and data mining of
large network data sets [WS05]. Compared to simple clustering algorithms like
k-means, it is invariant to cluster shapes and densities and does not get stuck in
local minima. In recent years, there have been many studies and improvements
of spectral clustering. In [AV13], the performance of various proximity measures
when applied to spectral clustering algorithms is analyzed. Zelnik-Manor and
Perona [ZMP04] propose a system to automatically determine the optimal clus-
ter number and to select an appropriate scale for computing the affinity between
each pair of points. A basic comparison of some spectral clustering methods has
been proposed in [VM03]. Li et al. [LLCT07] address the problem of robust spec-
tral clustering of data containing significant noise and an unknown number of
clusters.

2 Material and Methods

The section gives a detailed description of the medical image data containing
breast tumors and outlines the spectral clustering approach to classify lesions
into malignant and benign breast cancer.
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Fig. 1. In (a) an RE curve and its descriptive perfusion parameters are depicted. In
(b), the 3TP classes based on RE at t′1, t′2, and t′3 are presented. (Image retrieved from
[GNP+13]).

2.1 Tumor Data

The data sets comprise 50 patients with 68 breast tumors. 31 tumors proved to
be benign and 37 malignant (confirmation was carried out via histopathologic
evaluation or by follow up studies after six to nine months). All lesions could be
only detected in DCE-MRI.
The data sets were acquired with an 1.0 T open MR scanner and exhibit the
parameters: in-plane resolution ≈ 0.67× 0.67mm2, matrix ≈ 528× 528, number
of slices ≈ 100, slice gap = 1.5mm, number of acquisitions = 5 − 6 and total
acquisition time ≈ 400s. During and immediately after the bolus injection of CA,
one pre-contrast and four to five post-contrast images were acquired per series.
Since DCE-MRI data exhibit motion artifacts mainly due to thorax expansion
through breathing and patient’s movement, motion correction was carried out
with MeVisLab (www.mevislab.de), employing the elastic registration developed
by Rueckert et al. [RSH+99]. Next, the relative enhancement (RE) of a tumor,
i.e. the percent aged signal intensity increase, is calculated with

RE =
(SIc − SI)

SI × 100

[Kuh07]. Here, SI is the pre-contrast and SIc is the post-contrast signal in-
tensity. Each breast tumor was segmented by an experienced radiologist. The
segmentation comprises only voxels exhibiting an RE higher than a predefined
threshold at the first time step after the early post-contrast phase [PGP+12].

2.2 Clustering

The RE plotted over time yields RE curves that allow for the extraction of the
following descriptive perfusion parameters: wash-in (the steepness of the ascend-
ing curve), wash-out (the steepness of the descending curve), integral (the area
under the curve) and time to peak (the time when peak enhancement occurs),
which are substitutes for physiological parameters like tumor perfusion and ves-
sel permeability (see Figure 1(a)).
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Based on these properties, a spectral clustering method is carried out to divide
each tumor into homogeneous and spatially continuous clusters. The following
paragraph gives a short overview of the basic idea of spectral clustering and spec-
ifies the clustering parameters that are used in this approach. A more detailed
review of spectral clustering is given in the tutorial of Luxburg et al. [VL07].
The purpose of clustering is to separate data points into several groups such that
points in the same group have similar properties and points in different groups
are dissimilar to each other. In spectral clustering, this problem is reformulated
as a graph cut problem: The data points are considered as nodes of a connected
graph and clusters are found by partitioning the graph such that edges between
different groups have very low weights and edges within the same cluster have
high weights. Such a graph cut can be easily found by using the eigenvectors
and eigenvalues of a specific matrix - the Laplacian matrix - to map the original
data points in a low dimensional space that can be easily clustered.
The weighted, undirected graph for spectral clustering is constructed from the
initial data set whereas each node represents a data point and each edge measures
the similarity between two points by some symmetric and non-negative similar-
ity function. Based on this affinity matrix, a Laplacian matrix is constructed and
an eigenvalue decomposition is performed. The eigenvalues and eigenvectors are
used to map the original data points to a k dimensional subspace - the spectral
domain. This new representation should now contain well expressed clusters that
can be separated by applying simple clustering techniques like k-means.
In this approach, the breast tumor data sets consist of voxels that are repre-
sented as regular data arranged in an orthogonal three dimensional grid. Each
voxel includes four descriptive perfusion parameters: wash-in, wash-out, integral
and time to peak. This information is normalized and used to construct a sim-
ilarity graph for the Ng-Jordan-Weiss algorithm [VL07] - a multi-way spectral
clustering algorithm - that partitions the data into k groups directly. Each node
of the graph represents a voxel of the corresponding breast tumor. To obtain
spatially connected clusters, each node is connected to its adjacent nodes in a
26-neighborhood. As proposed in [VL07], the Gaussian similarity function:

s(xi, xj) = exp(−dist(xi, xj)
2σ2

)

is used to represent the local neighborhood relationships. The distance dist(xi, xj)
between two points is measured by using the cosine similarity of the correspond-
ing perfusion data as proposed in [AV13]. The scaling parameter σ describes
how rapidly the affinity decreases with increasing distance between xi and xj .
Instead of manually selecting σ, a local scaling parameter is calculated for each
data point as proposed by Zelnik-Manor et al. [ZMP04]. This parameter depends
only on the number of neighbors n that should be considered to compute the
scale. An empirical study was employed to find an n that achieves best cluster-
ing results for the breast tumor data used here. Therefore, three internal cluster
validation measurements [RAAQ11]:

– Davie-Bouldin index,
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– Dunn-like index and
– Calinski-Harabasz index

were computed. The validity indices evaluate the resulting cluster in dependence
of n: While the number of clusters is fixed, the number of neighbors is varied in
the range of n = {3, 5, 7, 9, 11} and the cluster results are analyzed. As shown
in Figure 2, all three validity indices generally achieve good results for n = 3,
regardless of the number of clusters. After mapping the initial data to the spectral
domain, a k-means clustering is performed. To specify the number of clusters k
automatically, several methods have been proposed, e.g. analyzing the eigengap
[VL07] or exploiting the structure of the eigenvectors [ZMP04]. Unfortunately,
the breast tumor data are noisy, so these methods become less effective (see
Figure 3). In this approach, the validity indices, mentioned above, are used to
find an optimal k for each data set. Therefore, the spectral clustering algorithm
is calculated several times with different cluster numbers (k = {3, 4, ..9}) and
the best k is selected automatically according to the majority of the validation
measurements. In case there is no clear decision, a k based on the best (i.e.
minimal) Davie-Bouldin index is chosen as suggested in [HBV02].

Fig. 2. Result of the average Davie-Bouldin (DB), Dunn-like (Dunn) and Calinski-
Harabasz (CH) index for a varying number of neighbors (n ∈ {3, 5, 7, 9, 11}) and a fixed
cluster number. For n = 3, all indices show good results (a minimal DB, a maximal
Dunn and a maximal CH index), regardless of the number of clusters.
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Fig. 3. The eigengap is the difference between two successive eigenvalues. It can be
used to estimate the number of clusters in spectral clustering [VL07]. In this approach,
the eigengap is not visible due to noise.

2.3 Feature Extraction

Based on the clustering, features are extracted for classification. In the first step,
the most suspect region of the clustering result is determined, because a tumor is
as malignant as its most malignant part. Therefore, the three-time-point (3TP)
method is applied by [DGW+97]. This technique assigns automatically each
voxel’s RE curve to an 3TP class based on three time points. In this study, the
most suspicious region corresponds to the largest cluster with a most frequent
RE curve of 3TP class 7. If no such cluster exists, a cluster with the 3TP class 9,
8, 4, 6, 5, 1, 3, 2 in that order is identified as the most suspect one (see Figure 1b).
This user-defined ranking is based on definitions of the most malignant tumor
enhancement kinetics: a present wash-out in combination with a strong wash-
in [GNP+13]. In the next step, both features from the whole tumor as well as
from the most suspicious region are extracted (see Table 1). This information
is used to learn a classifier that distinguishes between malignant and benign
breast cancer. Here, a decision tree model is used because of its simplicity and
interpretability. The most important features according to the decision tree are
shown in Figure 4.
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Abbreviation Description

3TP class most frequent 3TP class of most suspect cluster

Rel. size size of most suspect region in relation to the whole tumor

WI average wash-in of most suspect region

WO average wash-out of most suspect region

Integral average integral of most suspect region

age age of the patient

#cluster number of clusters

Hom average homogeneity (i.e. intra-cluster variance) of the clusters [ZXF09]

Sep separability (i.e. inter-cluster variance) of the clusters [ZXF09]

P Purity index*

J Jaccard index*

F1 F1 score*

*based on the comparison of the clustering result and the 3TP method classification of all tumor voxels

Table 1. List of features that are used to learn a decision tree.

>1.2002

Age

#clusterHom

WI3TP class

P Hom

WO malignant benign

benign

>6161

>55

66.934 >66.934

1.2002

9 87

1.1831 >1.1831

 4.7038 >4.7038

 0.5587 >0.5587

malignantbenign

malignant

malignant

malignant malignant benign

Fig. 4. The learned decision tree is able to correctly classify 82.5% instances of the
tested data.

3 Results

The tumor data set used for clustering has no ground truth to evaluate the spec-
tral clustering approach directly. However, the malignancy or benignity of each
breast tumor is known and thus, is used for evaluation.
The experiment shows that features extracted from clusters of the spectral clus-
tering are promising. 56 of 68 tumors were classified correctly, i.e. a recall of
82.24% was achieved. By comparison, the recall of the density-based method
proposed in [GNP+13] is only 77.9%. Furthermore, the approach of Glaßer et al.
does not consider spatial distribution of the data points for clustering. Hence, a
post-processing step has to be applied to obtain spatially connected regions that
represent homogeneous regions of the tumor, with respect to the perfusion char-
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acteristics. However, using a connected component analysis in a post-processing
step can lead to very small clusters. In contrast, spectral clustering uses a con-
nectivity graph to integrate spatial information for clustering directly.

4 Discussion

In this paper, a spectral clustering algorithm for partitioning of DCE-MRI breast
tumors was adapted. The result of the region division was employed to predict a
tumor’s malignancy and shows promising results compared to the density-based
clustering as proposed in [GNP+13]. By making use of the 26-neighborhood of
the data to build a connectivity graph for spectral clustering, there is no need
to apply a post-processing step to obtain spatially connected regions. Further-
more, spectral clustering is able to detect clusters with arbitrary shape and does
not get stuck in local minima. Despite a difficult data base, see section 2.1, the
classification result is promising.
The disadvantages of spectral clustering are its sensitivity to the parameter
choice (e.g. cluster number, neighborhood, similarity measure for the adjacency
matrix) and a difficult interpretation of the clustering result. In this study, a set
of semi-automatically derived parameters was presented to achieve good classifi-
cation results. For improvement of the clustering process, the k-means approach
to construct the final solution in spectral domain can be replaced by a more
advanced technique as proposed in [BJ06]. Despite good classification results,
the evaluation of the perfusion parameters is difficult. As shown in Figure 5, the
features do not seem to be suitable for separation in 1D, i.e. there is no clear
distinction between features of malignant and benign tumors visible. A definition
of alternate features (e.g. description of cluster shape) could enhance the results.
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