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Abstract
Purpose Medical case-based reasoning solves problems by applying experience gained from the outcome of previous treat-
ments of the same kind. Particularly for complex treatment decisions, for example, incidentally found intracranial aneurysms
(IAs), it can support the medical expert. IAs bear the risk of rupture and may lead to subarachnoidal hemorrhages. Treatment
needs to be considered carefully, since it may entail unnecessary complications for IAs with low rupture risk. With a rupture
risk prediction based on previous cases, the treatment decision can be supported.
Methods Wepresent an interactive visual exploration tool for the case-based reasoning of IAs. In presence of a new aneurysm
of interest, our application provides visual analytics techniques to identify the most similar cases with respect to morphology.
The clinical expert can obtain the treatment, including the treatment outcome, for these cases and transfer it to the aneurysm of
interest. Our application comprises a heatmap visualization, an adapted scatterplot matrix and fully or partially directed graphs
with a circle- or force-directed layout to guide the interactive selection process. To fit the demands of clinical applications,
we further integrated an interactive identification of outlier cases as well as an interactive attribute selection for the similarity
calculation. A questionnaire evaluation with six trained physicians was used.
Result Our application allows for case-based reasoning of IAs based on a reference data set. Three classifiers summarize the
rupture state of the most similar cases. Medical experts positively evaluated the application.
Conclusion Our case-based reasoning application combined with visual analytic techniques allows for representation of
similar IAs to support the clinician. The graphical representation was rated very useful and provides visual information of the
similarity of the k most similar cases.

Keywords Visual analytics · Case-based reasoning · Intracranial aneurysms · Rupture risk assessment

Introduction

Case-based reasoning (CBR) solves problems by applying
experience gained from previous cases. It enables a com-
puter to imitate a human expert and can adapt the treatment
of past cases to a newly presented one. In clinical research
and practice, CBR finds its use in many different areas, such
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as diagnosis, classification and therapy planning. It has been
employed for diagnosis and treatment planning of hyperten-
sion, to manage and treat diabetic patients, to diagnose heart
failure or coronary heart diseases, as well as for the interpre-
tation of biomedical images [5,8,13,18].

We developed an interactive visual exploration tool to
facilitate CBR for the treatment of intracranial aneurysms
(IAs). These pathologic dilatations of the intracranial vessel
wall have an inherent rupture risk and may cause sub-
arachnoidal hemorrhages. However, the go-to treatments like
endovascular treatment or microsurgical clipping need to be
considered carefully, as they may entail unnecessary treat-
ment complications for aneurysms with low rupture risk.
Thus, accurate rupture risk prediction is crucial for an opti-
mal treatment strategy and currently an active research area
[4,10].
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Fig. 1 Illustration of the classification problem. The similarity between
different intracrancial aneurysms is mapped to Euclidean distances of
the morphological parameter feature space; aneurysms next to each
other are more similar than distant aneurysms. The aneurysm of inter-
est is depicted in the center, and its k nearest neighbors (k = 5) including

their rupture states are highlighted. The most similar aneurysm is a rup-
tured one, connected with a red line, whereas the remaining ones in the
k neighborhood are connected with dashed lines. Note that of the five
aneurysms only two are ruptured and three are unruptured, but that the
ruptured ones have a smaller distance and, thus, are more similar.

Particularly due to the strong variations of patient-specific
anatomy, the medical expert relies on previous experiences
rather than pre-defined categorization schemes. Hence, the
motivation of usingCBR for IA treatment covers two aspects.
First, we aim to determine the rupture risk. Second, we aim
to detect similar IAs with respect to their geometrical shape
to support the clinical expert’s treatment planning.

Our main focus is the visual presentation of the simi-
larity of the previous cases, as illustrated in Fig. 1. We do
not only show the k most similar cases, but rather provide
their similarity within graphical representations and suggest
a classification. To account for strong differences, regarding
aneurysms at different localizations in the brain, we only
compare aneurysms at the same localization. On the one
hand, aneurysm localization is crucial for treatment plan-
ning, i.e., for determination of the access path. On the other
hand, aneurysm rupture risk varies for different localizations
[10,14], and the treatment strategy depends on the individual
rupture risk as well. Furthermore, outlier identification and
elimination as well as feature selection is integrated in the
application.

In summary, our application identifies the k most similar
IAs to the reference case, i.e., the new aneurysm of interest
comprising the visual analytics techniques:

– a heatmap-based overview of the database to estimate
the overall agreement as well as possible outliers in the
database,

– a circle- and force-directed graph visualization to show
the k most similar aneurysms alongside their similarity,

– a scatterplot-based visualization incorporating feature–
feature correlation and feature–outcome correlation to
further steer the selection of similarity criteria,

– and a rupture risk prediction based on the k most similar
cases and three classifier variants.

We conducted a structured evaluation with six medical
experts and provide their feedback and suggestions.

Related work

Case-based reasoning has found its uses in many areas, from
bankruptcy prediction over marketing to risk analysis and
fault prediction, as well as in the health sector [6,8,13]. Sev-
eral CBR systems are already in use, be it for consultation,
diagnosis or planning in healthcare [8,13,18]. For example,
Benamina et al. [3] improved the classification of diabetic
patients with their CBR system that includes a fuzzy deci-
sion tree for cases retrieval. In the context of intracranial
aneurysms, CBR has been used for their detection in MR
angiography [15], and for their rupture risk evaluation in the
context of a statistical model [9,11].

A general model of CBR has been presented by Aamodt
et al. [1] comprising four key steps: retrieve, reuse, revise
and retain. First, a problem is presented as a new case, which
is then compared to previous cases, one or more of which
are then retrieved. The previous cases are then reused or
adapted to the new case to present a solution. The solution is
applied to the real world or gets reviewed by an expert and is
revised based on its success or failure. The experience gained
from this process is then retained by adding the case to the
database.

Chuang et al. [8] used CBR as well as various data mining
methods, such as back-propagation neural networks, classifi-
cation and regression trees, or logistic regression, to diagnose
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liver diseases that are difficult to detect. For CBR, each case
was defined as a feature vector, which could be weighted
and normalized to calculate the Euclidean distance between
cases to find themost similar ones. A classification as healthy
or diseased was made by calculating the overall similarity
to all diseased and all healthy cases and comparing the two.
This CBR approach was then combined with the data mining
methods which increased sensitivity and specificity com-
pared to the performance of each method on its own. Our
application was inspired by the presented approach, but we
were aiming at CBR for IA treatment and rupture risk pre-
diction.

When analyzing the IA rupture risk, many studies eval-
uated their morphology with respect to the rupture state
[7,12,16]. Niemann et al. [17] investigated the potential of
22 morphological features for aneurysm rupture risk predic-
tion. Although the best model had an accuracy of only 69%,
several features showed high association toward rupture risk.

Recently, Detmer et al. [10] introduced an aneurysm rup-
ture probability model based on patient characteristics, i.e.,
age and gender, aneurysm location, morphology and hemo-
dynamics. A study by Ishibashi et al. [14] further cemented
the influence of an aneurysm’s location and size on the rup-
ture risk, aswell as a patient’smedical history. In addition, the
Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)
was conducted to provide an overview of state-of-the-art
blood flow simulations as well as rupture risk prediction [4].
As a result, the simulation setups of the participating groups
revealed very similar boundary conditions of the simulations,
but clear differences were reported regarding morphological
and hemodynamical parameters of the aneurysms.

In contrast to these approaches, we focus on the concept
of similarity, highlighting the individual aneurysm cases, and
illustrate their similarities in graph layouts.

Medical image datasets

Our database covers approximately 200 aneurysms from
patients that underwent digital subtraction angiography,
acquired in the daily clinical practice. In order to com-
pare only aneurysms at the same localization, together with
medical cooperation partners 17 possible localizations were
classified, see Table 1. In addition, we integrated 24 cases
from the Aneurisk repository [2] yielding a total of 51
aneurysms at the anterior communicating artery which were
used for this study. However, our tool can be used for other
databases with arbitrary case number as well.

Our approach can deal with arbitrary quantitative fea-
tures. For the proposed method, we focused on morpho-
logical parameters since they have been established for
rupture risk prediction [12]. We applied a semiautomatic
neck curve extraction to obtain the morphological param-

Table 1 Localization classes for intracranial aneurysms

Class Detail

Location of aneurysms

1 A1

2 Acom

3 M1

4 M2

5 MCA Bif

6 pericall A

7 Pcom

8 BAS tip

9 PICA

10 ICA

11 Carotid T

12 PCA

13 AchoA

14 paraophth.

15 intraophth A

16 callosomarg A

17 other

A1—A1 segment of anterior cerebral artery, Acom—anterior commu-
nicating artery, M1—M1 segment of middle cerebral artery (MCA),
M2—M2 segment of MCA, MCA Bif—MCA bifurcation, pericall
A—pericallosal artery, Pcom—posterior communicating artery, BAS
tip—tip of basilar artery, PICA—posterior inferior cerebellar artery,
ICA—internal carotid artery, Carotid T—terminus of carotid artery,
PCA—posterior cerebral artery, AchoA—anterior choroidal artery,
paraophth A—paraophthalmic artery, infraophth A—intraophthalmic
artery, callosomarg A—callosomarginal artery

eters [19]. Based on previous work [17], we decided to
employ the following parameters: A—surface area of the
aneurysm sac, V—volume of the aneurysm sac, OA1—
area of the ostium, OA2—area of the ostium projected
onto a plane, Dmax—maximum diameter, Hmax—maximum
height, Wmax—maximum width perpendicular to Hmax,
Hortho—height perpendicular to the ostium center, Hortho2—
same as Hortho, but no intersections with the aneurysm
wall are allowed, Wortho—maximum width parallel to the
projected ostium plane, Nmax— maximum ostium diam-
eter, Navg average ostium diameter, AR1 —aspect ratio:
Hortho/Nmax and AR2 = Hortho/Navg, VCH—volume of the
convex hull of the aneurysm sac, ACH—area of the convex
hull of the aneurysm sac, E I— ellipticity index, NSI—
non-sphericity index,U I–undulation index, α—larger angle
between centerline and dome, β —smaller angle between
centerline and dome, γ—angle at the aneurysm dome. See
also the studies [17,19] for detailed information.
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k-NN-based prediction of aneurysm rupture
risk

We provide a computational assessment of aneurysm rup-
ture risk based on morphological features by employing
three variants of k-nearest neighbor-based (k-NN) classifi-
cation. For this purpose, a new aneurysm, hereafter denoted
as aneurysm of interest (AOI), is compared to cases from a
reference database containing both ruptured and unruptured
aneurysms at the same location. Rupture status prediction is
based on the k most similar cases. The range of each feature
was normalized by (z-score) standardization. The dissimilar-
ity between the two aneurysms x, q is calculated as

dist(x, q) =
√
√
√
√ fwl

N
∑

l=1

(xl − ql)2, (1)

where N is the number of features, xl is the value of the lth
feature of x , and fwl is the feature’s weight. Per default, all
feature weights equal 1. The user can increase or decrease
a feature weight, e.g., maximum aneurysm diameter, via the
settings panel (A), see Fig. 2. Afterward, the remaining fea-
ture weights are normalized such that the

∑N
l=1 fwl = N .

The first classifier variant is a simple k-nearest neighbor
classifierwhich assigns a class label y ∈ {ruptured,unruptured}
to the AOI (x). First, the algorithm calculates the pairwise
dissimilarity between x and all aneurysms from the database
q ∈ D. Then, the set of k nearest aneurysms of x , Dk ⊆ D,
is selected and the rupture risk classification ŷ is obtained
based on the majority class of x’s nearest neighbors:

ŷ = argmax j

k
∑

i=1

I (yi = j), (2)

where j is a class label, yi is the class label of the i th nearest
neighbor, and I is the indicator function.

This ordinary k-nn classifier does not take distances into
account, i.e., every nearest neighbor has the same impact on
the classification, regardless of its actual distance to the AOI
which might be imprecise and prone to outlier cases. Hence,
our second k-nn variant incorporates the actual distances as
weights. The predicted class label ŷ is calculated as:

ŷ = argmin j

k
∑

i=1

I (yi = j) · wi, j · dist(x, qi ), (3)

where j is a class label, yi is the class label of the i th nearest
neighbor, and I is the indicator function. The weight w of
the i th nearest neighbor and class j is calculated as

wi, j =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

wi =
(

Mj∑

o=1
dist(x, qo) − dist(x, qi )

)

/
Mj∑

o=1
dist(x, qo) if yi = j

0 else

,

(4)

where Mj is the number of aneurysms of class j in the set
of k-nearest neighbors of x . Thus, for each class, all weights
sum up to 1 and each aneurysm is associated with a weight
inversely proportional to its distance.

Our third k-NN-based classifier is adapted from Chuang
et al. [8], who also used a distance-weighted method for sim-
ilarity calculation for their CBR approach for liver disease
diagnosis. Here, all distances were normalized via min–max
scaling into the range [0,1]. The classification is defined as

ŷ = argmin j

k
∑

i=1

I (yi = j) · dist(x, qi )/Mj , (5)

where Mj is the number of aneurysms of class j in the set
of k-nearest neighbors of x .

Graphical user interface

In this section, we describe the components of the graphical
user interface (GUI) for the identification of the most similar
aneurysms for a given aneurysm of interest. The application
was developed with MATLAB 2019a (MathWorks, Natick,
USA) and comprises five components (depicted in Fig. 2):

(A) a settings panel, e.g., for database import and selection
of number of neighbors k,

(B) a summary panel presenting the result of the analysis of
the k neighbors,

(C) a heatmap visualization showing the pairwise dissimilar-
ities of all IAs,

(D) a circle- and force-directed graph visualization to high-
light the relationships among the kmost similar aneurysms
alongside their dissimilarity,

(E) a scatterplotmatrix showing pairwise feature correlations
and association toward rupture risk.

In the settings panel (A) on the top left, the user can load
the database, load an aneurysm of interest (AOI) and set the
parameter k, the number of nearest neighbor cases in the
database to be considered. k must be within the range of 2
and |D| − 1, and it is empirically set to 5 by default. Since
localization of IAs plays a crucial role for treatment planning,
e.g., the access path determination, we created subgroups of
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(A)

(D) (E)

(B) (C)

Fig. 2 The graphical user interface. a Settings panel, b Summary panel, c Heatmap panel, d Directed Graph panel, e Adapted scatterplot matrix
panel

IAs with the same localization. Therefore, the user has to
select the AOIs localization of one of the pre-defined classes
(recall Table 1). In the following, 51 IAs at the anterior com-
municating artery are analyzed.

Subsequently, a summary panel (B) which displays the
rupture risk prediction and three visualization panels are
shown: a heatmap (C), a graph (D) and a scatterplot matrix
view (E), recall Fig. 2. The presented application allows for
an interactive k-NN search for CBR including an adapted
feature and outlier detection which will be explained in the
following.

The first visual representation is a heatmap (C), see Fig. 3,
showing the pairwise color-coded distances between all IAs
in the database, sorted by average distance to all other IAs.
The diagonal shows the distance of an aneurysm to itself,
which is zero and the lightest color in the heatmap. Hov-
ering or clicking on the entries highlights row and column
aneurysms, and a pop-up appears that shows the X andY val-
ues, which here is the index of the aneurysms, as well as the
distance. Further basic interaction is possible, like dragging
single columns or rows across the map to directly compare to
others, or re-sorting the entire heatmap according to one spe-
cific aneurysm. Since there are only two values that shall be
represented, i.e., most to least similar, a map over two colors

was chosen. A temperature scale is intuitive for this purpose,
and the “cool” layout provided by MATLAB was chosen as
it shows the best contrast and displays the shift from most to
least similar. With this visualization technique, the user can
easily identify which aneurysms are outliers, see the marked
example in Fig. 3. To cope with larger database sizes, we do
automatically keep only a user-defined amount of aneurysms.
However, the user can still reject a single aneurysm due to
low similarity or just keep all datasets for the subsequent
analyses.

The next visualization is a scatterplot matrix (E), where
each row and each column represent a morphological feature
(see Fig. 4). The upper triangle of the matrix shows pairwise
scatterplots of the morphological features. Each point in the
scatterplots represents an aneurysm color-coded by its rup-
ture status class. The features are sorted according to their
information gain �info toward the rupture status. Here, the
information gain of feature f measures the decrease in impu-
rity H of D toward the rupture status when splitting D into
R partitions and is calculated as

�info( f ) = H(D) −
R

∑

r=1

Mr

M
H(Dr ), (6)
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Fig. 3 Heatmap visualizations of IAs with their pairwise color-coded
Euclidean distance of the morphological data. Aneurysms are sorted
based on the average sum of their pairwise similarity, i.e., aneurysms
on the upper left of the heatmap are very similar to all other cases,
whereas aneurysms at the bottom right are not very similar to any other
cases. Left, the heatmap for all IAs is shown. The AOI is marked with

arrows, and aneurysm with id 44 (arrowhead) has the lowest similarity
to all other aneurysms. To account for possible outlier aneurysms, only
a user-defined number of aneurysms is kept for the subsequent analy-
ses. For 20 aneurysms (see dashed rectangle on the left), the heatmap
is depicted on the right

Fig. 4 The scatterplot matrix including �info and PCC. Each row and each column represent a morphological feature. Labels provide the name of
the feature and its �info. The upper triangle matrix shows pairwise scatterplots, the lower triangle matrix the color-coded PCC (red = 1; white = 0;
blue = -1)

where D is the dataset, R is the number of partitions, and Dr

is the r th partition with
⋃R

r=1 Dr = D. The impurity H of a
partition Dr is measured using Shannon entropy as

H(Dr ) = −
∑

j

p( j |Dr ) log2 p( j |Dr ), (7)
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where p( j |Dr ) is the ratio of aneurysms of class j in Dr .
Each continuous feature is split into R = 2 partitions, with
∀q ∈ D1 : q f ≤ τ f and ∀q ∈ D2 : q f > τ f , where τ f is
the cutoff value for f that yields the highest �info( f ) over
all unique values of f .

The lower triangle of the scatterplotmatrix shows the pair-
wise color-codedPearson correlation coefficient (PCC)of the
row and column feature. The PCC between two morphologi-
cal parameters is visualized via color and saturation. Through
�in f o, PCC and the distribution of the scatterplots, the scat-
terplot matrix gives the user a sense of which features might
be important for the classification of the AOI, and they can
chose to exclude single features for the similarity calcula-
tions.

The last visualization is a directed graph (D), see Figs. 5
and 6. Each graph node represents an IA, and the directed
edges indicate its k nearest neighbors. Each edge is labeled
with the Euclidean distance between the two IAs/nodes that
it connects. The glyph of each node shows the IA’s rupture
status, with ruptured IAs being shown as a diamond shape,
unruptured IAs as a circle and the AOI as a square. Hence,
the illustration provided in Fig. 1 is reflected in this graph
layout. The nodes are colored according to their distance to
the AOI over the existing edges. The same colormap as for
the heatmap was chosen. The AOI’s k nearest neighbors and
their connecting edges are highlighted, with the most similar
aneurysm’s connecting edge additionally being highlighted
in a different color to grab the user’s attention.

The user can switch between two graph layouts: circle and
force layout. The circle layout puts the AOI in the center and
all other IAs on a set radius around it, regardless of them
being nearest neighbors or not (see Fig. 5). The force lay-
out arranges the nodes according to attracting and repelling
forces (see Fig. 6). It matches the length of the edges to their
weight, i.e., an edge’s lengthmatches to the distance between
the two nodes that it connects.

The user can also decide whether the graph should feature
all IAs in the database by selecting the “full” option (see
Fig. 7), or only showing a “partial” graph (see Figs. 5 and
6), meaning only the AOI, its k nearest neighbors and those
aneurysms’ k nearest neighbors.While the “full” layout gives
a better overall view of how the AOI relates to the whole
database, the graph quickly becomes crowded. Additionally,
the amount of edges might occlude the highlighted edges of
the AOI, especially for higher k. The “partial” option only
shows the k closest IAs and their most similar, the former
of which are the only ones relevant for the classification and
thus give the user the necessary information and allow for
easier interpretation.

Finally, the summary panel (panel (B) in Fig. 2) lists the
results of the k-NN-based classifiers as plain text, including
the majority used for k-NN, the weighted distances, the sim-
ilarities, and how the results can be interpreted. The user is

alsonotifiedwhether there is the sameamount of ruptured and
unruptured IAs in the k neighborhood or if the distances cal-
culated between ruptured and unruptured classes are smaller
than a user-defined threshold (default value is 0.1). In these
cases, the user is asked to increase k.

In order to support themedical users, a 3D view of the IA’s
morphology is provided on demand. The user can get a 3D
view of a single selected case as well as a grid layout-based
depiction of the k most similar cases, see Fig. 8. The view
can be updated via the settings panel (A).

In summary, the application allows the user to carry out
CBR with an interactive k-NN search with outlier detection
and feature selection. Outlier detection and feature selection
are based on the analysis of the heatmap (C), graph layout (D)
or scatterplot matrix (E). Via the “Define Selection” button in
the settings panel (A), the user can select the IAs and/or fea-
tures that should be used for the calculations. The heatmap
and scatterplotmatrix drawattention to the outliers andwhich
features have a low contribution toward the classification or
a high correlation with another more relevant feature. Thus,
they guide the user when deciding which features might not
give valuable input toward classification and give hints to
which deselections might improve the results. The graphical
presentation provides visual clues about similarity. As it is
shown in Fig. 2, the majority of the five most similar cases to
theAOI are ruptured, but the unruptured cases exhibit smaller
distances (see the graph layout as well as the classification
results in the summary panel). Thus, the AOI might have be
a reduced risk of rupture and the physician can include this
information into treatment planning. Finally, the user can use
the patient IDs of the most similar cases (including classi-
fication of the AOI’s rupture risk) to look up the previous
treatments in order to plan the best treatment for the AOI.

Evaluation

We conducted an evaluation via a questionnaire with six
physicians (two senior neurosurgeons with more than 15
years of experience, two advanced neurosurgeons with more
than 2 years of experience and two novice medical doctors
very familiar with intracranial aneurysms). In the question-
naire, the physicians were asked to rate each panel from
useful to not useful with a 5-point Likert scale ranging from
—(i.e., not helpful at all) to ++ (i.e., very helpful). For each
component, they could add comments. Additionally, they
were asked which component they found the most helpful,
and which configuration of the directed graph they preferred.

Out of the six participants, four found the summary panel
(B) very helpful, one found it somewhat helpful, and one nei-
ther helpful nor unhelpful, see Fig. 9. Additional comments
varied, with one describing it as very useful and clear, while
another found it confusing and would have wished for an
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Fig. 5 A circle graph layout representing the k = 6 nearest neigh-
bors (enhanced edges) including the highlighting of the most similar
aneurysm (red edge) and a color-coding of the distance based on the

color assigned to circular or diamond shapes representing the rupture
state. The AOI is depicted as cyan-colored square

aiding visualization and final summary of the classification
results.

The heatmap panel (C) received more mixed feedback,
with one rating it as somewhat unhelpful, one as neither help-
ful nor unhelpful, and two ratings for somewhat helpful and
very helpful each. However, one physician commented they
did not understand the purpose of the heatmap, while another
found it statistically valuable.

The directed graph panel (D)was rated asmost supportive,
with four physicians finding it very helpful and one somewhat
unhelpful. One physician declined to rate the directed graph.
Almost all of the physicians preferred the force layout and the
full graph over the circle layout and partial fullness option,
with only one preferring the latter, see Fig. 10. They found
an added visualization of the aneurysm models helpful.

The scatterplot matrix panel (E) received the worst feed-
back compared to the other visualization techniques,with one
rating it as very helpful and two rating it somewhat helpful
and somewhat unhelpful each. Again, one physician declined
to rate. From the added comments, it was clear that the scat-
terplot matrix needs extensive explanation to be understood.

Finally, the physicians were asked to rate which of the
four components they liked best, see Fig. 10c. They were
allowed to select multiple answers. With most of the physi-

cians (83%), the directed graph panel (D) was rated the most
useful. The summary panel (B) came second with 67%. 50%
liked the heatmap panel (C), while only 33% liked the scat-
terplot matrix.

Conclusion

We presented an application to support physicians in the
evaluation of intracranial aneurysms and their treatment
decisions. Our application applies case-based reasoning to
intracranial aneurysm patients and includes a heatmap visu-
alization of all cases, a scatterplot matrix depiction of all
cases’ attributes and a graphical representation to highlight
the similarity of an aneurysm of interest to its k most similar
cases. For intracranial aneurysms, a prediction of rupture risk
always has an uncertainty due to patient-specific attributes
and pathologic irregularities. However, the application visu-
alizes this uncertainty due to the presentation of the most
similar cases (instead of a single prediction) as well as the
three classification results. The corresponding 3D views are
provided individually for single cases as well as for the
aneurysmof interest and its kmost similar casesAuser evalu-
ation reveals the benefits of our methods, where the graphical
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Fig. 6 A directed force graph layout representing the k = 6 nearest
neighbors (enhanced edges) including the highlighting of the most sim-
ilar aneurysm (red edge) and a color-coding of the distance based on the

color assigned to circular or diamond shapes representing the rupture
state. The AOI is depicted as cyan-colored square

Fig. 7 A full force graph representing the k = 5 nearest neigh-
bors (enhanced edges) including the highlighting of the most similar
aneurysm (red edge) and a color-coding of the distance based on the

color assigned to circular or diamond shapes representing the rupture
state. The AOI is depicted as cyan-colored square
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Fig. 8 The user can select individual cases and depict the corresponding surface models, as well as an overview of the k most similar cases. A grid
layout is used to represent the results. The user can rotate and zoom in for each individual model

Fig. 9 Overview of evaluation results regarding panels B, C, D and E (only one answer was possible using the Likert scale) is shown

(a) (b) (c)

Fig. 10 User preferences regarding the graph layout a, neighborhood size for graphs b and the overall preferred technique c are shown. For c,
multiple answers were possible

representation based on the directed graph was rated as most
useful.

In future work, we want to integrate further parame-
ters, with focus on hemodynamic properties like wall shear
stresses or inflow characteristics. In addition, the number of
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datasets is still rather low w.r.t. rupture risk assessment and
we hope to add more datasets in future which is also moti-
vated by the positive experiences of our evaluation partners.
Our approach is not limited to intracranial aneurysms and can
be easily adapted to other areas like epidemiological cohort
study data.
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