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Abstract

The digitalization of real-world objects is of vital importance in various application
domains. This method is especially applied in industrial quality assurance to measure
the geometric dimension accuracy. Furthermore, geometric models are the very founda-
tion of contemporary three-dimensional computer graphics. In addition to create new
models by using a modeling suite, the use of 3D laser scanners has recently become
more and more common. To reconstruct objects from laser scan data, usually very
large data sets have to be processed. In addition, the generated point clouds usually
contain a considerable amount of errors. Therefore, it is necessary to optimize the data
for further processing.

Compared to algorithms that interactively manipulate point clouds through an approx-
imation with polygonal meshes, we aim to automatically correct each measurement
individually and directly integrate the methods into the measurement process. In ad-
dition to traditional methods which usually assume point clouds as unstructured, this
work introduces techniques for the extraction of common data structures from optical
3D scanners. Based on this information, procedures are developed to enable automat-
able procedures of scan data optimization and evaluation. The feasibility of the pro-
posed methods is shown at the example of different real-world objects and industrial
applications.
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Chapter 1

Introduction

Today, industrial processes such as assembly are complex, highly automated and typ-
ically based on CAD (Computer Aided Design) data. The problem is that the same
degree of automation is also required for quality assurance. It is, for example, a very
complex task to assemble a modern car, since it consists of many parts that must fit to-
gether at the very end of the production line. The optimal performance of this process
is guaranteed by quality assurance systems. Especially the geometry of the metal parts
must be checked in order to assure that they have the correct dimensions, fit together
and finally work reliably. Therefore, CAD and CAM construction software supports
the designer when developing those parts.

Within highly automated processes, the resulting geometric measures are transferred
to machines that manufacture the desired objects. Due to mechanical uncertainties
and abrasions, the result may differ from its digital nominal. In order to automatically
capture and evaluate these deviations, the manufactured part must be digitized as well.
For this purpose, 3D scanners are applied to generate point samples from the object’s
surface. Particularly tactile and optical scanners are used to obtain the 3D measures.
The small size and simple construction of the wearless working optical scanners enable
a flexible application, and thus replace the approved tactile systems more and more.

Besides industrial manufacturing, the digitization of real-world objects has many other
application fields. For example, the conservation of cultural heritage and the world-
wide exchange of archaeological findings becomes possible on the basis of digital mod-
els [LPC+00, BMM+02]. 3D scanners are even used for computer games and animated
cartoons. In this case, the digitization of hand-modeled sculptures simplifies the pro-
duction process.

In practice, the costs for a complete measuring system are often an important criterion.
Therefore, in many cases the optimal technical solution is not used, knowing that the
resulting problems must be compensated with software tools at many different places.
This practical fact also requires the development of modular algorithmic tools appli-
cable to a variety of measuring tasks. Thus, this work considers scan data processing
from a practical view and discusses the entire process pipeline from the data acquisition
to the data representation and interpretation.

1



1. INTRODUCTION

1.1 Motivation and Goals

In contrast to digital geometric modeling, the data obtained from optical 3D scanners
are often far from being perfect. The results are usually point clouds that contain
several errors caused by system and measuring principle specific characteristics. Addi-
tionally, the data is affected by environmental influences such as unfavorable lighting
conditions, dust or vibrations. Measurements on the generated data may lead to in-
correct results. Therefore, procedures for the point cloud optimization, evaluation and
inspection are needed that are robust against these influences. While a smooth and
aesthetic visualization is desired for most computer graphics applications, industrial
measurements primary require fast and automated procedures with a high reliability.

Classical approaches assume a point cloud as an unstructured 3D point set. In order
to provide a structure, polygonal meshes are typically approximated. The large variety
of existing methods for polygonal mesh processing produces very aesthetic 3D models,
but often requires user interaction and is limited in processing speed and/or accuracy.
Furthermore, operations on optimized meshes consider the entire model and pay only
little attention to individual measurements. However, many measurements relate to
parts or single scans with possibly strong differences between successive scans being
lost during mesh construction.

In particular the large amount of measuring data, additionally disturbed by noise and
errors, complicates the application of automated procedures. Thus, the goal of this
work is the development of practical algorithms for the efficient processing, evaluation
and management of 3D scan data obtained from optical measuring systems.

Since it can be assumed that most of the errors originate from the measuring principle,
an optimized point cloud processing should start with the analysis of the data acqui-
sition procedures. In the following steps, the obtained characteristics can be taken
into account when performing data optimizations and evaluations. Furthermore, exist-
ing algorithms mainly consider unstructured point clouds although the scanned data
is structured through device properties and measuring principles. By exploiting this
underlying structure, intrinsic system parameters can be extracted and employed for
a fast and problem-specific data processing. Therefore, this work devises new and
adjusts approved algorithms while touching different research areas, including the tech-
nical foundation, data acquisition and visualization.

In summary, the following assumption motivates this work:
By analyzing and consequently exploiting the underlying measuring concepts, alterna-
tive methods for adaptable and more efficient 3D scan data representations and their
evaluation can be found.

2



1.3. RESULTS

1.2 Results

Based on this motivation, the following brief overview of the concepts that significantly
contribute to this work, is presented below:

� A review of common optical measuring principles and selected aspects of point
cloud evaluation underlines the need for modular and adaptable scan data process-
ing methods for practical applications. Therefore, different measuring principles
are formalized, which enables the adaptability of the devised methods.

� In order to extract utilizable additional scan data information (system informa-
tion), the optical 3D data acquisition and the following post-processing is ana-
lyzed using the example of two employed 3D scanners. Therefore, approaches for
the analysis of 3D measuring systems with regard to relevant system parameters
and data structures are presented.

� The precision and acquisition quality of the generated 3D point sets are formally
determined to constitute the basis for the post-processing optimization and eval-
uation procedures.

� Based on the observed scan data systematics, NURBS curve and NURBS surface-
based strategies for scan data representation, optimization and analysis are pre-
sented.

� Existing methods for point cloud optimization and evaluation are adapted and
extended by employing the adaptively extracted additional system information.

� Potential applications in different domains are discussed and a variety of exam-
ples are given. These examples should give an orientation on how the methods
developed can be applied for real application problems. Furthermore, a subset of
the proposed scan data methods has been successfully integrated into industrial
measuring systems.

1.3 Thesis Structure

This thesis gives an outlook on selected aspects of point cloud post-processing, for ex-
ample 3D meshing and point cloud representation. In the second step, new approaches
for point cloud optimization and adjusted preprocessing are developed with focus on
the measuring principles and additional system information.

3



1. INTRODUCTION

Chapter 2: Algorithmic and Technical Foundations

At the beginning of this thesis, we consider the state of the art of optical 3D measur-
ing principles, such as light-section, fringe projection and photogrammetry and discuss
their application fields. In the second part, typical methods for 3D point cloud pro-
cessing, particularly 3D meshing of unstructured data, are discussed. This chapter
constitutes the algorithmic and technical foundation and supports the reader to relate
this work to the variety of different approaches.

Chapter 3: Scan Data Acquisition

Chapter three introduces the procedures for the acquisition of 3D point clouds from
laser triangulation. Using two employed 3D scanners, calibration procedures are pro-
posed, which yield the basis for the data acquisition from optical sensors. In further
steps, algorithmic approaches to obtain spatial coordinates from digital images and
laser light are proposed. Based on this discussion, the influences of errors, affecting
the resulting 3D point set, are described. In the remainder, the contained noise is
quantified for further evaluation. Finally, a scan data structure for optical 3D scanners
is proposed, which is obtained from the measuring principle and employs the system
configurations.

Chapter 4: Curve-based Scan Data Processing

In the fourth chapter, we describe a subdivision of the entire point cloud by exploit-
ing the scan data structure obtained from the data acquisition stage. Based on the
measuring principle, a point cloud is represented as a set of scanned profiles, which are
referred to as scanlines. In order to derive an analytical representation for further pro-
cedures, the scanlines are approximated by NURBS curves. The processing of those
scanlines already allows a data evaluation during its acquisition, which significantly
reduces the computation time for the entire evaluation process. The employed algo-
rithms and features automatically obtained from the scanlines are finally discussed in
case studies.

Chapter 5: Surface-based Scan Data Processing

The extracted scan data structure does not only provide point neighborhoods on scan-
lines derived from the measuring principle. Additionally, the scanning system provides
information on neighboring scanlines obtained from defined sensor movements between
them. Thus, this chapter introduces methods to represent a set of scanlines as a regular
grid. The grids are used for a real-time, in-process visualization on the one hand, and
as the basis for the approximation of NURBS patches on the other hand. Compared to

4



1.3. THESIS STRUCTURE

the NURBS curves introduced in the chapter before, the NURBS patches are employed
to obtain more global surface measures between single scanlines.

Chapter 6: Point Cloud Processing

In addition to the data structures, which represent measured point clouds as scanlines
and grids of them, this chapter discusses methods for the global point cloud processing.
Within this abstraction level, interrelationships between the grids and scanlines from
different sensors and measurements are established. The data representation with tree
and graph structures is discussed in particular. Furthermore, methods for point cloud
correction and their visualization are proposed. The application of these methods and
the results are discussed in several case studies.

Chapter 7: Practical Applications

The procedures proposed have proven their feasibility in a variety of different industrial
applications. Therefore, two representative measuring systems and their measuring
tasks are introduced in this chapter. Both systems employ an optical measuring concept
that allows to apply the methods proposed in this work. Thus, the integration of the
scan data algorithms for an efficient and robust data evaluation are discussed here.

Chapter 8: Concluding Considerations

Chapter 8 summarizes the dissertation by reviewing the achieved results. Furthermore,
some points of criticism are given and additional future directions are outlined.
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Chapter 2

Algorithmic and Technical Foundations

Processing point clouds of real-world objects, generated with 3D scanners, is affected
by a variety of errors. This includes systematic measuring uncertainties, noise, outliers,
gaps and holes. Particularly this imperfection is the main difference to artificially
generated point clouds with certain guarantees, for example on point density or quality.
Thus, the identification of optimization potential of point clouds obtained from 3D
scanners requires a discussion of related algorithms for data processing and measuring
systems with their underlying technical principles. Therefore, this chapter introduces
the most common 3D scanning methods in the first part.

A set of single, independent 3D points can hardly be processed without additional
information about the underlying shape or neighborhoods. Thus, many applications
necessitate data structures providing connectivity information (e. g., for surface shad-
ing). Therefore, in the second part of this chapter, common algorithms for surface
meshing and visualization are considered. Taking this as the basis, methods for point
cloud manipulation and optimization are also discussed.

This chapter gives an overview on common measuring principles and point cloud pro-
cessing. It introduces a variety of different approaches in both fields and serves as the
algorithmic and technical foundation for this work. Due to the fact that there is a wide
variety of different approaches, only the most common techniques are introduced.

2.1 Survey of Common 3D Measuring Principles

The majority of the employed scanners use optical methods for capturing and measuring
three-dimensional surfaces. This section introduces common measuring principles for
the generation of 3D point clouds and discusses their pros and cons and their fields of
application.

In general, capturing and measuring spatial structures can be divided into three differ-
ent basic approaches: triangulation, interferometry1 and time-of-flight methods. Due

1 Interferometry is the observation of interferences. Interference is the overlap of coherent waves
that meet at a common point in space. Coherent light is for example emitted by laser diodes.

7



2. ALGORITHMIC AND TECHNICAL FOUNDATIONS

to their flexible application, optical triangulation methods have a leading position.
This includes light-sectioning methods and photogrammetrical approaches, which are
introduced in the following sections.

2.1.1 Surface Measuring using the Triangulation Principle

The principle of triangulation has already been used in 1609 by Johannes Kepler2 to ex-
plain the movements of planets in the solar system. In 1617, the Dutch mathematician
Willebrord Snellius3 published this principles in his work “Eratosthenes Batavus”.

The principle depends on the fact that a triangle is explicitly defined by the length of one
side and the adjacent angles. The remaining sides and the third angle can be derived
from that [BSG+03]. Optical measuring systems use this principle to determine the
spatial dimensions and the geometry of an item. Basically, the configuration consists of
two sensors observing the item. One of the sensors is typically a digital camera device,
and the other one can also be a camera or a light projector. The projection centers
of the sensors and the considered point on the object’s surface define a triangle (see
Fig. 2.1). Within this triangle, the distance between the sensors is the base (b) and
must be known. By determining the angles between the projection rays of the sensors
and the basis (α, β), the intersection point is calculated by triangulation.

Fig. 2.1: Triangulation principle. If two sensors observe the same point in space, then the point’s spa-
tial coordinate can be computed with angular relations in a triangle. The necessary input parameters
α, β and b are obtained from a prior calibration step.

The computation of the angles α and β as well as the length b is based upon a prior sys-
tem calibration, where these sensor parameters are determined. The necessary triangle
height z is finally calculated with the general triangulation equation:

z =
b sin α sin β

sin γ
, γ = π − α− β . (2.1)

2 Johannes Kepler: German astronomer and naturalist (b1571, d1630).
3 in fact Willebrord Snel van Rojen (b1580, d1626).
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2.1. SURVEY OF COMMON 3D MEASURING PRINCIPLES

Typically, active and passive methods are distinguished. Passive methods get their
information from camera devices and the evaluation of pixel positions in the respective
images planes (photogrammetry). On the other side, active methods require a special
object lighting with structured light (light pattern with known geometry, e. g., points,
lines, random patterns). The observed surface point is lighted by the projector and
captured by the camera, whereas the lighted positions enable an easy identification of
the considered surface point in the camera images.

The majority of scan systems in industrial applications is based on active triangulation
methods, which may differ in the configuration and the used sensors. The following
section introduces common methods.

2.1.2 The Light Section Method

The most popular method for the optical capturing of shapes is light sectioning, which
dates back to the work of Shirai and Suwa [SS71]. The identification of corresponding
positions captured from two positions is realized by projecting structures with known
geometry onto the surface, which are easy to identify. Light section means the projec-
tion of a point, which can be seen as spatial line intersecting the surface. Due to the
reflection of the point on the surface, observed from another position, the correspond-
ing 3D coordinates are computed. The procedure is also called structured lighting and
can be extended to line projection, which enables the computation of multiple point
coordinates in one step. Furthermore, the use of line patterns allows to compute multi-
ple lines. The object is usually moved to capture the entire surface. There are different
approaches to project lines and similar patterns that are explained in the following
sections.

Light Sectioning with a Laser Line

For the measuring of complete surfaces, the projection of single points is very time-
consuming. By projecting a line, significantly more points on a surface are repre-
sented (see Fig. 2.2). Therefore, a light beam is expanded using beam shaping optics
(e. g., cylindrical lenses, refractive lens systems). The spatial position and orientation
of the resulting light plane4 is determined within a calibration procedure. The plane
intersects the object surface following a profile line. Looking from the laser position,
this line is straight. But looking from the viewing position of the camera, the line
is curved due to the principle of stereoscopic viewing and depending on the surface
topology. The amount of deformation in the camera image is a measure for the real
object shape.

4 The light plane and the respective projection and viewing beams is a simple model of geometrical
optics. This model solely considers the central beams of a beam bundle, which finally converges
in the image and respective object coordinates.

9



2. ALGORITHMIC AND TECHNICAL FOUNDATIONS

Fig. 2.2: Light section principle with a line laser. The resulting light plane “intersects” the object’s
surface and the resulting deformed contour is observed by a camera.

The corresponding pixels of the deformed line are segmented and evaluated by image
processing algorithms. Due to the strong contrast between color/intensity of the laser
line and the background, a reliable segmentation is possible. Based on the known
geometry of the sensors and the projection parameters, one 3D depth coordinate is
calculated for each identified pixel position. After each measuring step, the object or
the sensors are moved until the entire surface is captured.

Light Sectioning with Fringe Projection

Comparable to considering just one line, the projection of multiple lines can increase
the measuring speed. This is achieved by using a multi-line projector (e. g., a diascope)
or by using common light-beamers that project a set of alternating black and white
stripe patterns (see Fig. 2.4(a)). Each black-white border exactly behaves like a single
projected line as mentioned in the last section.

But in the following image processing step, the lines must be distinguished from each
other to correctly map a detected line to the corresponding projection. This problem
is solved by encoding the light pattern [Maa97]. In this process, a set of images with a
successively increasing number/density of black and white stripes is projected. In the
next step, the corresponding position for each detected light section to its projected
black/white pattern is determined. This is equal to a symmetric binary code, (Gray
code, see Fig. 2.4(b)).

In principle, the system configuration consists of a camera and a light beamer. Depend-
ing on the type and quality of the beamer, it can be time-consuming to calibrate the
position of the beamer (light origin/orientation) to the camera. Therefore, normally
a second camera is used, which also observes the pattern. The triangulation is then
computed between the cameras instead of a projector and a camera. This approach is

10



2.1. SURVEY OF COMMON 3D MEASURING PRINCIPLES

Fig. 2.3: Principle and system configuration for triangulation based on fringe projection.

also known as photogrammetry (see Sect. 2.1.3) [Bre93]. The determination of corre-
lating stripes in both images is respectively carried out analogously to the Gray code
approach.

It is also possible to use point patterns instead of stripes. For the measuring of multi-
colored surfaces, a sequence of red, green and blue patterns is projected. Depending on
the surface color, more or less light is emitted, which also allows to determine the real
surface color. The performance and stripe density of the coded light section approach
is limited by the resolution of the projector. A further increase of the resolution is
possible by using a phase-shift technique, explained in the next paragraph.

Phase-Shifting

The phase-shift method is a modification of the coded light-sectioning [SWPG05].
The principle configuration consists of a video projector and a digital camera (see
Fig. 2.4).

In contrast to coded lighting-sectioning, where a contour can only be measured at sharp
black/white borders, phase-shifting achieves a higher resolution. Therefore, the video
beamer projects a sequence of sinusoidal stripes. Within each step, the sine pattern is
horizontally shifted by known angles (phase-shifting), which are parts of a sine phase
(see Fig. 2.4(b)). Due to the phase-shifting of the sine function, the gray values in
the captured images change cosinusoidally, and depending on the surface topology
the projected pattern is additionally deformed. The deformation is a measure for the
topology change and is determined by the quotient of the sinusoidally and cosinusoidally
shifted signals, which is the tangent. Finally, the arc tangent yields the phase angle
(see Fig. 2.5(b)), which describes the phase-shift in portions of the sinusoidal stripe
period ([Str93]). This principle enables the signal subdivision into intensity, amplitude
and phase, and thus, its reconstruction.

In contrast to coded light-sectioning the resolution increases, because a phase value
exists for every image pixel and it exactly represents one position in the (originally)
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(a) fringe projection principle. (b) gray code sequence.

Fig. 2.4: Fringe projection principle: PP and PC indicate the centers of the projector and the cam-
era (a). The combination of a phase-shifted sinusoidal pattern and a gray code is shown in (b).

(a) fringe projection. (b) phase angles.

Fig. 2.5: Illustration of the projected fringe pattern (a) and a higher resolved representation after
phase shifting and the obtained phasing (b).

projected pattern. The assignment of pixel positions and lighting directions enables a
higher precision, but is unique only within one period. This problem is solved again
with gray codes (see Fig. 2.3).

There is still a variety of other approaches, which differ in the way the light pattern is
generated or shifted [Bre93]. But the basic principle and the effectiveness is similar to
the described ones.

The Moiré Approach

Instead of projecting light planes, it is also possible to project a grid structure onto
the object surface and map it to a reference grid, which results in the Moiré-effect (see
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Fig. 2.6(a)). Moiré is a uniform pattern that arises from the overlap of two marginally
differing structures, which finally leads to geometric interference (see Fig. 2.6(b)).

This method is also called mechanical interferometry. The first scientific application
of the Moiré effect dates back to Lord Rayleigh5 and his work [Ray74] in 1874. He
predicated that this interference can be used as the test of irregularity ruling of grating
or deflection. In practice, the Moiré effect arises, for example, by looking through
consecutively standing fences or folded curtains.

(a) (b)

Fig. 2.6: The Moiré effect (a) (from [Maa97]) and an exemplary Moiré pattern (b).

The captured camera image already contains depth information, which enables at least
a visual interpretation. In order to derive depth values, a stripe evaluation method is
needed, which can be phase-shifting. Due to blurring effects, the possible precision is
relatively small. This method is hardly used for industrial geometry measurements,
but the resulting Moiré stripes are used to observe motions, rotations, curvatures
(e. g., deformations, bumps), and derived measures (e. g., expansions).

2.1.3 Photogrammetric Approaches

In this scope, photogrammetry means the usage of at least two camera devices. Thus,
these methods are also known as Stereo-/Multi-View-Vision [Bre93]. The triangulation
is computed between the cameras and the observed surface point. Again, there are
active and passive methods. Active approaches project an additional light pattern
onto the surface to resolve possible ambiguities. For the reconstruction of the spatial
location and shape from photographs the geometric projection laws of a photograph
must be known. The used cameras produce images that represent a central projection
with sufficient accuracy [Dol97].

5 John William Strutt Lord Rayleigh (b1842, d1919).
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Fig. 2.7: Principle of photogrammetric methods. A point in space is observed by at least two sensors
(e. g., cameras). Based on a prior sensor calibration, the 3D coordinate of the point, relatively to the
sensors, is computed with triangulation.

In contrast, passive methods do not use additional information. The object to be
measured is only observed by cameras. For triangulation, a considered surface point
must be identified in both images, which is not trivial. Usually, statistical methods
(e. g., correlation) are used to detect corresponding pixel positions. Typically, block-
matching approaches are applied to detect and compare image regions. The comparison
is often based on cross-correlation. When two corresponding blocks (e. g., 15×15 pixel)
have been found, there is a statistical probability that the pixel positions in the middle
of the blocks are corresponding [EEAHM05]. In the next step, the intersection of the
beams from the projection centers of the cameras “through” the image planes at the
corresponding pixel positions is computed and results in a triangulation (see Fig. 2.7).
An efficient block-matching approach is introduced by Schroeder [Sch00]. The image
is evaluated in different resolutions, whereas the algorithm starts at a low resolution and
corresponding image regions are identified in larger areas. In the following steps, this
process is repeated with higher resolutions in the previously detected corresponding
areas. This hierarchical approach leads to higher processing speed and robustness
against false correlations.

Furthermore, it is useful to involve the camera positions and orientations. Based on
the epipolar geometry between two cameras, the search area is drastically reduced to
only one line, the so called epipolar line. Therefore, a ray from the projection center to
the object of the first camera is mapped to the image plane of the second camera. This
line is the epipolar line and it represents all possible positions for the corresponding
pixel in the first camera image.
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2.1.4 Tactile Coordinate Metrology

The 3D measuring method established in the industry is the mechanical pointwise sur-
face sampling with high-precision probes. These are mounted on flexible joints with
known relative and absolute positions. The probe is guided along the surface, and
single 3D positions are generated. In the last years, coordinate measuring machines
have evolved from origins founded in simple layout machines and manually operated
systems to highly accurate, automated inspection centers. Major factors in this evolu-
tion have been the touch trigger and other forms of inspection probes, and subsequent
innovations such as the motorized probe head and automatic probe exchange system
for unmanned flexible inspection. The technology is sophisticated and achieves a high
precision (< 5 µm). But nevertheless it is very expensive, slow, and the mechanic is
complex. Furthermore, it cannot be used for pliant surfaces and can not be integrated
into online production processes. Therefore, optical metrology is becoming an impor-
tant alternative. There are combinations that use an optical scanner head or heads
with small electric charges (e. g., electron microscope) instead of a probe.

2.1.5 Further 3D Measuring Methods

Besides the methods that are based on optical triangulation or mechanical sampling,
there is a variety of other methods for displacement measurements. This includes
time-of-flight methods, confocal microscopy, and shape-from-shading.

Time-of-Flight Methods

To capture large areas and buildings, time-of-flight approaches are used very often. In
these cases, a distance is measured based on the runtime of an emitted signal. Typical
systems employ ultrasonic [WS05], positron emission [SKP+06] infrared or coherent
laser light [SGS05, MAB06]. In this respect, a light impulse is emitted at a certain
time. A part of the reflected light is received from the object and detected by a light-
sensitive unit. Based on the time delay and the known speed of light, the distance
is computed. Recent developments allow the real-time 3D data acquisition in limited
resolution also in the close-up range [BOW+04].

Measuring devices that use infrared light work independent from the surface color. This
is due to the fact that their wavelength is larger than that of the visible light. These
approaches require an acutely sensitive hardware to achieve an accuracy in the cm
range, but they have a large measuring range (>80m). Ultrasonic devices are applied
in parking assistants and for underwater measurings.

Another interesting approach for time-of-flight measuring is used in the LIDAR project
(Light Detection And Ranging). Based on emitting and receiving light impulses, the
pollutant and gas concentration in the earth atmosphere is captured together with its
spatial expansion [FS07].
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Confocal Microscopy

The principles of confocal microscopy were invented and also patented by Marvin Min-
sky in 1956 [Min61]. Recent developments in the computer and laser technologies allow
the conception and application of confocal microscopy for the 3D object inspection, es-
pecially of microscopically small structures [SN06].

 

Fig. 2.8: Scheme for the confocal laser-fluorescence microscopy.

In contrast to the traditional microscopy, light that is not originating from the focal
plane, is suppressed. Based on a pinhole, the illumination of the observed object is
limited. A second pinhole finally reduces the viewing field to a single point. Due to
the system configuration, both apertures and one point of the object are confocal in
the focal plane. The diameter of the aperture is chosen very small so that light from
outside the focal plane can be suppressed (see Fig. 2.8).

With this principle, only one single (image) point (originating exactly from the focal
plane of the lenses) can be measured. For a complete survey, the object must be sampled
by laser point by point. By changing the focus, the next depth plane can be measured.
The test item is additionally coated with a fluorescent substance that is activated by
the laser light. The emitted photons are detected by a photo-electron-multiplier.

Shape-from-Shading

3D surface shading is widely used in computer graphics. Based on the surface normal
and the light direction and intensity, a color value is assigned to each point on the
surface in order to produce a spatial impression.

The inversion of this principle is called Shape-from-Shading and dates back to the
work in [Rin66]. Shape-from-Shading techniques try to determine the local surface
orientation from color gradient information. Only based on color information, this
problem cannot be solved. Therefore, additional estimates must be defined. This
includes the estimation of an illumination and reflection model, estimates for the local
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surface continuity and even for the basic shape of the entire surface. Due to these
limitations, shape-from-shading methods cannot be used as a general tool for 3D surface
reconstruction [Maa97].

2.2 Measuring Systems Summary

The introduced 3D measuring methods are applied in different areas. On the one hand,
they are applied for measurements in industrial quality assurance, and on the other
hand, for 3D surveying and visualization in external systems.

Precise geometry and surface measurement is typically based on tactile methods and
optical triangulation. Especially optical 3D metrology methods are becoming more and
more important due to the fact that they are significantly faster and less expensive.
Besides several types of fringe projection, laser triangulation is widely-used. Optical
methods work contactless (e. g., for flexible surfaces) and wearless, but are not suitable
for translucent surfaces.

Due to its simple configuration, the laser triangulation method is a robust and cost-
efficient method. With the advancement of digital camera hardware and laser equip-
ment, compact measuring systems can be designed. Therefore, these methods are
predestined for applications in online production processes. The tactile probes of coor-
dinate measuring machines can also be replaced by laser sensor heads.

The phase-shift method is a very fast and precise technique. It is mostly applied to
homogeneous, smooth surfaces (e. g., car body panels). Sharp or prominent surface
discontinuities can lead to a misinterpretation between fringe projection and phase
assignment. Besides a video projector, the hardware requirements are low.

Photogrammetric approaches, which employ additional lighting, are also robust and
precise. The use of multiple camera devices causes a more complex system configura-
tion and a time-consuming calibration procedure. Naive approaches without additional
projected geometry information strongly depend on the texture and color information
contained in the captured images. Typically, photogrammetry is used for area measure-
ments, where a very short measuring time is needed. Principally, the accuracy of the
measuring devices strongly depends on the system calibration. Furthermore, the size of
the measuring area/volume and the resolution of the hardware devices (e. g., cameras,
linear motorized axes) affect the overall precision. An additional limitation is given by
the environmental and lighting conditions and the reflection properties of the objects.
In practice, not the measuring accuracy but the measuring uncertainty is specified,
which is more significant. Empirical studies show typical uncertainties up to 5 µm.

The Moiré technique is not suitable for precise measurements, because of a very time-
consuming interference evaluation, which always needs an adjusted calibration proce-
dure. Nevertheless, this method is used to detect and observe dynamic scenes [LCK06]
and surface deformations.
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Tactile coordinate measuring machines have been established for 3D inspection tasks
since many years. They reach uncertainties lower than optical metrology (< 1–5 µm)
and can measure translucent surfaces. On the other side, they are relatively inflexible
due to the static configuration, and also very slow. Furthermore, touching the surface
is not possible for many objects. Recent systems have combined measuring heads with
probe tips and optical sensors.

Confocal microscopy is used to capture microscopically small objects. This includes
cells, coatings, and micro-structured surfaces. Compared to light-microscopy, the depth
resolution is drastically increased, but strongly depends on the precision of the em-
ployed optics and lenses (1–100 nm).

resolution

time-of-flight

photogrammetry

light-section tactile methods

confocal microscopy

phase-shifting

Fig. 2.9: Measuring systems classification. The marked positions in the diagram represent the typical
application fields.

Besides the mentioned methods for 3D metrology, there are further existing approaches,
which are partly based on the described ones or are used for special measuring tasks.

The generated point sets, so-called point clouds, have to be processed and evaluated.
This includes correction, measurements (e. g., dimensions), and visualization. Typically,
there is no analytical description for the underlying object geometry, which finally
means that it must be approximated. The most common tools for this approximation
are triangulation or tessellation.
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2.3 Surface Reconstruction

Surface reconstruction is increasingly important in geometric modeling to generate
surfaces from data points captured from real objects, often by optical 3D scanners and
other technologies as discussed in the previous section. Industrial applications include
reverse engineering, quality assurance, metrology and product design.

There are different basic principles to generate a surface model from a set of 3D points
(see Fig. 2.10 (a,c)). An intuitive approach is a spatial subdivision of the space into
uniform cells (voxels). A volumetric model is generated by only selecting occupied cells.
The resulting model is relatively coarse but it can be computed very fast with either
coordinate maps or octrees [TO04].

(a) (b) (c) (d)

Fig. 2.10: Processing point clouds: captured measuring points from the surface (a), polygonal repre-
sentation (b), shaded model (c) and detecting features like Gaussian surface curvature (d).

Polygonal meshes allow a significantly more precise description. Usually, triangle
meshes are used due to their unique and advantageous properties. They represent the
simplest polygons, consisting of only three coordinates and they are always planar and
convex. Planarity allows linear relations and interpolations between the vertices. Fur-
thermore, their convexity enables their connection to more complex structures. These
properties enable the combination of triangles to a polygonal mesh that describes more
complex models. This is called triangulation (see Fig. 2.10(b)), and the generation
process is called meshing or tessellation. On the basis of a triangulated surface, an op-
timized visualization as well as the correction (e. g., noise smoothing) and optimization
(e. g., thinning) of the approximated polygonal point cloud model are possible.

There are three general surface meshing concepts: Marching-Cubes, Delaunay triangu-
lation/tetrahedrization, and the fitting of parametric surfaces (e. g., B-Splines or Bézier
representations), whereas combinations are also common. The following section briefly
describes these basic techniques and associated algorithms.
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2.3.1 The Marching Cubes Technique

Marching Cubes is one of the best known algorithms of surface construction used to
display 3D data. This algorithm produces a triangle mesh by computing iso-surfaces6

from discrete point cloud data. By connecting the patches from all cubes on the iso-
surface boundary, a surface representation is generated. In 1987 Lorensen and Cline
introduced this technique [LC87].

The algorithm is based on a space subdivision into cells, whereas the cells can be
assumed as small cubes (voxels). The center points of the voxels constitute the corners
of the cells. For every cube corner the location to the object surface is determined.
Therefore, the iso-value at the corner position is computed by solving the iso-function
for this position. If the resulting value is greater than the assumed iso-value, the cube
corner is outside the surface. A special case is equality, where the position is defined
inside. These values are computed for all cube corners to determine at which positions
the surface is intersected. The intersection point is computed by interpolation along
the edges between the iso-values at the corners.

In the following steps, each cube is replaced by a set of polygons, depending on which
cube edges have intersected the assumed iso-surface. For each cube 28 = 256 possible
intersection variants exist that can be reduced to 15 by eliminating symmetric variants.
The authors propose a certain set of polygon approximations (see Fig. 2.11(a)). By
adding or omitting cubes with all edges/corners inside and outside respectively, the
literature proposes 14 or 16 variants [SLS07]. Due to the fact that neighboring cubes
share the same edges the mesh connectivity among them is consistent. But the algo-
rithm also produces gaps, because not all polygon variants are consistent to each other.
This method is applied to all cubes intersecting the surface. As a result, a triangular
polygon mesh is produced, which is typically used to visualize the set of 3D coordinates
(see Fig. 2.11).

Precise Marching Cubes [AC98] extended the original algorithm by trilinear interpo-
lation and adaptive error-controlled refinement of surface patches inside of surface-
containing cells. As a result, the precision as well as the smoothness of the extracted
iso-surfaces could be improved. Unfortunately, this method creates a lot more trian-
gles, requiring a much longer calculation time. Furthermore, Nielson’s Dual Marching
Cubes approach also connects adjacent surface cells to quadrilateral surface patches and
then iteratively relaxes the extracted surface constrained to a binary volume [Nie04a].

In practice, the analytical description of the topology or an iso-surface of the scanned
objects is unknown. Therefore, an approximation is needed to successfully apply the
Marching Cubes. For homogeneous and smooth surfaces without sharp edges and
corners (soft objects), Wyvill et al. propose the approximation of a distance function
comparable to that of iso-surfaces [WMW86]. For each point, the local neighborhood

6 An iso-surface is a surface that represents points of a constant value. An iso-surface of a 3D
distributed quantity f implicitly follows from the constraint f(pxiso , pyiso , pziso) = fiso and defines
the spatial coordinates piso, where the function f has the iso-value fiso. For example, the surface
of a sphere is an iso-surface of the sphere function f(x, y, z) = x2 + y2 + z2.

20



2.3. SURFACE RECONSTRUCTION

(a) (b) (c) (d)

Fig. 2.11: Triangulation of the sphere surface with the marching cubes approach: 15 possible polygon
variations that can approximate the surface cell (marked vertices are inside the surface) (a), voxel
intersecting the surface (b), approximated triangle mesh (c), final shaded model (d).

is computed and approximated by a cubic function C (Eq. 2.2). The influence of
neighbors is limited by their distance r that has to be smaller than a predefined radius
R. The considered point itself has the maximum weight of 1 which is non-linearly
decreasing with increasing distance to produce smooth transitions. After computing the
iso-function, for each point (or for regions, for more efficiency) all cells that potentially
lie in the influence region are detected.

C(r) = 2
r3

R3
− 3

r2

R2
+ 1 (2.2)

For every cell corner, the function is evaluated analogously to the standard Marching
Cube approach. But in contrast, another meshing scheme is proposed that uses only
seven variating polygonal approximations. The generated polygons are simply divided
into triangles by connecting the corner points with their mean. This basic procedure
cannot handle all kinds of polygons, but is sufficient to create smooth surfaces.

A more complex algorithm to mesh unorganized points, which also applies Marching
Cubes, was presented by Hoppe [Hop94]. This approach consists of three phases and
enables the additional modeling of surface edges. Therefore, for every point Pi in the
point set P , a tangential plane is approximated for a small neighborhood (k-nearest
points with k=15). The distance to the plane is again used as iso-value, comparable to
the approach of Wyvill. But it is important to take care of the consistent orientation
of the planes in order to ensure the right orientation of the produced polygons. The
second phase optimizes the initial triangular mesh by deleting and inserting triangles
and points. The goal is to reduce redundant and dispensable triangles, whereas the
edges are kept. Therefore, the energy function in Eq. 2.3 is minimized. The term Edist

represents the squared distance between mesh and point cloud, and Erep describes
the ratio between the number of triangles and points respectively. The function Espring

assigns a spring force to each vertex and ensures a certain degree of smoothness between
neighboring triangles [HDD+93].

E = Edist + Erep + Espring (2.3)
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(a) initial unorganized
point cloud.

(b) phase 1: initial
mesh.

(c) phase 2: optimized
mesh.

(d) phase 3: smooth
surface.

Fig. 2.12: Triangulation using the marching cubes technique proposed by Hoppe [Hop94].

Finally, in the third phase, the optimized mesh is subdivided to enhance local fea-
tures. Therefore, the algorithm of Doo for the generation of subdivision surfaces is
applied [Doo78]. The three phases are additionally illustrated in Figure 2.12.

2.3.2 The Delaunay Triangulation

The Delaunay triangulation is an old mathematical principle introduced by Delaunay
in 1924 [Del24]. He describes an incremental method to generate closed triangle meshes.
The algorithm starts with an initial triangle. By iteratively inserting points, new edges
and triangles are produced until no points are left. The Delaunay triangulation can be
generated in two different ways: with the Voronoi diagram7, and based on a circumcircle
criterion.

For the construction of Voronoi diagrams a line between neighboring points is deter-
mined in a first step. In the second step, the perpendicular bisector of the side is
computed. When adding further points to the system, new bisectors are computed and
non-relevant existing parts are removed [Aur91]. Thus, for each point, a convex area
arises. Regions without border edges were connected and represent the convex hull
of the point set. Finally, points within neighboring regions can be connected without
overlapping (see Fig. 2.13). This method requires a theoretical runtime of O(n2). The
required time can be reduced to O(log(n)) by using divide-and-conquer approaches
that initially generated independent meshes that are merged in a second step. This
approach is also suitable for parallel data processing [KKŽ05].

The second method is based on the circumcircle. Three points are initially connected
to a triangle. A new inserted point is only connected with an edge if it lies outside
the circumcircle of the triangle(s) (see Fig. 2.14). Otherwise, the edge shared by two
triangles is swapped and the circumcircle criterion must be reviewed recursively. The
Delaunay triangulation maximizes the minimum angle and is unique while no three
points lie on a line.

7 Voronoi diagram: named after Georgy Fedoseevich Voronoi (04/28/1868 – 04/20/1908).
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(a) (b) (c) (d)

Fig. 2.13: Generation of the Voronoi regions (a-c) and the resulting Delaunay triangulation(d).

(a) Two triangles that do
not satisfy the circum-
circle criterion.

(b) Two triangles satisfy-
ing the circumcircle
criterion.

(c) Two Tetrahedra that satisfy the
circumsphere criterion.

Fig. 2.14: The circumcircle and circumsphere criteria for R2 and R3 respectively.

For the triangulation of 2.5D point clouds it is common to initially ignore the depth
coordinate and compute a 2D mesh. By applying the depth coordinate to the 2D
polygons, a spatial mesh is produced. It is obvious that this method is unsuitable for
the generation of real 3D models, but it is often used for the visualization of terrains
and (height) maps.

Considering the Delaunay criteria in R3, the circumcircle is replaced by a circumsphere
and the points are not connected to triangles but to tetrahedrons [Aur91]. The circum-
sphere criterion defines that no further point besides the vertices of a tetrahedron is
allowed to lie within the circumsphere (see Fig. 2.14(c)). As long as these four points
do not lie in a plane, the 3D Delaunay triangulation (tetrahedrization) is unique. This
technique produces the smallest convex hull of the 3D point set. However, a lot of
intersection tests must be performed, which requires efficient data structures to man-
age the point cloud and the tetrahedrons. In the following steps, the triangle vertices
are moved to achieve an optimal surface approximation. By removing triangle unions,
originally existing holes can be restored.
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The Power Crust

A triangulation method adapting the Delaunay technique is the power crust algorithm
developed by Amenta et al. [ACK01]. The power crust is a construction process
which takes a sample of points from the surface of a three-dimensional object and
produces a surface mesh and an approximate medial axis. First, the approach approx-
imates the medial axis transform (MAT) of the object. Then, an inverse transform
produces the surface representation from the MAT. It comes with a guarantee that
does not depend in any way on the quality of the input point sample. Any input gives
an output surface which is the “watertight” (no holes) boundary of a three-dimensional
polyhedral solid: the solid described by the approximate MAT. This unconditional
guarantee makes the algorithm robust against noise and eliminates the polygonaliza-
tion and hole-filling steps required in the previous surface reconstruction algorithms.

(a) (b) (c)

Fig. 2.15: Generation of polygon meshes with the power crust algorithm: laser range data, the
reconstructed watertight polygonal model, and its simplification represented by the medial axis
(from [ACK01]).

Besides the application of triangulations to construct polygonal meshes, the underly-
ing geometric principles can be exploited for alternative visual descriptions of three-
dimensional point clouds, e. g., for point set surfaces.

Point Set Surfaces

In contrast to triangulation and meshing approaches, Alexa et al. introduced point
set surfaces [ABCO+03]. In their work, a set of 3D points in the proximity of the
shape is mapped onto local polynomial surface approximations. Due to the local de-
composition of Voronoi regions (see Sect. 2.3.2), the projection operator enables the
computation of displacements from smoother to more detailed levels (see Fig. 2.16).
The visualization is only based on the points themselves and their density.

The particular appeal of point sets is their generality: every shape can be represented
by a set of points on its boundary, whereas the degree of accuracy typically only
depends on the number of points. Point sets do not have a fixed continuity class or are
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limited to certain topologies as in most other surface representations. Polygonal meshes,
in particular, have a piecewise linear C0 geometry, often resulting in an unnatural
appearance. Furthermore, this technique allows the selective refinement at significant
and interesting surface positions.

This algorithm is particularly useful for very large polygonal models (e. g., 40 mio tri-
angles), where single triangles would appear smaller than pixels on the screen.

Fig. 2.16: A point cloud representing an angel. The point density and precision changes in vertical
direction [ABCO+01].

2.3.3 Advancing Front Meshing

Another family of polygonal mesh generation algorithms is the advancing front or
moving front method. In these methods, the triangulation process starts with an
initial front (e. g., one triangle), and elements are created on each triangle. This is
achieved by creating new points in the interior of the front’s domain. The current front
always consists of the exposed faces in the domain. The front is advanced (“grows”)
either by establishing new points or by using existing points to create new elements
(points/triangles). In this way, the complete domain is successively filled with triangles.
Intersection checks are also required to ensure that triangles do not overlap as opposing
fronts advance towards each other. A sizing function (e. g., a predefined distance value)
can also be defined to control the size of newly added triangles. Lohner proposed to
use a coarse Delaunay mesh of selected boundary nodes by which the sizing function
could be quickly interpolated [LC00]. Furthermore, Schreiner et al. use a guidance
field to determine the triangle size. This field contains information on edge lengths
which helps to prevent large triangles from being created near small ones [SSFS06].

Scharf et al. present an approach that employs a deformable model to reconstruct
a surface from a point cloud [SLS+06]. The model is based on an explicit mesh repre-
sentation composed of multiple competing evolving fronts. These fronts adapt to the
local feature size of the target shape in a coarse-to-fine manner. In principle, a flexible
shape (e. g., a ball) grows and deforms in the “inside” of the point sets until all points
have been added to the mesh. As a result, a “watertight” model (no holes) is produced.
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Although the advancing front method is often used to create triangle meshes, it is a
general meshing approach.

The Ball Pivoting Algorithm. Advancing front methods are especially suitable for
large point sets. Since they only consider local neighborhoods, they are very fast. This
principle is also used by the Ball-Pivoting Algorithm (BPA), which computes a triangle
mesh interpolating a given 3D point cloud [BMR+99]. Typically, the points are surface
samples acquired with multiple range scans of an object. Three points form a triangle,
if a ball of a user-specified radius ρ touches them without containing any other point.
Starting with a seed triangle, the ball pivots around an edge (i. e., it revolves around
the edge while keeping in contact with the edge’s endpoints) until it touches another
point, forming another triangle. The process continues until all reachable edges have
been included, and then starts from another seed triangle, until all points have been
considered (see Fig. 2.17). The relatively small amount of memory required by the
BPA, its time efficiency, and the quality of the results obtained compare favorably
with the previously discussed techniques. The simplicity of this method also exhibits

(a) (b) (c) (d)

Fig. 2.17: A sequence of ball-pivoting operations. From left to right: A seed triangle is found;
pivoting around an edge of the current front adds a new triangle to the mesh; after a number of
pivoting operations, the active front closes on itself; a final ball-pivoting completes the mesh.

disadvantages. When the sampling density is too low, some of the edges will not be
created, leaving holes. Thus, multiple runs may be required. When the curvature of
the manifold is larger than 1

ρ
, some of the sample points will not be reached by the

pivoting ball, and features will be missed.

2.3.4 Parametric and Analytical Surface Representations

B-Spline and Bézier Representations

Both naive variants of the Marching Cubes algorithm and the Delaunay approaches
produce piecewise linear connected surface models, since they simply merge single
triangles. Depending on the resolution and the number of triangles, the generated
surfaces may look square-edged. Particularly on scanned surfaces, which contain noise
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and erroneous points, the triangulation can fail or represent the assumed topology only
insufficiently.

A better surface approximation that guarantees smoother transitions between neigh-
boring surface parts, are provided by Bézier and B-Spline surfaces. These are defined
by piecewise polynomial functions and thus have an analytical description that enables
the generation of additional points on the surface. The surface continuity is (user)
defined by the degree of the control polygons (see Fig. 2.18). Furthermore, rational
B-Splines enable the definition of weights for single vertices. Thus, erroneous and noisy
vertices can be weighted differently from others. Due to the guaranteed continuity, the
approximation of gaps is more sophisticated.

(a) (b) (c)

Fig. 2.18: Surface representation through B-Spline surfaces of different order: meshed linear (a),
quadratic (b) and cubic surface (c).

Usually, existing polygonal meshes are used to approximate B-spline or Bézier surfaces.
For example, Bajaj et al. replace triangle faces by weighted Bézier patches [BBX97].
Surface blending techniques and free-form surface fitting is also discussed by Xu et
al. [XPB06]. Eck and Hoppe discuss the construction of a mesh of B-spline patches
to represent the original surface [EH96]. Since not every shape may be representable
by a single patch (e. g., self-intersections, multi-part objects), Park et al. present
an enhancement [PYL99]. They introduce a technique that enables the generation of
a network of rational B-spline patches.

In this thesis, B-spline curve and surface approximation are also used. Thus, more
detailed discussions on the associated algorithms are given in Chapter 4 and 5.

2.3.5 Comparison of Meshing Approaches

There are many techniques to process point clouds in 3D. They basically differ in
the method how the point set has been initially described and organized. Traditional
methods are based on a cell space subdivision (octrees, Marching Cubes) or use Voronoi
diagrams with the Delaunay triangulation as its dual. Further approaches focus on
parametric descriptions (e. g., B-spline surfaces).
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The Marching Cubes. This approach uses a set of polygon variants to approximate
the entire surface based on a cell subdivision. The technique is particularly suited for
the triangulation of iso-surfaces. By approximating the (unknown) surface through
local functions, the algorithm may process point clouds as well. But this also requires
the point cloud to represent a continuously smooth surface. The 3-phase approach of
Hoppe processes arbitrary unstructured point clouds, but needs a lot of computation
time [Hop94].

The Delaunay Triangulation. This method is mostly used, because it has mathe-
matical guarantees. It computes the convex hull of an arbitrary point cloud, whereas
the minimum angle of the polygons are maximized. Furthermore, its dual Voronoi dia-
gram represents neighborhoods. Meshing algorithms use this technique to reconstruct
non-convex surfaces piecewise. In many cases, the resulting triangle meshes are refined,
interpolated or replaced by Bézier and B-spline patches.

Advancing Front methods. Instead of using a global parameterization, this class of
algorithms creates triangle meshes iteratively. Therefore, an initial seed edge or triangle
is advanced to more complex structures by adding vertices from the surrounding area.
Thus, the mesh grows until all vertices have been reached. This approach is particularly
suited for large point sets (i. e., > 5 mio points). The literature discusses different
methods which differ in the criteria that a new triangle is added. For example, the
BPA ([BMR+99]) evolves a ball around an edge until a new vertex is touched and
Schreiner et al. use a guidance field to locally control triangle sizes ([SSFS06]).

Bézier and B-spline surfaces. These representations approximate local polynomial
surface functions with a certain mathematical degree and thus guarantee continuity
and smoothness. By additionally applying weights, edges can be modeled as well. The
analytical descriptiveness enables the computation of polygonal (quad) meshes with
variable density. Considering the large point sets from 3D scanners, methods that
produce networks of B-spline patches are dominating.

In fact, visualization and geometry evaluation (e. g., feature detection) are the main
goals which are common for all approaches. Special emphasis is placed on a precise
approximation (edge modeling) and an aesthetic geometry representation of the under-
lying point clouds.

2.4 Concluding Considerations

The surveyed triangulation and meshing techniques principally exhibit difficulties with
modeling unevenly sampled and noisy data or sharp edges. This is due to the require-
ments of underlying smooth surfaces or special topologies (homeomorphic to spheres,
discs, etc.). Therefore, approximations must be usually employed. Remedies may be
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found in new approaches that attempt to detect special geometry features, which are
then passed to an optimized surface modeling. A varying point density is problem-
atic, since most algorithms implicitly interpret this as a feature or expect a uniform
density. Furthermore, holes and multi-part objects are also problematic and may lead
to erroneous meshes, which must be repaired in additional processing steps [MK05].
The biggest problem are single significant erroneous points (outliers) which lead to
significant distortions or defects.

The analysis of the measuring principles showed that there is already ancillary informa-
tion about the generation of the point clouds. This includes the geometry of projected
patterns or the coordinates of the tactile probes, which can be employed to efficiently
optimize and correct the data in a preliminary step. Since these methods sample a
surface based on defined movements and geometric principles, they are able to sort
the data and store the additional information about the scanning and reconstruction
process, the system configuration as well as the sensor types and the measuring princi-
ple. As a result, the point clouds are no longer unstructured and the post-processing
becomes significantly more efficient.

Thus, the analysis of the acquisition procedure yields additional information about
the scan process independently from point clouds or polygon meshes. The following
algorithms (e. g., triangulation, geometry evaluation, segmentation) benefit from this
through a prior optimization of the scan data based on the scan system specific char-
acteristics or the measuring principle.
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Chapter 3

Scan Data Acquisition

Many complex real-world objects cannot be easily reconstructed as a combination of
primitive 3D objects or parametrized surfaces. Point clouds created from a variety of
different 3D scanners are typically used for that purpose. Techniques for automatic
data processing play an important role in a variety of applications. Unfortunately, the
result is often disturbed by noise and artifacts, which complicate the data processing.
Thus, the basis for the analysis, evaluation and correction of point clouds from 3D laser
scanners is the data acquisition step. Besides the spatial coordinates, each internal
procedure provides additional information about quality and structural relations for
each measured point within a scan.

At the example of two 3D scanners, this chapter discusses the basic system setups and
the point cloud generation procedures. Additionally, the sources and influences of errors
are analyzed. In order to derive useful features and parameters from the acquisition
stage, common internal data structures and relations used for further considerations
are also introduced.

3.1 Employed Laser Scan Systems

Point clouds generated by optical 3D measuring systems are generated and affected by
many parameters in the acquisition process. On the basis of these parameters, analy-
ses and evaluation procedures in the following processing stages become more robust.
Particularly, correction and optimization algorithms can draw on reliable information
derived from the measuring principle and system specific characteristics. Thus, the
number of unknown parameters reduces, at the same time the adaptivity increases and
finally, the degree of automation can be elevated.

This section introduces two 3D scanners utilizing the light section and triangulation
principle as introduced in Section 2.1.2: a measuring machine and a flexible scanner.
Both were used to generate the point clouds for which new algorithms are presented in
this work. The identification of system-specific features for an optimized data process-
ing is discussed at the example of these scanners.
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3. SCAN DATA ACQUISITION

3.1.1 The 3D Measuring Machine

The first scanner is a complex, multi-axis system consisting of two light-section sensors,
where each sensor contains a line laser and a digital gray level camera. The measuring
machine allows three independent motions by two linear drives and one rotation stage.
The machine was originally designed to capture the complex geometry of catalytic
converters for industrial measuring tasks (see Fig. 3.1(a)). For this application, the
resulting 3D point cloud is processed to detect and quantify geometrical measures, such
as dimensions, radii and deviations from its nominal geometry. Due to the variability
of the system it can also be used to scan a variety of other objects.

The measuring principle is optical triangulation based on light section (see Sect. 2.1.2).
The system covers a measuring volume of approx. 400 × 400 × 400 mm3. One of
the sensors captures the upper surface parts and the other one captures the lower
parts. Based on the high-precision locomotor system, the object is moved in front of
the sensors until the entire surface has been captured. For a robust data acquisition
process, all components are mounted on a granite plate to compensate vibrations from
external sources in industrial environments. To ensure a unique projection of a laser
to its connected camera, a trigger unit alternately generates impulses for each sensor.
Within each point of time, the actual position of the motion axes is obtained and used
to successively construct a 3D point cloud from single line scans of each sensor. The
typical surface depending measuring uncertainty of this system is 80µm.

camera

laser

x

y

(a)

measuring arm

tactile probe

3D sensor

(b)

Fig. 3.1: The employed 3D laser scanners. The measuring machine with its high-precision locomotor
system (a) and the flexible scanner, consisting of a measuring arm and an optical 3D sensor (b).

3.1.2 The Flexible Laser Scanner

The second scanner is a flexible device combining optical metrology and approved
tactile methods. While tactile methods are very precise, the pointwise sampling of
large surfaces is extremely time-consuming. The combination of a conventional tactile
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device with a 3D laser scanner provides more flexibility. Thus, this scanner consists of
a high-precision measuring arm with six degrees of freedom (7 axes) and an optical 3D
sensor head.1

The optical sensor consists of a high-speed camera and a line projecting laser (see
Fig. 3.1(b)). The contours of the laser lines, projected onto the object’s surface, are
captured at a preset clock speed. By using a CMOS sensor and integrated hardware-
based image processing, up to 120 contour lines are digitized within one second, each
with a maximum of 1.536 2D coordinates. The pixel positions of the profile line in
the image are already calculated by the camera and subsequently transmitted to the
connected computer in form of a list of 2D data. This reduces the quantity of data
to be transmitted by over 95% compared to the standard procedure, where the whole
image is transmitted. The measuring range is dimensioned to scan a line length of
70mm in a maximum depth range of 40mm. The position and orientation is given by
the flexible kinematic system of the measuring arm. The sensor itself is integrated at
the probe tip of the arm and can be moved within a hemisphere with a radius of 1.20m,
which finally results in an overall measuring uncertainty of approx. 100µm.

Both introduced measuring systems and their data acquisition principles are represen-
tative for the ordered and unordered generation of 3D point clouds applying the laser
light section method.

3.2 Sensor Calibration

Before 3D coordinates can be generated by triangulation, the optical sensor components
must be calibrated. This includes the determination of the mapping properties for the
camera devices as well as the spatial position and orientation of cameras and laser
planes to each other.

3.2.1 Camera Calibration

An exact 3D measurement depends on an exact camera calibration in order to extract
metric information from 2D images. Therefore, the intrinsic and extrinsic parameters
must be determined. The calibration problem is formulated as a functional Φ for the
mapping from object coordinates into camera coordinates (see Fig. 3.2(a)). The func-
tional Φ depends on the intrinsic parameters: camera constant (focal length) c, parame-
ters of a nonlinear function for correcting the lens aberration ai, and a two-dimensional
vector ξ for the displacement of the principle point (see Fig. 3.2(a)). Additionally, the
extrinsic parameters containing the spatial position and orientation of the camera to
the object are included in this function:

Φobj = Φobj ({xobj, yobj, zobj; c, ξ; a1, . . . , an}; {x0, y0, z0; ω, ϕ, κ}) . (3.1)

1 The measuring arm was built by FARO Technologies Inc. and the 3D scanner head was developed
at the Fraunhofer IFF.
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Fig. 3.2: Calibrating the 3D sensor. The sought intrinsic camera parameters and their coordinate
systems are schemed in (a). The extrinsic camera position is obtained from a board of markers with
known distances between them. In the same way, the position of the projected laser line is derived in
two depth planes to compute the orientation of the laser plane relatively to the camera.

The computation of the parameters necessitates features from a calibration object
with known dimensions. A feature is, for example, a set of coded markers on a plane as
shown in Figure 3.2(b). The positions of the markers to each other have been previously
determined by using a calibrated measuring device. On the basis of their positions in
the captured image and the known real position information, the sought calibration
parameters for Eq. 3.1 are determined.

Due to the lens aberration and the other initially unknown parameters, the rays from
the coded marker to their pixel position on the camera chip do not intersect in a
common point. Therefore, an adjustment procedure is applied. Its underlying mathe-
matical principle is a bundle adjustment that estimates the intersection point by least-
squares error minimization [GL92, TMHF00].

There are many different strategies that differ in the number of used images, the type of
the calibration object (1D, 2D or 3D), and the used markers (lines, circles). Compared
with classical techniques that use two or three orthogonal planes (see Fig. 3.2(b)),
Zhang developed an efficient technique, which only requires the camera to observe
a planar pattern at at least two different orientations [Zha99, Zha00]. Therefore, he
used rectangular patterns to determine the projection parameters. Meng et al.
adapted this procedure and used circular targets in combination with lines [MH03]. The
advantage of their technique is that it needs to know neither any metric measurement
on the model plane, nor the correspondences between points on the model plane. The
parameter computation from ratios allows a flexible calibration and is additionally
discussed by Wu et al. [WH06]. The disadvantage of these methods is that the
scaling cannot be reconstructed, and thus a measured scale must be visible in the
images [LRKH07].
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3.2. SENSOR CALIBRATION

For the camera calibration of both employed systems, the commercial software package
CAP was used, which computes the parameters by a bundle block adjustment from
multiple images.2

3.2.2 Laser Calibration

In a second step, the orientation of the laser plane to the camera is determined. Due
to the previous camera calibration procedure, the spatial orientation and position of
the camera and the transformation Φobj are known (see Eq. 3.1). As a result, a 3D
coordinate can be determined for each point on a calibration plane (marker board).
Thus, by extracting the 2D image positions generated by the laser line, its 3D repre-
sentation can be computed (see Fig. 3.2(b)). By measuring in at least two different
planes, multiple 3D lines in different depths are derived. Their common 3D plane is
then determined by plane approximation [ARR99] (this approximation is discussed in
more detail in Section 6.2.3).

Although the exact location of the laser origin is not needed for triangulation since it is
based on the angular relationship to the plane, the location is useful to sort the points
on the measured 3D contours by their projection angle. Because of the cylindrical
lens, which splits the laser beam into a line (spatial light plane), the location of the
light’s origin is unknown. Therefore, an additional calibration step is applied, which
uses a multi-step volume. This volume is scanned with a vertical laser alignment to
artificially produce shadowing effects at the object’s edges which causes disconnected
line segments in different spatial planes as shown in Figure 3.3.

Fig. 3.3: The origin of the laser is obtained by scanning a multi-step volume (a) and utilizing the
shadowing effects at the object edges. By intersecting the projection rays generated at these corners,
the real laser origin is reconstructed.

The start and end points of these segments are manually segmented in the 2D image
space. By applying the transformation Φ, their three-dimensional coordinates are ob-
tained and finally used for the construction of inverse projection rays that point from

2 Combined Adjustment Program (CAP), developed by K2-Photogrammetry.
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the object edges to the laser origin. As a result, the common intersection point of these
rays estimates the origin of the laser light. From the position and length of a segment,
the beam width is obtained from its triangle relation. Because of the fixed alignment
of camera and laser in a sensor, this procedure is only applied once.

Finally, the locomotor system is calibrated to the sensor by iteratively moving and
measuring the markerboard. After each (defined) movement, the camera location is
recalculated resulting in different spatial positions for the sought moving directions.

3.3 Point Cloud Generation

After having calibrated the digital cameras and having determined the spatial orien-
tation of the laser plane, for each 2D pixel position the corresponding 3D coordinate
can be determined by triangulation (see Sect. 2.1.1). Thus, for a 3D point cloud gen-
eration, the object is lighted and “intersected” by the light plane and the resulting
contours, i. e., the corresponding set of 2D pixel positions, must be extracted. In order
to reduce interferences by unfavorable illumination conditions, the scan is performed in
a dark environment, where only the reflected laser light is visible. Therefore, an image
processing pipeline is applied to separate this contour from the background.

3.3.1 2D Contour Extraction

Based on the principles of stereoscopic vision, the lines projected onto the object are
deformed by the surface topology, and are thus enriched with depth information. The
resulting contour is captured by a digital gray level camera and must be extracted,
i. e., segmented from the background (see Fig. 3.4(a)(top)). Depending on the resolu-
tion of the camera devices and the width of the laser line, which is determined by its
lens, the captured contour has a width of several pixels. But only the center is needed
for the 3D reconstruction.

The medial axis of a plane object in the continuous case is defined as the set of points
which are equidistant from at least two points on the object boundary [Par97]. In
the discrete space, this definition cannot be directly applied, because the discretization
generally produces jagged structures resulting in irrelevant skeleton branches [SPSP02].
For example, there is no unique discrete medial axis of line with an even pixel width.
Thus, an approximation, called “thinning”, is usually applied. By performing mor-
phological operations on binary images, the foreground pixels are eroded until only a
one-pixel wide contour is left. The algorithms of Zhang and Stentiford are typically
used for that purpose [ZS84, SM83]. An approach for gray-level images is proposed
in [MAM04]. The result of these procedures is an image with only medial points in the
fixed-point arithmetic. But the more precise the segmentation, the more accurate is
the projection from 2D pixel positions into 3D coordinates by triangulation. Therefore,
the following alternative technique is proposed.
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3.3. POINT CLOUD GENERATION

Due to diffuse reflections on the surface, there is a characteristic distribution of the
intensities perpendicular to the contour. The gray level intensities at the edge of the
contour are typically smaller than those at the central positions. Therefore, the path
is analyzed perpendicular to its contour, from which different profiles are derived (see
Fig. 3.4(a) (top)). The profile center is determined with subpixel accuracy by linear
interpolation between the inflection points (see Fig. 3.4(b)).

(a)
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Imean
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cwidth
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255
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(b)

Fig. 3.4: Extracting the laser illuminated contour from the background (a). Based on a fixed threshold,
the input image (top) is binarized (middle) and finally thinned (bottom). The gray level function of an
extracted profile is shown in (b). The central position of a profile is found by detecting the inflection
points ωi based on the Laplacian edge detector.

In order to obtain the central (medial) positions for the entire contour, the following
algorithm is applied: calculate binary image I ′ from input image I with threshold t
(for efficiency a static t = 50 is defined); compute the medial axis points; apply the
profile analysis; extract the subpixel contour centers (see Alg. 3.1).

In practice, there is often no unique maximum intensity value due to overmodulations
and overexposures of the camera chip. Thus, it is necessary to derive the maximum
value from the surrounding pixels by approximation. Therefore, the inflection points
ωi of the gray level intensity function for a profile are determined. This is achieved
by previously applying an isotropic 3 × 3 Laplacian edge detector (see Fig. 3.5) from
which the positions of the zero crossing of the 2nd derivatives (maximums of the first
derivatives) are obtained [Par97]. The subpixel position between them is assumed to
be the center of the profile and thus the center of the contour at this image position
(see Fig. 3.4(b)).

Experience shows that the maximum intensity value is an important criterion for a
balanced measurement system. The maximum should exist within the upper 10% of
the gray level spectrum. This is achieved by adjusting either the intensity of the laser or
the shutter time of the camera. Although the subixel interpolation for the maximum is
valueable at at least a width of two pixels, the contour should be as thin as possible.

A quality measure is given by the contrast, defined as the variance around the mean
value Imean. For this application it is approximated as the difference Imax − Imean (see
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Input: gray level image I containing the observed laser line and threshold t
Output: 2D subpixel positions of the contour line centers
calculate Binarization(I,t,B)
calculate Skeletonization(B,S)
calculate Laplace(I,L)
foreach pixel position pi in S do

if pi is foreground pixel then
calculate nextNeighbor(pi,ni)

define profile direction ~dp perpendicular to
−−−−→
ni − pi

calculate Mean(I,dp)
foreach pixel position ri on the profile do

if I(ri) ≥ Imean then
calculate FirstZeroCrossing (L,p(ω1))
calculate FirstSecondCrossing(L,p(ω2))
calculate centralPosition(p(ω1),p(ω2))
break;

end

end
set pi to background

end

end
Algorithm 3.1: The scanline extraction algorithm.

Fig. 3.4(b)). Obviously, the higher the contrast, the more the line differentiates from
the background. Another criteria is the slope at the inflection points. The higher the
contrast and the thinner the contour, the steeper the slope.

Problematic cases appear at roughly textured surfaces such as stone or cast iron. Mul-
tiple intensity maximums may arise in such cases and can lead to severe artifacts and
outliers in the resulting 3D points. The sources and influences of errors on a 3D point
cloud during its 2D acquisition are discussed in the following.

3.3.2 Influences of Errors

There are many sources for erroneous scan data during the acquisition process. The
most severe cases will be discussed below. As can be deduced from numerous example

0 1 0
1 -4 1
0 1 0

(a)

1 1 1
1 -8 1
1 1 1

(b)

Fig. 3.5: Laplacian image convolution masks for 4-neighborhood (a) and 8-neighborhood (b).
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scans, most of the outliers and other erroneous points are caused by unwanted reflec-
tions. In these cases, the high energy laser beam is reflected from mirroring surfaces
such as metal or glass. Therefore, too much light hits the sensor of the camera and
so-called blooming effects occur.

In other cases, reflections may also miss the camera. At sharp edges only partial
reflections appear. In addition, craggy surfaces cause multiple reflections and therefore
indefinite point correlations. Furthermore, a part of the object may lie in the path of
the projected laser line to the camera causing shadowing effects.

blooming

outliers

speckle

Fig. 3.6: Optical effects that affect the 2D data acquisition. Speckle effects cause spotted, fringy
contour lines and small gaps. Blurring and blooming broaden the laser line in the image space and
complicate the exact detection of the line center. Unwanted reflections on mirroring surfaces cause
outliers.

Since the scan systems are typically used in industrial environments, some atmospheric
effects (e. g., dust and vibrations) may affect the quality of the image obtained by the
camera. Furthermore, aliasing effects in the 2D image processing and speckle effects
lead to high frequent noise in the generated 3D data. In summary, the following effects
already disturb a point cloud during the acquisition:

Shadowing Effects. These effects appear on object surfaces with a complex geometry.
In this case, holes and salient parts prevent the camera from observing the laser line.
Finally, this results in an incomplete point cloud leaving several “holes”.

Aliasing Effects. Aliasing effects emerge in the image processing step that detects
and analyzes the contour. Due to the mapping of the continuous laser line to discrete
pixel raster in the digital image, aliasing effects may occur. These effects lead to high
frequency noise in the resulting 3D point cloud. The negative influence of this effect is
reduced by the profile evaluation and the subpixel interpolation (recall Sect. 3.3.1 and
Fig. 3.4).
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Blooming Effects. Blooming is caused by the interaction of laser intensity and surface
reflectivity. If the laser light is too intensive or if too much reflected light hits the sensor
of a CCD camera, some cells in the chip cannot hold the generated energy which is
then distributed to neighboring cells.

Blurring. Blurring is caused by an improper alignment of camera, laser and object.
Because the depth of sharpness of the camera and laser line is limited by their lenses,
the surface to be captured must be within this range. Blurring can also be a result of
the blooming effect.

Speckle. These effects are caused by the coherence of the laser light. Due to the
fixed phase relation, laser radiation is subject to interference whenever it is scattered
from objects with diameters in the same order of magnitude as the wavelength [PS97].
Since almost every surface contains small-scale structures or dust particles, surfaces
illuminated with laser light show speckled structures, which move with the direction
of observation. Thus, these speckles are randomly distributed points in space, where
both constructive and destructive interference take place (see Fig. 3.6).

The combination of these effects is responsible for noise, outliers, gaps and holes, and
thus the resulting 3D point data is partially erroneous. Closing larger gaps in the 2D
image by interpolation is not reasonable, because even if the distance between two 2D
pixel positions remains constant, their 3D representation may not. However, a lot of
errors can be minimized by an optimal alignment of the sensor system and the object
surface so that the number of unwanted reflections is as low as possible.

Curless et al. proposed a method which observes the degree of reflection over
time [CL95]. Their technique allows to reduce errors from blooming and speckle effects
by applying a space-time analysis. Due to the time-consuming acquisition of multiple
images for one line it is not suitable for time-critical applications.

3.4 3D Point Cloud Structure

Based on the discussions before, we can assume that a laser scanned point cloud always
has a structure. It consists of single contour line-based measurements projected into
the 3D space by triangulation. In the following, one resulting 3D contour is called
scanline. Due to shadowing and speckle effects, a scanline may be interrupted. Thus,
the emerging 3D line segments are named sublines of a scanline. Finally, each subline
contains a number of 3D points representing the scanned object’s surface.

The existence of multiple 3D sensors necessitates an additional structuring by the sen-
sors that have generated the scanlines. By moving a sensor or the object, multiple
scanlines are generated and combined into a common point cloud. Therefore, each
movement is named scan operation. The measuring machine allows defined successive
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translations and rotations and the flexible scanner for free movements. For each of
these scan operations and for each contained scanline of a sensor, the actual camera
and laser positions are known from the calibration stage. They can be used as an addi-
tional information in further algorithms and are stored for each scanline. Figure 3.7(b)
illustrates the data structure representing these relations.

laser

scanline
sublines

sublines

(a)

sensors

scanlines

scan operations
rotation
translation
free

camera pos
laser pos
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points
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Fig. 3.7: Illustration of the scan data structure as derived from the measuring principle and the
employed 3D scanners (a). Based on the laser origin, the points are sorted by their projection angle.
The whole contour is named scanline, which is divided into a sorted set of sublines, if the distance ∆i

is larger than a threshold ∆max. The hierarchical data structure derived from the measuring principle
and the employed 3D measuring systems is shown in (b).

Depending on the preliminary image processing step that detects and collects the con-
tour points, the sublines and their points are unsorted. For further processing and data
analyses, it is desirable to sort the points along the real contour shape. Therefore, the
information within the point data alone is not sufficient, since holes and gaps interrupt
the connectivity. The solution for this problem is implicitly given by the laser position,
because from its viewpoint the point set represents a continuous straight line. Due to
the fact that all data lie within a plane, the point sorting can be performed by com-
paring the corresponding projection angles (see Fig. 3.7(a)). After this procedure, the
points are sorted and the order of the sublines is corrected based on their start and end
points. Since this procedure reflects the real measuring process, it is always correct.

The splitting procedure, defining the number of sublines, uses a manual threshold
∆max. If the distance between the start and the end point of two successive sublines
of a scanline is smaller than ∆max, both sublines are merged. Thus, this parameter
allows to control gaps within a scanline. For the used scanners the sampling density on
a scanline (average Euclidean distance between two neighboring points) is 100–300µm
and ∆max is defined as 1mm. The sequence of scanlines within each operation is defined
by the order of their acquisition. Due to the defined movements of the measuring
machine, successive scanlines are topological neighbors. For the flexible laser scanner,
there is no defined relationship between successively acquired scanlines.
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In this context, the term system information is introduced. It describes the knowledge
about:

� the type of the 3D scanner, i. e., its configuration and measuring principle,

� the type of movement between single (line) scans,

� the position and orientation of cameras, lasers and light planes,

� and finally the order of scanlines and sublines.

3.5 Noise Analysis

The combination of different external influences causes noise. For industrial measuring
tasks it is of particular importance to reliably estimate the distribution of the noise on
a scanline to be able to develop algorithms that can guarantee a certain accuracy. In
order to apply local data evaluations and quantifications, the noise should be free of any
systematic error. Usually, the measuring data is assumed to be normally distributed.
Therefore, the deviations of the measured points are analyzed by using the χ2 goodness-
of-fit test in order to check the existence of a normal distribution.

3.5.1 Test Setup

For the investigation of the noise distribution, a nominal object serves as an ideal
reference. Its position and dimensions must have been determined by a system that
exhibits a higher accuracy as the employed 3D laser scanners. Therefore, one planar
face of a calibrated cuboid was used. In a first step, the planarity of this face has been
checked by an external tactile coordinate measuring machine with an uncertainty of
2µm.

In the second step, the face was sampled by 100 3D points from the tactile probe tip of
the flexible measuring arm, which guarantees a global measuring uncertainty of 30µm,
while the uncertainty of the laser scanner is assumed to be about 100µm. Then, a plane
was approximated into these data (σ = 0.049mm) that finally serves as the wanted
nominal geometry to which the measurements of the laser scanner are compared.

In the last step, the optical sensor, also mounted on the measuring arm, was used
to generate 5000 laser scanned 3D points on the same face of the cuboid. Since the
coordinate systems of both scan devices are the same, the orthogonal distances of
the laser scanned points to the tactile sampled nominal plane give information about
the distribution of the noise. To minimize the influence of systematic errors from the
calibration between the tactile probe and the laser scanner, only local samples were
taken. Finally, the resulting data set contains a nominal reference plane and a set of
different sample points from the laser scanner.

42



3.5. NOISE ANALYSIS

3.5.2 Test Results

In order to analyze the distribution, the distances of the sample points to the reference
plane are computed. Their observed frequencies are sorted and divided into k = 15
intervals (bins). Then, the number of points is counted for each interval ki. The analysis
was performed at 10 different locations on the reference plane, each with n = 200 points.
The result is illustrated in Figure 3.8.
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Fig. 3.8: Histograms indicating the distribution of the deviations from the nominal plane for 10
independent test measurements. The evaluation results are split into the two histograms shown in (a)
and (b).

A test to approve the occurrence of a normal distribution is then performed by the
χ2-test. The assumed Gaussian normal distribution is given by the probability density
function:

φ(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(3.2)

with two parameters for the mean (µ) and the variance (σ2) of the measured distances
x1, . . . , xn. The test is then performed in the following steps:

1. Due to the unknown distribution, µ and σ must be estimated by their empirical
measures, denoted as the empirical mean x̄ and the empirical variance (∆x)2

with:

x̄ =
1

n

n∑
j=1

xj, (∆x)2 =
1

n− 1

n∑
j=1

(xj − x̄)2 .

2. The measurements are divided into k intervals (a1 < a2 < · · · < ak) and the
frequency of occurrence mr for each ar ≤ xj ≤ ar+1 is counted. Then, the
probability pr for the intervals is determined with:

pr = Φ

(
ar+1 − x̄

∆x

)
− Φ

(
ar − x̄

∆x

)
with

Φ(z) =
1√
2π

∫ z

0

e−
1
2
t2dt . (3.3)
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3. SCAN DATA ACQUISITION

3. The test value, which characterizes the distribution c2 is computed as a sum over
the observations mr and the expected values npr by:

c2 =
k∑

r=1

(mr − npr)
2

npr

. (3.4)

4. Finally, the probability of error α is defined (α = 0.05) and the corresponding
value for χ2

α is computed for m = k − s − 1 degrees of freedom, where s is the
number of parameters of the assumed distribution. In this case (µ, σ), s = 2 and
m = 12.

If the relation c2 ≤ χ2
α is true, it can be assumed that X is normally distributed with

a probability of error of α. The results are shown in Table 3.1. Besides test number 9,
all test values were smaller than the allowed value of χ2

0.05(12) = 21.0.

In summary, the test for a normal distribution of the scanline noise was successful
with an error probability of 5%. The normal distribution has its maximum at the point
x = µ (x̄), which also means that the measures become more centered around the mean
value, the smaller the variance σ2. This observation is of particular importance for
many algorithms in this work that rely on the assumption of locally normal distributed
noise.

Based on the normal distribution, the last step is the determination of the confidence
interval x−α ≤ x ≤ x+

α with the bounds x−α = µ− σzα and x+
α = µ + σzα. The value zα

is obtained from the value tα,∞ of the Students t-distribution (z0.05 = 2.0, for further
reading see [PTVF02]).

test 1 2 3 4 5 6 7 8 9 10
min -0.10 -0.10 -0.11 -0.09 -0.09 -0.10 -0.12 -0.12 -0.11 -0.11
max 0.03 0.04 0.04 0.04 0.05 0.03 0.05 0.04 0.04 0.03
x̄ -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03

(∆x)2 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.02
x−α -0.08 -0.08 -0.08 -0.07 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08
x+

α 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02
c2 8.49 14.49 15.66 19.61 10.03 7.53 6.76 7.53 21.27 5.81

c2 ≤ χ2
α

√ √ √ √ √ √ √ √
©

√

Tab. 3.1: Results of the performed noise analysis for 10 tests (in mm). Each test contained n = 200
sample points, whose distances to the reference planes were partitioned into k = 15 intervals. The
probability of error was defined as 5% (α = 0.05). The values x−α and x+

α indicate the bounds of the
confidence interval. The χ2-test is successful, if the test value c2 is smaller than χ2

0.05(12) = 21.0.

Due to the very local analysis, only the noise distribution is evaluated. Systematic
errors from calibration and displacements of the kinematic system are not included and
the uncertainty may vary on different surfaces. Due to the same measuring principle,
the noise distribution is assumed to be equal for the flexible and the complex measuring
device.
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3.7. ACCURACY VS. RESOLUTION

3.6 Accuracy vs. Resolution

When considering uncertainties in (optical) metrology, an often occurring discussion
regards the terms accuracy and resolution. Both terms are often used to describe the
quality of measurements from different points of view.

Usually, the term accuracy is not used in metrology, but the term uncertainty, since an
uncertainty can be measured as a deviation from a known nominal value. The variance
σ2 and the standard deviation σ are measures that are typically used for this purpose.
The term resolution usually means the density of the measured points with regard
to the captured area. The sampling theorem plays an important role when defining
the resolution, i. e., a function must be sampled with a frequency twice as high as the
original frequency in order to allow for an exact reconstruction. Figure 3.9 illustrates
the relation between accuracy and resolution.

(a) (b)

Fig. 3.9: The relation between accuracy and resolution: high variance (low single point accuracy)
and high sampling resolution (a). A high single point accuracy (low variance), but a low sampling
resolution (b).

In fact, the lower the uncertainty, the higher is the single point quality. But sin-
gle points are usually not used to measure quantities, since they can be affected by
noise or they possibly represent outliers. Therefore, a set of neighboring measures is
approximated by a geometry of known function (e. g., line, plane, etc.). The approx-
imation minimizes the influence of single points affected by noise. In this case, the
term feature-based uncertainty is often used. But therefore, a “sufficient” high point
density or sampling resolution must be available to approximate a representative geom-
etry, whereas “sufficient” depends on the geometry and the approximation procedure
(typically 200–300µm). Figure 3.10 illustrates the relation between point density and
point distribution.

The point distribution also plays an important role, because even if the uncertainty
is low and the density is high, an unfavorable distribution may disturb the resulting
approximation (see Fig. 3.10(b)). A problematic case for all measuring systems is
the capturing of sharp edges. Such edges contain all possible frequencies, and thus
cannot be directly measured and reconstructed. Therefore, geometries in the near
environment must be approximated by a known function, and a common intersection
must be computed to quantify the properties of a sharp edge.
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(a) (b)

Fig. 3.10: High variance and low single point accuracy but reconstructed line has a low feature-based
uncertainty (a). A low density and unfavorable point distribution results in a poor approximation,
even if the single point accuracy is high (b).

3.7 Summary

In this chapter, the two laser scanners employed for the point cloud generation were
introduced. On the one hand, a measuring machine with defined motions between
several scans was presented. On the other hand, a 3D sensor, mounted on a flexible
kinematic measuring arm, was used. Since both devices employ the laser light-section
and triangulation principle to produce 3D point clouds, the calibration procedures to
obtain the interior parameters of the camera and the exterior to the laser were also
discussed. Both systems are representative for the variety of light-section systems and
principles.

Based on these discussions, system and measuring principle specific characteristics were
extracted, which are useful for a further point cloud processing. This includes the scan
data structure with its scanlines and sublines as well as additional information about
the laser and camera position. Furthermore, the influence of different error sources
was discussed, which enables to perform error-specific optimizations in the following
chapters.

The majority of errors is brought into the data during the 2D image acquisition pro-
cessing step caused by optical interferences. Furthermore, errors from the calibration
of camera and laser and their orientation to each other affect the data. Besides outliers,
it could be proved that contained noise is normally distributed and shows no additional
systematics. The proof was performed by applying the χ2-goodness-of-fit test. Finally,
the last section discussed the often recurring relations between accuracy/uncertainty
and resolution/density.

Due to the fact that the point cloud consists of a set of successively acquired scanlines,
this structure is applied for a more efficient data processing in the following chapter.
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Chapter 4

Curve-based Scan Data Processing

When reconstructing objects from laser scan data, usually very large data sets have
to be processed. Therefore, it is often necessary to minimize the number of points
while minimizing the loss of information at the same time. In addition, the generated
point cloud usually contains a considerable number of errors. Most of these errors
are directly dependent on the measurement system and the scanned object’s surface.
Outliers and other erroneous points are an important factor when discussing metering
precision. Therefore, they have to be detected and removed from the point cloud or
corrected in order to get a clean model that can be used as precise measuring data.

A scanning system usually provides more information than the point cloud alone. This
additional information includes the camera and laser (projector) positions and their
parameters as well as movements between several scan operations and comparable
information. Furthermore, the applied measuring principle yields information about
the data structure and other acquisition specific information. In contrast to usually
existing methods, which assume a point cloud as an unstructured data set, this chapter
exploits this additional system information and introduces alternative approaches for
an optimized processing of point clouds from optical scanning systems.

Most optical scanners use the triangulation principle based on laser lines, fringe projec-
tion or photogrammetry. The result is a point cloud, which consists of sets of scanned
lines. For photogrammetric approaches and similar measuring techniques, the grid
structure of the captured images is a natural parameterization from which scanlines
can be extracted. Thereby, each scanline is an individually captured measurement,
depending on the corresponding projection and viewing conditions and the topology
of the object surface. This structure is used to employ new techniques to efficiently
handle optical scan data. Thus, the analysis of the entire point cloud considers the
measurements separately before a global analysis is performed.

The major advantage of the proposed procedures is that not possibly erroneous meshes
are considered and processed, but instead the measured point cloud is directly used.
Compared to many algorithms that manipulate point clouds through an approximation
with polygonal meshes, the goal of the algorithms here is to automatically correct each
measurement individually and integrate the methods directly into the measurement
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process. This basic approach was introduced by Teutsch [Teu03]. This chapter seizes
and extends this idea to solve problems in automation and industrial environments
(e. g., dust, vibrations or changing lighting conditions) which require a high degree of
robustness. Therefore, compromises must be found between fast and robust algorithms
that meet the specific requirements of an application. Based on the extraction of the
point cloud structure, these approaches and techniques are used to reconstruct a revised
and optimized point cloud that is much better qualified for fast, robust, and precise
measurements. Finally, the effectiveness of the proposed methods is evaluated based
on exemplary point cloud sets from various models.

4.1 Scanline Approximation

After having discussed the point cloud structures, this section focuses on a general
approach for the data approximation in order to analyze and correct single scanlines.
Measurements and methods of visualization do not require hundreds of thousands or
even millions of points and large data sets need a lot of computation time and memory.
Precise measurements, on the other hand, need data that is free of noise that may be
caused by external effects during a scan. Therefore, we aim at an analytical scanline
description, which allows to analyze the measurements, to minimize the point number,
and to clean the point clouds from artifacts. On the basis of the measuring principle
and the system parameters, this section describes fast and effective methods to process
scanlines derived from a 3D scanner.

The resulting point cloud consists of a number of individual measurements (scanlines).
Therefore, it is reasonable to describe the whole point cloud as a set of sorted lines or
curves to obtain an analytical description. Due to high frequent noise, artifacts and
outliers, interpolation would not result in an adequate representation, since errors still
remain. In contrast, an approximation allows a controlled smoothing and, in particular,
an adaptive weighting of single measurements, e. g., depending on their quality.

The basic problem for a scanline approximation is the choice of the analytical descrip-
tion. One possibility is the interpolation by a global polynomial function and another
one is the approximation by piecewise polynomials functions using B-splines. Basically,
a single polynomial function of a certain degree n and a set of parameters pi is defined
by:

f(x) =
n∑

i=0

pix
i . (4.1)

In general, n different points can be described by a unique polynomial of order n
(degree n− 1). Typical methods for polynomial interpolation are given by Lagrange
and Neville [PTVF02]. A fast approximation is achieved by distance minimization
with the least-squares method. Because of the dense data sets, the unique polynomial
exhibits a corresponding high degree. With respect to computation time and numerical
stability, the calculation of such a polynomial in R3 is not reasonable. Furthermore,
each single point has the same influence on the resulting function. Thus, this kind
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of approximation is not robust enough against outliers. After all, functions in the
form of y = f(x) or z = f(x, y) are depending on the axes of the coordinate systems,
and thus are not flexible. Therefore, it is reasonable to describe curves in R3 with
parametric functions in the form of ~r(t) = [x(t), y(t), z(t)]. To minimize the influence of
single erroneous points, the whole curve should consist of local, single connected curves
with low degree. The sum of the conditions is satisfied by B-spline curves. Hence,
for our purpose each subline of one discontinuous measured scanline is processed and
approximated by a B-spline curve.

4.1.1 B-Spline Curves

B-splines are used to obtain an analytical description of a point set from which features
(e. g., edges, curvatures) can be easily extracted. In addition, they can be used to close
small gaps between neighboring sublines. Interpolating these gaps keeps the precision
of measurements, if the distance between the corresponding sublines is less than a
certain threshold (e. g., 2mm). This threshold depends on the accepted inaccuracy of
the closing segment. Otherwise, the interpolated B-spline segment would follow the
assumed geometry insufficiently.

A B-spline curve with the position vector P (t) of order k is defined over an ordered
knot vector T as vectorial polynomial:

P (t) =
n+1∑
i=1

BiNi,k(t) tmin ≤ t < tmax, 2 ≤ k ≤ n + 1 , (4.2)

with the control points Bi and the normalized basis functions Ni,k(t), which are defined
by the Cox-de Boor recursion formulas [dB72]:

Ni,1(t) =

{
1 if xi ≤ t < xi+1

0 otherwise
(4.3)

and Ni,k(t) =
(t− xi)Ni,k−1(t)

xi+k−1 − xi

+
(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1

. (4.4)

The curve P (t) is a polynomial of degree k − 1 on each interval xi ≤ t < xi+1 and
offers a Ck−2 continuity at the segment transitions. It has a smoothing character,
since it exhibits the variation-diminishing property, thus, it does not oscillate about
any straight line more often than its control polygon oscillates about the line [Rog01].
Finally, P (t) lies within the convex hull of its control polygon B (see Fig. 4.1(a)). This
property is important, because it allows the direct curve approximation using the dense
measured data as control points. The introduced approximation error must be smaller
than the noise. This assumption is valid as long as the point density of the measured
data is lower than the contained error, which is typically true for optical metrology.

To ensure that the B-spline curve approximates the given points in an optimal way
(B-spline fitting), new control points have to be generated from the measured points.
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Therefore, the distance between the points on the curve Pi and the measured points
Mi has to be minimized. A well-known and fast method to achieve this is to minimize
the quadratic (Euclidean) distance:

n∑
i=1

‖Pi −Mi‖2 = min . (4.5)

A point on the B-spline curve is computed using Eq. 4.2. This equation is expressed
in matrix formulation:

P = N ·B′ (4.6)

P − in every row a curve point, in R3 3 columns (x,y,z)
N − for every point Pi one row with the basis functions from Eq. 4.4
B′ − in every row a new control point, in R3 3 columns (x,y,z).

Since the control points should be manipulated, the equation must be rearranged:

B′ = N−1 ·P . (4.7)

The distance between the points P and M should be zero:

P−M = 0, P = M . (4.8)

Finally, the calculation rule for determining new control points from the given measured
data is given by:

B′ = N−1 ·M . (4.9)

This rule is only valid, if as much control points as measured points are generated.
Usually, less control points are wanted. Thus, N is not square and the computation
of its inverse is not possible. This problem is solved by computing the pseudoinverse,
which is square. The new control points B′ are then given by Eq. 4.10. By applying
the B′ to Eq. 4.2, the distance of the resulting B-spline points to the measured points
M is minimized.

B′ = ((NT ·N)−1 ·NT ) ·M (4.10)

((NT ·N)−1 ·NT )- pseudoinverse of matrix N .

This approach is called the least-squares method [PTVF02]. For solving minimization
problems, so called l-norms are used. Since the described method considers the squared
distance, it represents the l2-norm. In many cases, a minimization problem can be
reduced to a linear equation system by using the least-squares method. An approach
to solve this problem by using different distance norms as a linear programming problem
is presented in [HBL97].

When generating new control points to re-sample the original data, the sampling theo-
rem must be considered. Therefore, the number of control points must not be greater
than the half of the number of input points (+2 to force the curve to the endpoints of
the control polygon). On the one hand, the corresponding result in Figure 4.1(b) shows
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that the distance is minimized, but on the other hand that the curve does not opti-
mally follow the given original scanline data (e. g., overshooting, oscillation). Further-
more, the matrix-based minimization is time-consuming and the new curve is allowed
to leave the convex hull of the original scanline data, which could significantly worsen
the approximation. Therefore, the standard minimization procedure is not applicable
for scanline approximation.

(a) (b)

Fig. 4.1: B-Spline approximation strategies. Taking the measured points as input, the resulting curve
approximates them (a). By computing new control points, the curve nearly interpolates the measures.

B-splines can be forced to pass through the given points by adjusting their knot vectors.
Therefore, the knot value, which corresponds to a given point is used k times, but this
results in a C0-continuous connection at the segment transitions. This procedure is only
applied to the first and last point in order to keep the principle subline structure.

A related class of curve reconstruction approaches uses the Moving Least-Squares (MLS)
algorithm. These methods locally fit curve functions while minimizing the distance to
the measured data or to previously extracted curve features (e. g., edges). This is typ-
ically achieved by computing a function-specific weight for every given point [Lee00].
Problems may occur at the transition between successive curve segments, i. e., if a cer-
tain degree of continuity is required. In principle, an MLS reconstruction of scanlines
with other functions is also possible, but it was found that the B-spline approximation
is much more insensitive to high frequent noise.

4.1.2 Optimizing B-spline Representations

For further processing, it is desirable to generate regularly spaced points. Therefore,
the values of the parameter t of the B-spline curve have to be adjusted. This can be
achieved by choosing a knot vector with parameter distances that are proportional to
those of the control points (chord distances) using the following ratio:

ti+1 − ti
ti+2 − ti+1

=
‖di+1 − di‖
‖di+2 − di+1‖

. (4.11)

The effects of uniform and non-uniform parameterization are compared in Figure 4.2.
The resulting points on the curve are distributed more regularly and represent the ge-
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ometry much better. Especially larger point distances and curve segments are sampled
more precisely.

(a) Irregular point distribution of a B-spline with
uniform knot vector.

(b) More regular point distribution of a B-spline
with non-uniform knot vector.

Fig. 4.2: B-Spline approximation with different knot vectors resulting in different point distributions
on the curves.

This representation is also useful to vary the point density on the approximated curve.
For example, by calculating 10 regularly spaced points on a curve with an arc length
of 10mm, a point density of 1mm is achieved. For performance reasons, the real arc
length s (see Eq. 4.12) is estimated as the sum of all distances between neighboring
points.

s =

∫
|r′(t)|dt =

∫ √
x′(t)2 + y′(t)2 + z′(t)2dt (4.12)

Due to the limited spatial resolution in the 2D image acquisition step, aliasing effects
appear and result in high frequent noise within the 3D points. Therefore, the data has
to be smoothed. Smoothing a B-spline curve can be performed in different ways. The
simplest one is to increase the curve order, and, thus to enlarge the segments intervals.
This results in a much higher computation time and the smoothing behavior cannot
be controlled (see Fig. 4.3(b)). Furthermore, the degree at specific control points can
be elevated by adjusting the knot vector.

(a) (b)

Fig. 4.3: Smoothing a B-spline in two different ways. The iterative smoothing procedure is illustrated
in (a) compared to the successive elevation of the B-spline order in (b).

Another approach is the manipulation of the control points. They can be moved or
even removed to achieve a smoother result. Since the removal of measured data is
not desirable, an iterative B-spline smoothing is applied. This method is based on
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minimizing the bending energy of a thin, elastic bar with a constant cross-section as
proposed in [Had98]. The corresponding term for a B-spline P (t) is as follows:

E =

∫
(P̈ (t))2 dt = min . (4.13)

Each considered control point b̃i is manipulated depending on the control points b̄i from
the last iteration (see Fig. 4.3(a)):

b̃i = − 1

16
b̄i−3 +

9

16
b̄i−1 +

9

16
b̄i+1 −

1

16
b̄i+3 . (4.14)

Furthermore, metrology requires that a smoothing operation can be limited to a cer-
tain assumed uncertainty. Therefore, a tolerance δ is added to control the movement
of control points with respect to the metering precision. Within each iteration the
tolerance is checked with Eq. 4.15. This guarantees that the new coordinates are not
moved more than δ units.

b̃∗r =

{
b̃i, if ‖bi − b̃i‖ ≤ δ

bi + δ · b̃i−bi

‖b̃i−bi‖
, if ‖bi − b̃i‖ > δ .

(4.15)

The results of smoothing and thinning an exemplary point cloud using the proposed
procedures are illustrated in Figure 4.4. Furthermore, Eck and Hadenfeld propose

(a) (b) (c)

Fig. 4.4: Steps for smoothing and thinning using proposed methods. The originally measured points
are shown in (a) with their closed and smoothed B-spline approximation with the same number of
points (b) and the final point set with reduced point number (c).

an alternative method to remove control points of a B-spline curve [EH95]. Their
algorithm implicitly detects redundant control points, which are not needed for the
reconstruction. Furthermore, they minimize the error when adding or removing control
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points in general. Schumaker and Stanley present another method for a shape-
preserving knot removal with respect to a given tolerance [SS96]. This method is
efficient, but limited to quadratic splines.

4.2 Approximation Error

Since the B-spline curves approximate into the given sublines, deviations between the
curves and the measured points occur. For a reliable data evaluation based on these
curve approximation, this deviation must be estimated. Therefore, the minimal dis-
tance of a point on a measured subline to the B-spline curve must be determined. Due
to the parametric curve definition, the minimal distance cannot be directly derived.
The problem is solved by either adaptively refining the running curve parameter or by
generating significantly more points on the curve than existing input points.

spline approximation error

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

0.
00

0

0.
00

6

0.
01

2

0.
01

8

0.
02

4

0.
03

0

0.
03

6

0.
04

2

0.
04

8

0.
05

4

0.
06

0

0.
06

6

0.
07

2

0.
07

8

0.
08

4

0.
09

0

0.
09

6

deviation in mm

nu
m

be
r o

f p
oi

nt
s

converter
woman
Santa Claus
boot
pepper
duck

95%

Fig. 4.5: Histogram showing the distribution of the deviations. For all models, most deviations (95%)
are smaller than 30 µm. Particularly due the definition of the b-spline knot vectors, which force the
curve through the start and end points of a subline, many zero deviations occur. The number of larger
deviations (“outliers”) is negligibly small.

For this analysis, the latter approach was chosen with a number of curve points 10 times
higher than measured points, which is sufficient to estimate the deviation. A higher
point density would reduce the distance even more. Due to the smoothing character
of B-splines, the test was performed at different objects that contain planar regions as
well as curved regions with edges. The results are visualized in Figure 4.5 and given in
Table 4.1. For the used models, the introduced error by curve approximation is smaller
than the assumed measuring uncertainty of the scanners. The number of deviations
larger than this uncertainty ranges between 2–9h, except the converter model which
contains a lot of outlying points that cause higher deviations. But even in this case
(< 0.6% outliers), the approximation is acceptable.

The amount of the deviation depends on the point distribution on a subline and the B-
spline definition. The higher the curve order, the smoother is its path and the possibly
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model duck pepper boot Santa Claus woman converter
curves 10.871 18.715 9.670 26.746 13.272 14.010
points 998.092 1.297.044 724.657 2.281.961 1.155.575 965.983

< 0.01mm 4.51% 5.22% 5.62% 2.96% 4.47% 4.05%
< 0.02mm 70.37% 72.75% 73.44% 34.70% 62.55% 52.92%
< 0.05mm 99.57% 99.74% 99.58% 99.49% 98.96% 97.59%
> 0.10mm 0.02% 0.05% 0.09% 0.05% 0.06% 0.59%

x̄(mm) 0.011 0.010 0.012 0.015 0.011 0.014
σ(mm) 0.008 0.010 0.007 0.009 0.010 0.011

Tab. 4.1: Deviations for the B-spline approximations of sublines. In most cases the deviation of 99%
of all points is smaller than 50 µm. The avarage displacement is always ≈ 10 µm, while the assumed
total measuring uncertainty of the scan system is ≈ 100 µm. The test was automatically performed
for ≈93.000 scanlines. The models are illustrated in Figure 4.11 and Figure 5.5.

higher are the deviations. Since the curve is determined by the measured points, their
distribution is also of particular importance. A dense point set can be approximated
much smoother than a coarse sampled part. This discussion refers to the problem of
accuracy and resolution previously discussed in Section 3.6. If the sampling rate and
the point density are high enough to represent the surface (sampling theorem), and if
the variance of the contained noise is smaller than the density, no additional error is
introduced by the approximated curve. But concrete values depend on the application,
the surface, the noise level and the curve parameterization. Actually, points on a
subline have an average distance of about 200µm and the normal distributed noise has
a variance of 20–30µm (see Table 3.1).

Due to the B-spline definition that requires the curve to stay within its control polygon,
noise and single occurring peaks are smoothed. The approximated curves run within
the normal distributed noise, and thus do not introduce a noticeable error. The quality
of the approximation with regard to the (unknown) original cannot be evaluated, but
indeed the approximation does not worsen the given data. For the analyzed data sets
the observed error is negligible, since single point features with sizes smaller than about
50 µm are not evaluated anyway.

4.3 Scanline Analysis

A prior analysis step is required for the correction of scanline defects, a controlled
smoothing and the determination of local geometric properties, such as edges and
curvature. For this purpose, derivatives are employed to identify changes in the function
with respect to one of its variables. For parametric curves r(t) in R3 the derivative
r′(t) describes a vector containing the changes in the three dimensions.

The required B-spline derivatives are obtained by formally differentiating the basis
functions N of Eq. 4.2. Specifically:
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4. CURVE-BASED SCAN DATA PROCESSING

(a) (b)

Fig. 4.6: Computing the directions of the first and second derivatives of a B-spline curve in order to
analyze the local behavior of the curve shape. The end positions of the illustrated curve are forced to
pass through the given points by adjusting the knot vector. They are singular points and cannot be
derived.

P ′(t) =
n+1∑
i=1

BiN
′
i,k(t) and P ′′(t) =

n+1∑
i=1

BiN
′′
i,k(t) (4.16)

with the first derivative (N ′
i,1(t) = 0):

N ′
i,k(t) =

Ni,k−1(t) + (t− xi)N
′
i,k−1(t)

xi+k−1 − xi

+
(xi+k − t)N ′

i+1,k−1(t)−Ni+1,k−1(t)

xi+k − xi+1

(4.17)

and the second derivative (N ′′
i,1(t) = 0):

N ′′
i,k(t) =

2N ′
i,k−1(t) + (t− xi)N

′′
i,k−1(t)

xi+k−1 − xi

+
(xi+k − t)N ′′

i+1,k−1(t)− 2N ′
i+1,k−1(t)

xi+k − xi+1

. (4.18)

The second derivative provides information about the smoothness (tangential behavior)
of the curve’s shape, due to its relation to the curvature κ and the normal vector
N, i. e., r′′ = κN . For example, the effectiveness of the iterative optimization and
smoothing procedures in Section 4.1.2 are analyzed in Figure 4.7. In this case, 100
iterations with a tolerance δ of 50µm were applied to the measured scanline.

4.3.1 Analyzing Curvature Patterns

The most important property in differential geometry is the curvature κ. It describes
the local properties and relations between the first and second derivative, and thus,
the precise curve shape. Most of the erroneous sublines exhibit conspicuous curvature
patterns. For example, within short distances lots of turnarounds and sharp edges
occur, indicated by high curvatures. In general, the curvature of parameterized curves
is given by:

κ =
‖r′(t)× r′′(t)‖

‖r′(t)‖3
. (4.19)
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Fig. 4.7: Evaluating the length and direction of the second derivatives of the approximated B-Spline
curves within the iterative smoothing process. The curve’s shape is basically preserved and high-
frequent noise is significantly reduced.

If the curve is parametrized over its arc length s instead of the arbitrary parameter t,
the curvature is directly given by the length of the second derivative:

κ = |r′′(s0)| . (4.20)

The direct computation of the curvature with these equations is the big advantage of
parameterized curves against their polygonal representations [PT95].

The amount of scanline curvature with respect to surface edges (subjective impression)
was empirically analyzed using the models illustrated in Figure 4.11 and Figure 5.5.
In this study it was found out that the value κ > 0.2 indicates sharp edges reliably
(for 4th order B-Splines). These values can also be used to detect potentially erroneous
sublines, because it was observed that sublines with at least 40% of their points having
a curvature κ > 0.2 can be considered as errors and can be deleted. The mentioned
parameters are stable in a range of ± 10%, depending on the surface properties, noise,
etc. (see [TIT+05]).

Sharp edges partially describe the shape of an object. Thus, in addition to using this
information for error detection, it can also be exploited for automatic feature detection
(see Fig. 4.8(b)). Further algorithms benefit from this curvature information, e. g., for
an improved polygonal mesh construction at the surface edges.

However, the curvature can also be used to control the interpolated geometry. While
B-splines smooth sharp edges, curvature can be used to control the curve shape at the
edges. In addition, the weights from an evaluation of the acquired 2D and 3D data can
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4. CURVE-BASED SCAN DATA PROCESSING

(a) Curvatures on a B-spline curve. (b) Derived object parts. (c) Derived object
parts.

Fig. 4.8: Feature detection based on significant curvatures (κ > 0.2 in black lines) (a); identification
of object structures using curvature (e. g., circles (b), circular parts (c), ellipses); κ > 0.2 in red (b).

be used to manipulate the path of the curve depending on the quality of each vertex in
the image and corresponding coordinate in the point cloud. Therefore, rational curves
to weight single points, are applied in Section 4.4.

4.3.2 Quality Evaluation

The first step for optimizing a point cloud is to optimize the projection and the viewing
conditions. Therefore, the quality of the point cloud has to be quantified with respect
to the position of laser and camera. Improving the recording conditions leads to less
erroneous 3D points. Afterwards, the remaining errors can be detected and evaluated
much easier.

A straightforward approach for minimizing the number of points and correcting the
point cloud is to test for the focus space. All parts of a scanned point cloud that do
not lie within this area should not be used, and thus they can be deleted. In addition,
a simple test is used for sublines that consist of only a few points. During the tests it
was found out, that sublines that had no neighbors and consisted of less than 10 points
could safely be assumed to be errors.

3D Data Quality

Because the scan procedure uses optical sensors, the quality directly depends on the
viewing and projection properties. The smaller the angle between surface normal and
direction of projection or viewing, αp and αc respectively, the better the surface was
seen. In addition, the triangulation angle (on the surface) between projection vector ~p
and the camera viewing vector ~c is optimal when the angle (αp +αc) defined by them is
π
2
. With this constraint, there are less intersecting errors (e. g., convergent rays) and less

numerical errors when computing the location of the surface point. The more (αp +αc)
deviates from π

2
and the larger the angles are, the worse are the viewing conditions of

the surface point for camera and/or laser. The employed laser scanner consists of two
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4.3. SCANLINE ANALYSIS

optical sensors. An upper and lower sensor ensure that the entire surface is captured.
The quality of a measured point is evaluated depending on its sensor properties (see
Fig. 4.9).

(a) (b) (c)

Fig. 4.9: Quality evaluation at the example of point clouds showing: the quality depending on
projection/viewing angle for the lower (a) and the upper (b) sensor (0=blue to π

2 =red) and curvature
with highlighted significant edges (κ > 0.2) derived from the B-spline curve approximation per single
scanline (c) (blue: κ = 0 to red: κ > 0.2).

For these quality analyses, the surface normals have to be known. In general, they
are derived from polygonal meshes. However, for our approach, a polygonal mesh is
not needed. A plane is approximated (see Sect. 6.2.3) over a defined neighborhood
for each point (within ± one scanline) and its normal is used as the normal for the
considered point. The neighborhood is determined very fast, since the sorting of the
scanlines is a known system parameter. To guarantee a consistent normal orientation,
the camera position is used as well. Obviously, the surface normal has to point towards
the camera that recorded this point. Therefore, the correct surface normal orientation
can be computed by evaluating the angle between normal vector ~n and viewing vector
~c. The normal is oriented correctly if this is ≤ π

2
, otherwise ~n is reversed.

Hence, an important step to optimize such a laser scan system is to perform an initial
scan and evaluate the result based on the position and alignment of the projection
system. Depending on the result, the viewing conditions of the object can be optimized.
In addition, for each point a corresponding quality for the viewing condition can be
computed and used for further error compensation. Besides the quality in 3D, each
surface point can additionally be evaluated by quantifying its quality in the 2D image
processing. The intermediary results are numbers, scaled between 0 and 1. The limits
in 3D are implicitly given by the worst and best possible projection. In 2D the limits
are defined by empiric and statistic tests (e. g., contrast).
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2D Quality Evaluation

In addition to the previously discussed viewing conditions, there are factors in the
image processing stage that may influence the resulting point cloud. These factors are
influenced by environmental effects such as lighting, laser light energy, surface type,
and camera resolution. For example, a high contrast of a laser line in the recorded
image results in a high stability and precise detection. In addition, the line thickness is
an important parameter (see Fig. 3.4(b)). Thick lines make it harder to find its exact
middle and small features may be buried. Therefore, the line profile at each vertex
has to be considered in the point quantification as well. The higher the slope of an
edge orthogonal to the line, the better its middle can be detected as a maximum in the
profile (recall Sect. 3.3.1).

Additional Quality Estimation

In the analyses it was found out that erroneous sublines have specific characteristics: on
the one hand, they are very short with many high curvature points. High curvatures can
be detected by analyzing the approximated curves. On the other hand, sublines may
be caused by reflections. These lines are projected somewhere in space and, therefore,
have no neighboring scanlines. These aspects are used for quantification as well.

4.4 Reconstruction using NURBS Curves

The application of Non-Uniform Rational B-Spline (NURBS) curves is similar to that
of normal B-splines. In addition, for each control point Bi, a weight hi is specified
(see Eq. 4.21). Therefore, the basis functions must become rational functions Ri,k

and the knot vector is non-uniform. Versprille was the first to discuss rational
B-splines [Ver75].

The weight determines the influence of the control point on the curve’s path. The higher
it is, the more the curve converges against the control point. For the scanline approach,
it is derived from each point’s quality that has been determined in the sections before
(see Fig. 4.10). Additional descriptions may be used as well [PT95, Rog01].

P (t) =

∑n+1
i=1 BihiNi,k(t)∑n+1

i=1 hiNi,k(t)
=

n+1∑
i=1

BiRi,k(t) (4.21)

A rational B-spline curve also exhibits the variation-diminishing property, and for all
hi > 0 the curve lies within the union of convex hulls formed by k successive control
polygon vertices. Each rational basis function is positive or zero for all parameter
values, i. e., Ri,k ≥ 0. The sum of the rational basis functions for any parameter value
t is one, i. e., :
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4.4. RECONSTRUCTION USING NURBS CURVES

n+1∑
i=1

BiRi,k(t) = 1 . (4.22)

To reconstruct an optimized scanline, and thus an optimized point cloud, the follow-
ing rules to weight the control points depending on the curvature properties and the
normalized quality values from the prior quality quantification are proposed:

W =


1 for all points not rateable

1 + wc + wl + 0.5wt + 1 for κ > 0.2

1 + wc + wl + 0.5wt + κ otherwise

(4.23)

wc, wl - weights for camera viewing angle and laser projection angle.
wt - weight for triangulation angle (lower due to its relationship to wl and wc).

For example, the maximum viewing and projection angles for the normalization are
π
2
, which result in the lowest possible weight. Basically, there is no maximum weight

for a control point, because the curve computation is based on the ratios between the
weights.

The effect of weighting control points depending on their quality is schemed in Fig-
ure 4.10. Higher weights (e. g., for edge and high curvatures) force the spline curve to
the control points. In contrast, lower weights reduce the influence, e. g., for low quality
points and outliers.

(a)

(b)

Fig. 4.10: Two examples for correcting a scanline using NURBS curves. Weights are applied to
the thick points. The effect of assigning higher weights to significantly curved regions and edges is
illustrated in (a). In contrast, the effect of lower weights for artifacts and outliers is shown in (b).
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These scanline procedures (i. e., smoothing, quality estimation, curve approximation)
are finally applied to real data sets as shown in Figure 4.11. Thus, the following section
discusses the corresponding results at the example of different point cloud models.

4.5 Case Studies

The effectiveness of the presented approaches partially depends on the properties of
the surface to be measured. For this reason, the methods were tested on different point
clouds captured from different surface types and surface topologies. To demonstrate
the results, Figure 4.11 shows four phases of the approach. For a better visibility of
the manipulations made, each first image per row shows a simple and non-optimized
triangulation of the raw, erroneous data. The second image illustrates the quality of
each measured point miscolored for one sensor (laser and camera). Significant curva-
tures respectively object structures used for the NURBS-approximation are displayed
in the third image.

After processing the whole data with the presented methods, the obtained optimized
point cloud is shown again as polygonal representation in the fourth image. For demon-
stration, a technical element (catalytic converter for vehicles), a clay model of Santa
Claus and of a duck and a green pepper as an organic object were chosen. These models
are considered to be representative, because they exhibit different surface properties
that can cause different degrees of noise. Since an optical system is used, their reflectiv-
ity plays an important role. Furthermore, the object shapes vary from widespread to
locally highly curved regions, and the point clouds contain holes, gaps and outliers.

The metal, and thus reflective surface of the converter caused a lot of errors that could
largely be detected and corrected (see Fig. 4.11(a) and 4.11(d)). In particular, the
originally craggy scan of the surface of the converter could be smoothed by taking the
estimated metering precision of the scan system into account.

Considering the model of Santa Claus, the clay surface caused only few artifacts that
could largely be removed. However, the noise in the areas of his face and his legs could
be notably reduced (see Fig. 4.11(e) and 4.11(h)). The overall quality of the 3D data
from the duck could be increased, especially to be seen at the reflections on its sides.
The organic surface of the green pepper was partly translucent. By adapting the laser
energy, a good measurement was possible. Nevertheless, the measured data was noisy,
but could be smoothed sufficiently. Attention should be paid to the parameters of the
B-spline approximation. Closing small gaps can improve the consistency of the surface,
but real existing gaps were also closed (see holes in the object carrier in Figures 4.11(l)
and 4.11(p)).

The proposed methods are stable and the mostly correct surfaces are not changed
substantially. In contrast, the applied modifications are all within the error tolerance
of the tested laser scan system. In addition, the density of example point clouds could,
on average, be reduced by 60% without appreciable loss of information.
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4.6. CASE STUDIES

(a) Original. (b) Evaluated. (c) Significant
curvatures.

(d) Optimized.

(e) Original. (f) Evaluated. (g) Significant
curvatures.

(h) Optimized.

(i) Original. (j) Evaluated. (k) Significant curva-
tures.

(l) Optimized.

(m) Original. (n) Evaluated. (o) Significant cur-
vatures.

(p) Optimized.

Fig. 4.11: Examples for triangulated point clouds, before and after processing. For each row: trian-
gulated original raw data, evaluated quality (camera viewing angle), significant curvatures (κ > 0.2),
triangulated optimized data.
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4.6 Summary

In this chapter, methods were presented to automatically evaluate, quantify, and correct
point clouds generated by an optical 3D scanning system. Techniques were proposed
that are based on the system’s parameters in 2D (e. g., contrast and line thickness) and
in 3D (e. g., camera and laser positions, focus area, etc.) to estimate the quality of each
single point. Furthermore, point clouds were approximated by a sorted set of B-spline
curves to iteratively smooth and close gaps. Edge information from these curves was
derived, and scanlines finally reconstructed by using NURBS curves with respect to
quality and curvature of each single point on it. The adjustment made to the point
clouds can be controlled by tolerances, thus the metering precision of the whole system
is not declined. The main goal of the considerations was to analyze and correct the 3D
point sets. The proposed methods are based on a general optical measuring principle
that is also used in other scanning systems, and thus can easily be adapted to other
scanning systems.

The described methods and the acquired systematic coherences allow further consider-
ations of how to use the parameters obtained. The quality values from the point cloud
quantification can be used for an automated object and system device positioning to
improve the general scanning properties. This can be achieved through an iterative
process by measuring and evaluating until an optimum is reached. Furthermore, trian-
gulation algorithms can use the smoothed and optimized point set as well as the edge
information and the computed surface normals for more robust meshing. In addition,
the edge information can be used for an automated feature recognition.

While the curve processing approach exploits the measuring principle that bases on line
scans, the following chapter discusses the additional comprehension of movement infor-
mation between scanlines. Therefore, the algorithms developed here are extended to
B-spline surfaces to enable more detailed interrelated considerations and interpolations
on neighboring scanlines.
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Chapter 5

Surface-based Scan Data Processing

Duplicating unique works of art, archaeological findings or work pieces for the indus-
trial mass production are usually applications for 3D scanners. A manual scanning
procedure can be time-consuming, especially for large or complex objects with many
small and important surface features. To assure that all areas of the object are captured
within a partial scan, a fast preview method is desirable, which assists the user to con-
trol and evaluate the scanning process and the results. However, a set of local scanline
approximations, as proposed in the previous sections, is obviously not sufficient for an
evaluation of global neighborhoods (see Fig. 5.1(a)). The curve approximation extracts
information by exploiting the principles of the light sectioning method which projects
line patterns. By using the additional information that is given from the measuring sys-
tem, multiple scanlines can be considered. Thus, the positions and movements of the
locomotor systems are helpful, because the scanlines are implicitly sorted as a sequence
of single measurements, while the object is moved in front of the sensors.

(a) (b)

Fig. 5.1: Illustration of problematic cases for line scans when edges are parallel to the light
plane. Thick edges are captured, the dotted ones are not. The computation of scanline features
(e. g., curvatures) does not have a global character (b), the captured line is straight, but the surface
is not.

In addition to the scanline processing, the goal is here to utilize this additional infor-
mation and generate grids that preserve the scanline neighborhoods. This allows to
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consider surface properties, which cannot be derived from singles curves alone. For ex-
ample, edges cannot be detected by scanlines if the surface curvature is perpendicular
to the scanline (see Fig. 5.1(b)). A fast grid-based preview also allows to check for
gaps, shadowing effects and interfering reflections. As a result, the scanning procedure
becomes faster and more comfortable and thus, the results are even better. Further-
more, surface features often have to be detected and evaluated in order to check the
geometry and adjust the scanning procedure.

This chapter introduces a new approach for the fast visualization and evaluation of
large point clouds derived from different structured light 3D scanners. By using in-
formation derived from the underlying measuring principle, regular quadrilateral grids
are nearly computed in real-time. These grids are additionally used for partial NURBS
approximations. Based on the derived parameterized surfaces, higher order properties
are computed (e. g., surface curvatures).

5.1 Grid Generation

In many cases, algorithms require surface types of a certain connectivity. Usually,
triangle meshes are used. The process of generating other mesh types from a given one
is called remeshing. For example, Hormann et al. propose a method to generate
quadrilateral meshes from triangles [HG00]. They present a processing pipeline from
unstructured point sets over triangle meshes to quad meshes, and finally fit cubic B-
spline patches to achieve smooth surfaces [Hor03].

In this section, we seize this idea. But in contrast, the grid generation approach aims to
construct a regular quadrilateral “mesh”without pre-calculating triangle meshes but by
employing model information from the scan system. Therefore, a simple technique is
used, which is known as mapped meshing [Owe98]. At first, a grid and its dimensions
are automatically defined. The horizontal dimension (x′) of the grid is set equal to
the number of scanlines. The vertical sampling (y′) depends on the object height (for
example y′=300 for an object height of 300mm). Furthermore, the relation between
two scanlines is a known system parameter (translation and/or rotation). Depending on
the scanning direction and the number of sampling steps, the sorting and the distances
between each two scanlines is determined. Additionally, the point sorting on a scanline
is checked, depending on the actual laser or projector position (see curve processing in
the previous chapter).

The main approach is the projection of the pre-defined grid onto the points of a scan
operation. To achieve a regular distribution and an unambiguous mapping, the projec-
tor position is used. This is a safe location for each scanline from which all points have
been seen without self-intersections and shadowing effects. Based on the perspective
projection, a unique direction of projection and the corresponding projection angle is
assigned to each point of a scanline (see Fig. 5.2(b)). The next step finds a correspond-
ing neighbor for each point with respect to all scanlines of the scans. Therefore, it is
assumed that points that have been seen from the same direction of projection are at
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(a) (b)

Fig. 5.2: Data acquisition principle using a laser sensor and a movable object on rotational and
translatory stages (a). Each set of scanlines within one movement is called a scan operation and
is interpolated by a single grid. The grid construction with the minimum and maximum projection
angles with respect to one scan operation is illustrated in (b).

least near or neighbors, which is valid, if the surface is slightly changing from scanline
to scanline [TBTW05].

In practice, neighboring scanlines have different point densities and distributions. Ad-
ditionally, the length and shape are changing. Thus it must be assured that all points
from the same direction of projection for all scanlines i of one scan are mapped to one
horizontal line in the grid. Therefore, each projection angle αi is required. It is derived
from the point on the scanline p(i, k) and laser position pL(i) that belongs to the same
scanline. The angle is computed in relation to the up-vector ~vup (for this system the

z-direction). The direction of projection
−→
dP (p(i, k)) points from the laser position to

the actual point.

αi = acos(~dP (p(i, k)) ·~vup), with ~dP (p(i, k)) =
p(i, k)− pLi

‖p(i, k)− pLi‖
(5.1)

Considering all scanlines i of one operation, there is a minimum and a maximum
projection angle. Those two angles limit the grid in the projection space. All grid
positions g(i, αj) are calculated, based on the defined dimensions, by linear interpola-
tion between those two angles. Then, for each point p(i, k) the projection angle αk is
computed, which is unique for its scanline i. Finally, p is back projected and a 3D coor-
dinate is assigned for the corresponding grid position (Eq. 5.2). As a result, each scan
operation (set of scanlines after rotation or translation) is interpolated by a regular
row/column grid. In contrast to standard terrain modeling, angular relations are used,
because there is no common background plane and the back projection of rotational
scans could not be handled and would destroy the scanline structure.

g(i, αj) = p(i, αk) with (5.2)

|αj − αk| < |αj − αk−1| ∧ |αj − αk| < |αj − αk+1|

The grid generation procedure is additionally given in Algorithm 5.1.
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Input: sets of X scanlines from one scan operation, desired vertical dimension Y
Output: regular row/column grid with dimension (x,y)
foreach scanline S of the operation O do

obtain laser position Lpos

foreach point p on a scanline do
calculate and store projection angle αi

p(pi,Lpos)

end

end
calculate αmin=MIN(αp) and αmax=MAX(αp)
generate gridMatrix(x,y)
foreach knot(xi,yi) do

grid[xi][yi]=dummy
end
foreach scanline S of the operation O do

foreach point p on a scanline do
yi

pos=(y ·αi
p)/(αmax − αmin)

grid[xi][y
i
pos]=pi

end
xi=xi + 1

end
Algorithm 5.1: Algorithm for the generation of a regular grid for one scan operation.

Changing point densities and gaps in the point cloud cause knot points without valid 3D
positions. To keep the grid consistent, a dummy point with a zero weight is assigned to
them. In further considerations, such knots are not evaluated. Additional degenerate
cases may arise at positions where scanlines of a rotational operation overlap. These
positions are detected by computing the intersection line of the laser planes. This case
can also be avoided by choosing the rotation axis outside the measuring range. For
grid consistency, a zero weight is assigned to them as well.

Finally, the initially unstructured point clouds are now structured and interpolated by
a regular row/column grid. Therefore, the spatial dimension was reduced from 3D to
2.5D by using the projector/laser positions for a unique grid mapping. A comparative
study for surface parameterization methods, i. e., mapping one surface into another, is
given by Floater and Hormann [FH05].

5.1.1 Grid Smoothing

The discretization of the measured points may result in single gaps within the computed
grid. Thus, the initial basic grids possibly have to be repaired and smoothed. Gaps
are located as unused dummy knots in the grid structure (zero weight). Small gaps
in a 2 × 2 region are closed by linear interpolation between surrounding valid knots.
Because of the very regular structure of the row/column grids fast algorithms can be
applied. For example, a smoothing is applied with the recursive Laplacian operator
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(a) (b) (c)

(d) (e) (f)

Fig. 5.3: Result of the grid generation process: projected grid (a), shaded representation (b) and the
color coded length of the second derivatives (c), indicating the grid’s fairness (from blue over green
and yellow to red). The first row shows the initial grid and the second its smoothed representation.

(Eq. 5.3). For each grid point x all N topological neighbors are considered and the
mean value is assigned. The influence of these points on the new position of the actual
point is controlled with the weighting parameter λ. As a result, the grid structure
becomes more regular, and noise is reduced. As proposed in [KVPL04], a smoothing
within a 3 × 3 neighborhood is applied to the model in Figure 5.3, which is typically
sufficient to achieve a fair grid.

xr = xr−1 + λ

N∑
i=1

xr−1
i − xr−1

N
, 0 < λ < 1 (5.3)

Furthermore, applications often require that a smoothing operation can be limited to a
certain assumed uncertainty. Therefore, a tolerance δ is added to control the movement
of control points with respect to the metering precision. Within each iteration, the tol-
erance is checked with Eq. 5.4. This guarantees that the new coordinates are not moved
more than the given δ units. Usually, 4 iterations are sufficient to achieve a smooth
result, and the maximal allowed displacement δ is reached within 10 iterations.

xr
i =

{
x̃r

i , if ‖x̃r
i − xi‖ ≤ δ

xi + δ ·
x̃r

i−xi

‖x̃r
i−xi‖ , if ‖x̃r

i − xi‖ > δ
(5.4)

The result of the grid generation and the effect of the smoothing operations are illus-
trated in Figure 5.3. An objective quality evaluation is given by the maximums of the
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first derivative [BSG+03]. They denote the strength of an edge and serve as indicator
for the smoothness and fairness of the interpolated grid (for a more detailed discussion
see Sect. 5.1.2).

5.1.2 Grid Analysis

Up to this point, the grids consist of linearly connected line segments, which represent
the point cloud, and the surface respectively. For the computation of surface features
derivatives are needed. Therefore, this section discusses discretization and difference
methods for regular grids.

The first derivative of a smooth function u with the grid spacing h can be calculated
in many different ways. The simplest methods to approximate the first derivative are
the forward (δ+

h u(xk)) and backward (δ−h u(xk)) differences:

δ+
h u(xk) =

1

h
(u(xk+1)− u(xk)) (5.5)

δ−h u(xk) =
1

h
(u(xk)− u(xk−1)) , (5.6)

which are one-sided differences of first order. Higher order differences are obtained by
repeated operations of the difference operators (see Eq. B.2).

The central (symmetric) difference δ0
hu(xk) and the second derivative δ2

hu(xk) are of
second order:

δ0
hu(xk) =

1

2h
(u(xk+1)− u(xk−1)) (5.7)

δ2
hu(xk) =

1

h2
(u(xk+1)− 2u(xk) + u(xk−1)) . (5.8)

The differences at the grid borders are undefined due to the missing neighbor knots.
Thus, they are set to zero.

For the grids these equations are extended to the two-dimensional case, where the
differences are applied in the x- and y-direction, δ+

h,x and δ+
h,y respectively. The sum of

both differences results in the Laplace operator ∆u = uxx + uyy:

∆hu(kh, lh) = (δ2
h,x + δ2

h,y)u(kh, lh) =
1

h2
(uk−1,l +uk+1,l +uk,l−1 +uk,l+1− 4ukl) . (5.9)

By using those differences, all partial derivatives ux, uy, uxx, uyy, ∆u are computed. The
mixed partial derivative in x and y (uxy) is approximated by the product δ0

h,xδ
0
h,y:

uxy(kh, lh) ≈ 1

4h2
(uk+1,l+1 + uk−1,l−1 − uk+1,l−1 − uk−1,l+1) . (5.10)

In the last column of Figure 5.3, the zero crossings of the second derivatives, which
are the maximums of the first derivative, are employed to visualize the regularity and
homogeneity of the projected grids.
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There are several other approaches to detect high frequency features. For example,
Kobbelt et al. propose to perform an automatic edge and corner recognition in
triangle meshes. By using a simple heuristic based on the local normal vector orienta-
tions, they compute the opening angle of the normal cone for a vertex. If this angle is
smaller than some threshold, they expect the surface to have a sharp feature [KBSS01].
Since this method is designed for high-quality industrial CAD models, it is not suitable
for data affected by noise and other artifacts. In this case, neighboring normal vectors
may exhibit strong variations in their directions and the proposed heuristic would fail.
If a prior smoothing operation is performed, it may work for scattered data as well.

5.1.3 Grid Registration

Because of uncertainties from the calibration procedures of simple 3D scanners, there
are small deviations between overlaying grids from different sensors and they do not
match exactly. For other systems, movement information between scan operations
may not be available. Therefore, the Iterative Closest Point (ICP) algorithm [RL01] is
usually employed to match the data. This algorithm computes a transformation that
minimizes the disparity function X in which xj for j= 1,..,Nx is a set of points on the
surface X and yj is a point on the surface Y that corresponds to the point xj (e.g.,
the closest point on Y). To find this closest point, one triangulates the surface Y and
projects the point xj onto the surface.

(a) (b) (c) (d)

Fig. 5.4: Illustration of the generated grid for one scan operation (a) and the successive combination
with other grids (b,c). The last figure (d) shows the result of the finally registered grids.

d(T (X), Y ) =

√√√√ Nx∑
j=1

|T (xj)− yj|2, yj = C(T (xj), Y ) (5.11)

This is usually achieved by computing the intersection of a line passing through the
point that is perpendicular to the surface. For the grids, the correspondence prob-
lem can be solved easily. The information on neighboring points within the regular
grid needs no triangulation. In our algorithm we start the first iterations with a pre-
orientation based on a point-to-point query. This is achieved by building a kd-tree from
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the points of the static grid. The nearest neighbor for the dynamic point cloud is then ef-
ficiently found by searching the tree. Once the correspondence is established, the trans-
formation that minimizes (Eq. 5.11) is computed by using the least-squares method.
The process is repeated until convergence (ICP is guaranteed to converge [JH02]). Fur-
thermore, the distances between overlaying grids are only small and thus, only a few
(<10) iterations are needed. An alternative method, which uses a non-rigid alignment
on the basis of thin plate splines at the overlay borders is presented by Brown et
al. [BR04]. Their method is designed for initially unaligned meshes.

5.1.4 Intermediate Results

After the fast generation of the grids, high quality previews of the actual scan operations
were produced fully automated and in real-time (see Fig. 5.5). This approach supports
the user to detect gaps and check for the point cloud completeness, and additionally
illustrates the correct alignment of several surface patches derived from different scan
operations and sensors. The resulting models in Figure 5.5 were generated with two
laser sensors, one on top and one on the bottom to capture the entire surface. The
sensors were static and the objects were moved by using one rotational and two trans-
latory axes. As a result, the point clouds consist of several scan operations (set of
rotational or translational movements), which consist of scanlines and sublines.

The models in Figure 5.5 represent the variety of typical objects for optical 3D metrol-
ogy. There are industrial surfaces (steel, aluminum (i-k)), clay(b-e), organics(f), gyp-
sum(l), ceramics(a) and synthetic material(g,h). Furthermore, there are lateral(d),
rotational(l) and combined scans (all others) and different topologies which are home-
omorphic to a sphere(c) and a torus(e) etc.

Exploiting this structures from the measuring system and the measuring principle al-
lows very efficient procedures. A performance evaluation for the presented models in
Figure 5.5 is given in Table 5.1. Of course, the total computation depends on the num-
ber of input points and scan operations, respectively. Compared to the data acquisition
which takes several minutes, the grid generations only take 500ms, and thus, it can be
termed as real-time. The computation time includes a smoothing in a 3× 3 neighbor-
hood with 4 iterations. The ICP-based grid was not applied for the scan result preview
and for the evaluation of the calibration accuracy. For completeness, this would result
in an extra time of approximately 12 sec. per model.

The grid generation is an excellent method for the visualization, but it is not suitable
for the robust computation of surface features. The approximation of derivatives with
differences requires an equidistant grid spacing, which is not guaranteed. Furthermore,
the grid only consists of linearly connected line segments. Higher order analyses re-
quire a larger neighborhood and region of influence to assure a certain continuity. To
overcome this problem, the preview grids are used as input for a NURBS surface ap-
proximation in the next step, which allows a more comfortable and robust computation
of the surface curvature.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5.5: Examples for generated grids with the proposed methods. The scans contain rotational and
translational operations between the scanlines. The grid for each of those scan operations is assigned
a different color.
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model points grids polygons total time time/grid
woman (a) 1.201.829 8 742.956 515ms 64.4ms

Santa Claus (b) 6.833.877 32 2.674.852 2.573ms 80.4ms
duck (c) 1.355.041 8 635.066 428ms 53.5ms

cast tile (d) 1.605.784 12 738.217 555ms 46.3ms
can (e) 1.216.448 10 544.692 458ms 45.8ms

pepper (f) 1.581.587 16 793.905 526ms 32.9ms
boot (g) 927.901 8 403.959 307ms 38.4ms
shoe (h) 953.765 8 404.519 247ms 30.9ms

converter (i) 1.488.444 8 516.023 389ms 48.6ms
cube (j) 1.186.406 8 403.297 281ms 35.1ms

casting (k) 1.656.360 8 879.487 683ms 85.4ms
eggcup (l) 747.468 2 356.063 190ms 95.0ms

Tab. 5.1: Performance evaluation for the construction of the initial grids with respect to the models
illustrated in Figure 5.5. For each model, the number of captured 3D coordinates is given in the second
column. For each connected set of scanlines (scan operation) a grid is constructed and their number
is shown in the third column. The total resulting number of generated quadrilateral polygons for each
model is given in column four and the computation times (Pentium4 3.2GHz) in the last columns.

5.2 Parametric Surfaces

Robust measurements on the interpolated surfaces require a precise analytical de-
scription. The described grid construction approach as well as triangulation methods
(e. g., Delaunay, Marching Cubes, Ball-Pivoting) generate piecewise linear meshes. To
determine surface features on such models with differential geometry methods interpo-
lations and approximations within a certain neighborhood about the considered region
have to be used. Thus, a local region is assumed to represent a higher degree surface
patch (e. g., quadrics). The algorithms are typically applied to all points/polygons, but
in most cases without regard to neighboring patches. For perfect input data sufficient
results are achieved, but real measuring data is characterized by noise, uneven sampling
and uncertainties and, thus, fitting procedures fail.

The optimal solution for this problem is a parametric surface, such as B-spline patches.
B-spline surfaces exhibit the same smoothing character concerning noise and well be-
havior as B-Spline curves. Furthermore, they give the possibility to measure at arbi-
trary positions in the parametric space and guarantee a constant continuity between
connected subpatches. Especially rational (weighted) B-spline surfaces are practical
in this case, since they enable to define control point specific influence values. The
corresponding procedures are discussed in this section.

The generated quadrilateral and regular row/column grids introduced in the last section
serve as control net for a B-spline surface approximation. The zero weights caused by
unused knots or existing gaps in the underlying grid are passed to the rational B-
Spline surface. The influence of these points on their environment becomes zero and
the consistency of the control net is kept. The initial weights for valid grid positions
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are set to one. Due to the sampling theorem, the control net dimensions should not
exceed the half of the number of scanlines and points per line in this case.

5.2.1 NURBS Surface Approximation

A non-uniform rational B-spline surface S of degree p, q is defined by the recursive basis
functions N , the weights w, and the points of the control net B.

S(u, v) =

∑n
i=0

∑m
j=0 Ni,p(u)Nj,q(v)wi,jBi,j∑n

i=0

∑m
j=0 Ni,p(u)Nj,q(v)wi,j

(5.12)

The recursive basis functions for both parametric directions u and v can have a different
degree. They are given by using the following equation:

Ni,p(u) =
u− ii

ui+p − ui

Ni,p−1 +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u) (5.13)

Ni,0(u) =

{
1 ui ≤ u ≤ ui+1

0 otherwise.
(5.14)

The analysis with differential geometry methods mostly requires the calculation of at
least the 1st and the 2nd derivative of the surface. Thus, 3rd degree (4th order) poly-
nomial surfaces are practical, which is also typical for CAD applications [FvDFH00].
Furthermore, the influence of one point of the control net is defined by the order of the
surface. Higher degree surfaces may be calculated to increase the influence region and
for test purposes. Therefore, the implementation of the NURBS surface algorithms is
variable in degree. Figure 5.6 illustrates the procedure to generate B-Spline surface
from the grids.

NURBS

(a) (b)

Fig. 5.6: Approximating the basic grid (with marked unused knots) (a) by a NURBS surface (b), and
an example of a real grid after back projection to the 3D space (c).

The approximated surfaces have a smoothing character, depending on their degree
and the resolution of the input grid. Since the sampling theorem requires half the
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number of control points than measured points, the resolution for the B-spline surface
is chosen twice as high as the control points. Up to this point, the weights are only
used to mask invalid grid positions. But the information about local curvature from
the scanline processing and the quality of single points with regard to their viewing
and projection properties can be applied to the B-spline surface, too. Therefore, the
weights from Eq. 4.23 are multiplied with the initial grid weights, which are zero or
one. The NURBS surface may also be used to locally increase the point density or
interpolate points between neighboring scanlines.

5.2.2 Surface Analysis

The shape analysis (e. g., edges, bumps) of parameterized geometrical surfaces is usually
based on Gauss’ fundamental theorem surface theory. The parametric form of a surface
is defined with the three Cartesian coordinates x,y and z. A surface is defined by the
relation r=r(u,v) with the real parameters u,v and the relations x=x(u,v), y=y(u,v)
and z=z(u,v). For the determination of metric surface properties, there are three types
of so-called fundamental forms. The most important are the first and second form
(since the third can be expressed in terms of these). The first Gaussian fundamental
theorem for curved surfaces is explicitly given by the Riemannian metric (Eq. 5.15) and
provides metric properties such as length and area. The second fundamental form is
the symmetric bilinear form with respect to the tangent space of the first and provides
metric surface properties such as mean and Gaussian curvature. The second form is
given in Eq. 5.16. The coefficients of both forms are given in Eq. 5.17.

ds2 = Edu2 + Fdudv + Gdv2 (5.15)

−dNdr = Ldu2 + 2Mdudv + Ndv2 (5.16)

While the first fundamental form contains all the metrical information of the surface,
the second fundamental provides information about the surface curvature. The param-
eters of Eqs. 5.15 and 5.16 are given as the dot products between the first and second
surface derivatives and the normal vector N :

E = r′ur
′
u, F = r′ur

′
v, G = r′vr

′
v, L = r′′uN, M = r′uvN, N = r′′vN . (5.17)

Derivatives of Rational B-Spline Surfaces

The calculation of the derivatives of rational B-spline surface Q is much more compli-
cated than in the non-rational case. The ratios of the weights must be included in
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the computation for the basis functions [PT95]. The corresponding terms are given by
Eqs. 5.18 to 5.22.

Qu =
N̄

D̄

(
N̄u

N̄
− D̄u

D̄

)
(5.18)

Qw =
N̄

D̄

(
N̄v

N̄
− D̄v

D̄

)
(5.19)

Quw =
N̄

D̄

(
N̄uv

N̄
− N̄u

N̄

D̄v

D̄
− N̄v

N̄

D̄u

D̄
+ 2

D̄u

D̄

D̄v

D̄
− D̄uv

D̄

)
(5.20)

Quu =
N̄

D̄

(
N̄uu

N̄
− 2

N̄u

N̄

D̄u

D̄
+ 2

D̄2
u

D̄2
− D̄uu

D̄

)
(5.21)

Qww =
N̄

D̄

(
N̄vv

N̄
− 2

N̄v

N̄

D̄v

D̄
+ 2

D̄2
v

D̄2
− D̄vv

D̄

)
(5.22)

The nominators N̄ and denominators D̄ in these equations as well as the partial deriva-
tives with regard to the ratios are given in the appendix (see Eq. B.3). Basically, the
recursive derivatives in the two parametric directions N ′

i,k(u), M ′
j,l(w), N ′′

i,k(u), M ′′
j,l(w)

are given by the following Eqs. The recursive derivatives for k = 0 are zero.

N ′
i,k(t) =

Ni,k−1(t) + (t− xi)N
′
i,k−1(t)

xi+k−1 − xi

+
(xi+k − t)N ′

i+1,k−1(t)−Ni+1,k−1(t)

xi+k − xi+1

(5.23)

N ′′
i,k(t) =

2N ′
i,k−1(t) + (t− xi)N

′′
i,k−1(t)

xi+k−1 − xi

+
(xi+k − t)N ′′

i+1,k−1(t)− 2N ′
i+1,k−1(t)

xi+k − xi+1

(5.24)

5.2.3 Surface Curvature

Of fundamental concern in computer-aided design and reverse engineering are tech-
niques to determine and visualize the fairness (smoothness) of surfaces in order to
detect even the smallest deviations or to check for sharp edges or surface tensions.
Since the derivatives are very sensitive to data affected by noise and outliers, their
quality decreases with the number of derivatives. Usually, 4th-order surfaces which
provide a C2-continuity everywhere, are used. Nevertheless, they can exhibit unfair
bumps, flat spots or undulations. One of the best mathematical techniques for deter-
mining surface fairness uses orthogonal nets of minimum and maximum curvature and
of Gaussian curvature. At any point P on the surface S, the curve of intersection
of a plane containing the normal vector n to the surface at P and the surface has a
curvature κ (see Fig. 5.7). As the plane is rotated about the normal, the curvature
changes, whereas a minimum and a maximum curvature arise.

The curvatures in these directions are called the principle curvatures, k1 and k2 respec-
tively. The directions are orthogonal and they comply with the relation dk = λe1 +µe2

while:
λ2(FN −GM) + λµ(EN −GL) + µ2(EM − FL) = 0 . (5.25)
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Fig. 5.7: Computing the curvature of surfaces. A biparametric surface S(u,v) is intersected by a
plane. The resulting contour of intersection is a curve on the surface. The curvature is evaluated at
the point P with regard to the surface normal ~n.

The Gaussian curvature is defined as the product of the principle curvatures K = k1k2,
and the mean curvature is their average H = 0.5(k1 + k2). For parametric surfaces, K
and H are given in terms of the fundamental forms:

K =
LN −M2

EG− F 2
, H =

LG− 2FM + EN

2(EG− F 2)
. (5.26)

Given both quantities, the principle curvatures are derived from the quadratic equation
k2 − 2HK + k = 0:

k1 = −H +
√

H2 −K (5.27)

k2 = −H −
√

H2 −K . (5.28)

From Equation 5.26 follows that K is independent against transformation into other
canonical coordinate systems, while H is not. Thus, K and only |H| are real geometrical
quantities.

The Gaussian curvature K and the mean curvature H are important surface features.
Depending on the values of k1 and k2 one can derive geometric information about
the shape. For example, a positive K value indicates bumps and a negative value
pits. Other combinations allow to detect saddles, ridges, elliptical and cylindrical
locations [RTvVV02].

Furthermore, Isenberg introduced the fold index [Ise04]. The desired measure should
emphasize strong ridges and long, narrow valleys rather than treating every ideal ridge
or rut equally. A surface point on one of these ideal features would have a negative
first principal curvature (k1) along with a second principal curvature (k2) having the
value zero (i. e., a point on a ridge) or k1 with the value of zero and positive k2 (i. e., a
point on a rut). Then, the fold index F is given by:

F =
2K

1 +K2
, with K =

k2 + k1

k2 − k1

, (k1 ≥ k2) . (5.29)

Koenderink and van Doorn developed a single-value, angular measure to describe
local surface topology in terms of the principal curvatures [KvD92]. For their shape
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(a) original surface. (b) Gaussian curv. K. (c) mean curv. H. (d) principle curv. k1.

(e) principle curv. k2. (f) fold index F. (g) shape index S. (h) degree of curv. C.

Fig. 5.8: 4th order NURBS surface with 5×5 control polygon and different types of surface curvature
measures. All measures are color-coded between their minimal and maximal values from blue over
green and yellow to red.

classification S each point lives in a Cartesian k1 × k2 plane. Furthermore, they define
the degree of curvature C. Both measures are given by:

S =
2

π
arctanK, (k1 ≥ k2, k1, k2 6= 0), (5.30)

C =

√
k2

1 + k2
2

2
. (5.31)

In this case, C is the square-root of the deviation from flatness. Points with the same
S value but differing C values can be thought of as being the same shape but only
more stretched.

Since computation time is an important criteria, there is a more efficient way to com-
pute the Gaussian curvature. An appropriate equation is proposed in [Rog01]:

κg =
AC −B2

|Qu ×Qv|4
, with

 A
B
C

 = [Qu ×Qv] ·

 Quu

Quv

Qvv

 . (5.32)

Although less operations are needed, this equation is numerically unstable. The rea-
son was found in the 4th exponent of the length of the (unnormalized) normal vector
~n = Qu × Qv within the equation. Because the length directly depends on the val-
ues of coordinates x,y and z, the 4th exponent may lead to numerical overflows and
exponential multiplication of existing numerical errors. The intrinsic computation of
the Gaussian curvature as the second derivative of a ratio of lengths is taken from
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Thurston [Thu97]. Furthermore, the computation of surface curvature for irregular
triangle meshes is discussed by Rusinkiewicz [Rus04] and Schulz [Sch05].

Three exemplary illustrations for the application of the surface curvature to the ac-
quired scan data are given in Figure 5.9. The derived information is used to visually
inspect complex data for completeness, gaps, bumps and pits on the one hand (see
Fig. 5.9(a), 5.9(b)), and to automatically detect edges for object segmentation on the
other hand (see Fig. 5.9(c)).

(a) (b) (c)

Fig. 5.9: Mean curvature of a scanned face (a), a casting (b) and the Gaussian curvature on scanned
rivet on a plate (c). In the first step, the data was interpolated by a smoothed grid and in the second
step it was approximated and analyzed on the basis of a rational B-spline surface.

5.3 Summary

In this chapter, an efficient procedure for the automated preview generation from sev-
eral scan operations was presented. Furthermore, a more global data analysis, in con-
trast to the curve processing in the chapter before, was applied in order to check for
surface features, geometric discontinuities, gaps and holes. By exploiting as much
given information as possible from the measuring principle and the scanning system,
the number of parameters could be minimized to employ these methods for automated
processes.

The first section discussed methods for the establishment of a data sorting. Therefore,
the position of the laser/projector has been exploited. The points on a scanline were
sorted according to their projection angle in the same way as proposed for the curve
processing. In the next step, the movements of the sensors were exploited to establish
an order between single scanlines. Based on the projection angles, an approach for the
construction of regular row/column grids was presented, whereas its parameterization is
defined by the number of involved scanlines and the unique projection angles for single
point coordinates. The grids were smoothed and registered using an ICP algorithm.
Furthermore, the initial construction process was computed in real-time. While the
scanline approaches can be employed to both measuring systems, the grid construction
requires an ordered data acquisition as it is done by the complex measuring device.
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The second section proposed a method for a rational B-spline surface approximation to
the initial grids. These parametric surfaces were used to compute different surface cur-
vatures in order to check for surface fairness. Additional algorithms for the evaluation
of the surface topology were applied. They were based on shape descriptors, derived
from the principle curvatures.

Within the proposed procedures, absolutely no user interaction or parameter adjust-
ments are needed. All necessary information is derived from the measuring system and
the underlying principle.

Due to the limitation that defined and uniformed movements between scanlines may not
be given in every case, the following chapter considers the global point cloud. However,
the scanline structure exists anyway, thus the point set can be enriched with additional
information. In this regard, the next chapter discusses general 3D point set managing,
optimization and evaluation.
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Chapter 6

Point Cloud Processing

When analyzing laser scan data, usually very large data sets with millions of points
have to be processed. Furthermore, optical 3D scanning techniques yield point clouds
that usually contain several errors caused by system and measuring principle specific
characteristics. Additionally, due to overlaying scans, redundant information with dif-
ferent quality is generated. Many applications do not require such a high point density,
and additionally, the computation time for the data analyses is often limited in practice.
Therefore, it is necessary to optimize the data and minimize the number of points while
minimizing the loss of information at the same time. The basis for an efficient data
processing are data structures which support the efficient retrieval of neighborhood
information from the point set.

In the previous chapters, the point cloud representations were based on scanlines and
grid meshes from scan operations, which exploited implicitly given neighborhood in-
formation. But, by using the flexible laser scanner, as presented in Section 3.1.2, and
other system configurations, no exploitable information between points from single
scanlines or operations may be derived. Thus, local neighborhood information must be
constructed from the basic 3D point coordinates.

In connection to the discussions before, this chapter considers another level of abstrac-
tion, where local point information from different scans is derived and finally used
for point cloud analysis and optimization. In particular, data structures, point cloud
simplification, smoothing and nearest neighbor problems are discussed.

6.1 3D Data Organization and Representation

First of all, the set of 3D coordinates must be organized and structured in order to
analyze local neighborhoods between multiple scanlines and scans from different sen-
sors, etc. Therefore, a data structure is needed, which allows to efficiently search for
points within the entire point cloud. There are different algorithms available for the
structuring of 3D points, based on tree and graph representations or on the clustering
of data. The most common data structures are introduced in this section.
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An intuitive method for structuring 3D data is partitioning, where nearby points are
assigned an unique partition or cluster. This approach is called spatial partitioning.
A more efficient representation is provided by octrees, which subdivide the space into
a hierarchically connected set of cubes. Later, the application of binary search trees,
such as kd-trees and range trees, are discussed.

6.1.1 Spatial Occupancy Enumeration

In spatial-partitioning representations, an object is decomposed into a set of adjoining,
non-intersecting primitives, which may vary in type and size. One of its most general
forms is cell decomposition, in which the object is decomposed into identical cells
arranged in a fixed regular grid [FvDFH00]. The cells are called voxels (voxel elements)
in analogy to image pixels in the 2D case. The most common cell type is the cube.
In this context, spatial-occupancy enumeration is of interest, where only the presence
or absence of a single cell at each position in the grid is controlled. An object is then
represented by the cells which are occupied and which are not.

Vp(P ) =
1

cs

·

 Px −mx

Py −my

Pz −mz

 (6.1)

Therefore, the used 3D space, limited by the axis-aligned bounding box, is subdivided
into a set of voxels. The resolution depends on the real size of the object and a
voxel/cube size. The mapping transformation from object coordinates to voxel space
is given in Eq. 6.1, with the position of a 3D point P (x, y, z) in the voxel space Vp, the
minimal coordinates m of the bounding box and the cube size cs. Each point of the
point cloud is assigned to one cube with a complexity of O(1), since the bounding box,
the resolution in the voxel space and the total number of voxels are known. Locating
all points within a cube is also done in O(1) time, since the data structure stores all
voxels of the bounding box. In the next step, empty voxels are marked as eliminated
and the remaining ones represent the scanned surface (see Fig. 6.1).

The advantage of this procedure is the fast access to voxels, but the obvious disadvan-
tage is the high memory consumption. Cells may be created as small as desired to
increase the accuracy. However, up to n3 cells are needed to represent an object at a
resolution of n voxels in three dimensions. Thus, for every possible voxel within the
bounding box an associated data structure must be generated. For example, if a cubic
volume is subdivided in 100 steps, one million voxels must be generated.

6.1.2 The Octree

An alternative data structure is an octree. This is a hierarchical variant of the spatial-
occupancy enumeration, designed to optimize the storage requirements. The fundamen-
tal idea behind this structure is the divide-and-conquer power of binary subdivision.
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(a) (b) (c)

Fig. 6.1: Spatial partitioning of a point cloud. The original surface points are illustrated in (a). A
spatial-occupancy representation based on cubic and spherical cells is shown in (b) and (c).

They are used to partition a three-dimensional space by recursively subdividing it into
eight octants. Thus, each internal node has up to eight children. The recursion stops
at a user-defined cutoff depth, a minimum cube size or when an octant contains only
one point or is empty. As a result, only occupied cubes are stored, which significantly
reduces the storage requirements. For every node, a pointer to its children and to the
father ensures that the tree can be hierarchically traversed. Many computer graph-
ics applications (e. g., Marching Cubes triangulation) utilize this data structure, which
supports the implementation of divide-and-conquer strategies [CC06].

For further processing, the voxel centers are typically used as representation for the
corresponding surface part. However, when analyzing the measuring data, no informa-
tion should be discarded a priori this way and thus, the octree recursion should not
have a predefined cutoff depth, which then may lead to very deep cascaded trees.

One of the most important applications is the determination of local neighborhoods.
For example, finding the nearest or the m-nearest points to a given point is a typical
task. An octree node has neighbors in 26 possible directions: 6 neighbors along a face,
12 neighbors along an edge, and 8 neighbors along a vertex. While the computing of
the nearest neighbor is limited to these possibilities, finding the m-nearest neighbors
in a given radius has to consider much more possible neighboring nodes, which can be
wasteful and time-consuming. This is due to the fixed hierarchy and the fixed cubic
cell size, which is relatively inflexible. A more flexible and sophisticated approach for
spatial neighbor queries is given by a kd-tree, which is introduced in the next section.

6.1.3 The kd-Tree

A kd-tree is a general, multidimensional search tree for k dimensions. For 3D data the
corresponding tree is usually called three-dimensional kd-tree instead of 3d-tree. They
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are a special case of binary space partitioning (BSP) trees. Kd-trees use splitting planes
that are perpendicular to one of the coordinate system axes (so-called hyperplanes),
which is a specialization of the general BSP methods, in which arbitrary splitting planes
can be used. A point set in a kd-tree is subdivided into axis-aligned non-intersecting
cuboidal regions. The construction algorithm is as follows:

At the root, the point set is split into two subsets of roughly the same size by a
hyperplane perpendicular to the x-axis. At the children of the root (depth 1) the
partition is based on the y-coordinate and at node depth two, in the next level, on the
z-coordinate. Then the algorithm starts over again at the x-coordinates. The recursion
stops when there is only one point left, which is then stored at a leaf (see Fig. 6.2).

Fig. 6.2: Binary space partitioning using a kd-tree. The subsets over the components of a coordinate
(gray) is successively split at its median (dark gray) until only one coordinate is left. The median
value itself belongs to the subset with the smaller values.

The splitting plane in each recursion is defined by the median value of the component
in a depth. To find the median of a set of values, one can proceed by sorting the set and
selecting the central value in the array. This is a process of order N log N . Since the
sorting yields much more information than just the median, this procedure is wasteful.
The fastest method for finding the median is partitioning [PTVF02], exactly as it was
done in the quicksort algorithm [Hoa61, Hoa62]. Selecting a partition element, one
marches through the data set, forcing smaller elements to the left and larger ones to
the right. But both subsets themselves remain unsorted, and thus its operation count
scales as N rather than N log N for the complete sorting. By definition, the median
value belongs to the subset with the smaller values.

Because the three-dimensional kd-tree for a set of n points is a binary tree with n leafs,
it uses O(n) storage and the construction time is O(n log n). The query algorithm visits
those nodes whose regions are properly intersected by the query range [x : x′, y : y′, z :
z′], and traverses subtrees that are rooted at nodes whose region is fully contained in
the query range. At a leaf, a last check ensures that the point fulfills the search criteria.
The query time is bounded by O(n1−1/k + pr), where pr is the number of reported
points [dBvKOS00]. Due to the fact that the data set is recursively subdivided at the
central (median) value, the kd-tree is balanced. The depth is then approximated by
the round off integer [log2 N ], which is small even for a lot of points.
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To analyze the local neighborhood of a given point, nearby points must be searched.
The neighborhood may be a cube, a cuboid or even a sphere. A kd-tree implements
orthogonal range queries. Therefore, the range is usually defined as a cube around
the given point and the query reports all points within this cube. A query, which
is independent from the coordinate axis is implemented by a spherical range, where
the maximum distance to the given point is limited by a predefined radius. This is
achieved by discarding all points in the bounding cube, whose Euclidean distance is
larger than the radius. However, the additional cost for this check is not as high as it
may seem, since a validity check to the point at a leaf must be performed in any case.
The theoretical kd-tree properties are verified at the example of real data in Table 6.1
to evaluate its practical performance.

model points constr. max. NH 0.1 NH 0.2 NH 0.3 area
in ms depth in ms in ms in ms in mm2

shoe 404.583 358 20 729 983 1.281 80K
eggcup 423.707 505 19 812 1.324 1.979 12K
boot 724.657 767 21 1.142 1.639 2.222 62K
cube 745.554 864 20 1.895 2.715 3.526 60K

converter 965.983 956 21 1.630 2.218 2.878 114K
duck 998.092 967 20 1.389 2.068 2.733 85K
can 1.076.512 1.159 21 2.268 3.800 5.590 40K

woman1 1.155.575 1.256 21 1.607 2.298 3.122 178K
medal 1.174.931 1.358 21 17.406 34.203 56.785 3K
pepper 1.297.044 1.456 21 2.274 3.659 5.226 44K
cast tile 1.439.192 1.646 21 2.837 4.704 6.920 82K
casting 1.656.358 1.793 22 4.416 7.156 12.042 51K
golf ball 2.152.348 1.472 22 16.509 44.792 84.225 4K

Santa Claus1 2.281.961 2.596 22 3.961 6.310 9.297 116K
Santa Claus2 5.704.530 7.032 23 12.838 24.283 39.676 116K

woman2 5.813.599 7.378 25 11.511 20.520 32.641 178K
Santa Claus3 12.757.244 10.557 25 42.300 94.950 318.509 116K

Tab. 6.1: Performance evaluation for the employed kd-tree. For each model, the number of input
points, the construction time for the kd-tree and maximum depth are listed. In the following columns
the processing time for performing a neighborhood query in three different spherical regions with radii
from 0.1, 0.2 and 0.3 mm is shown. For the rating of low and high processing times, the last column also
displays an approximation for the model’s surface area. Some objects appear several times, because
they were captured in different resolutions or with different scanners. For the evaluation, a standard
PC (Pentium 4 3.2GHz, 2GB RAM) was used.

6.1.4 The Range Tree

A further improvement to the query time is provided by range trees. The idea behind
this data structure is the following: if a kd-tree performs a one-dimensional range
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query on each component of a coordinate, then a combined query for all components
will increase the performance. Thus, the main tree is a binary search tree on the x-
coordinates. Each node v in the main tree has an associated data structure Tassoc(v),
which is a binary search tree on the y-coordinates, and again, every node in Tassoc(v)
points to an associated binary search tree on the z-coordinates. Such a range tree uses
O(n log2 n) storage and it can be constructed in O(n log2 n + pr) time. Points that lie
in the rectangular query range, are reported in O(log3 n + pr) time, where pr is the
number of reported points (for further reading see [dBvKOS00]).

In practice, the implementation of a three-dimensional range tree requires much more
memory, bookkeeping and internal operations, which reduces the effective performance
benefits. Therefore, the best compromise was found by the kd-tree. Due to the effi-
ciency with regard to memory consumption, computation time and flexibility it is used
as basic data structure for the following algorithms.

6.2 Point Cloud Analysis

Usually, procedures have to know about the point cloud structure and the data distri-
bution in order to adaptively compute the parameters for internal algorithms. As it can
be derived from Table 6.1, the time-consumption for (spherical) neighborhood/range
queries may increase significantly, even if the search radii are slightly increased. The
volume of the sphere, for which neighbors are reported, depends on the radius with
4
3
πr3. By assuming that the surface is locally planar, this region reduces to a circle.

Its area depends on the radius with πr2. Thus, the number of reported points and
traversed tree-nodes increases rapidly, in the worst case at least with a quadratic func-
tion of the search radius. The worst case is a radius, which is significantly higher
than the point density. Thus, the choice of the optimal search radius with respect to
computation time is of importance for neighborhood queries in general.

6.2.1 The Optimal Neighborhood

Searching for neighbors is a basic algorithm in point cloud processing. There are two
factors that mainly describe a neighborhood for further algorithms. The number of
points and the quality of local representation.

Local analyses typically require a certain number of points k to estimate local shape
functions (e. g., fitting geometries) depending on the number of unknown parameters.
But the number of neighboring points is not necessarily a sufficient criterion, if the
considered region is too small or too large and does not represent the surface part.
Especially in scanned point clouds with noise and uneven sampling densities, the point
number fluctuates locally. Therefore, the point number needs to be coupled to a neigh-
borhood radius, which is chosen adaptively. The radius range should be defined by
the data density and expected sizes of the minimal and maximal features that should
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be detected. Furthermore, the noise level of the considered feature plays an important
role. If the ratio between variance and tolerance to the fitted function becomes too
large, the approximation will fail.

To estimate surface normals, a local plane is fitted to neighboring points. There-
fore, Mitra et al. proposed an adaptive method to compute the optimal radius
with respect to the amount of points and their distribution for normal vector estima-
tions [MNG04]. Assuming that noise has zero mean and standard deviation σn, they
minimize a bound for the estimated angle between the normal vectors of the fitted
plane and the true surface with a probability of 1−ε. The optimal radius r is obtained
by:

r =

(
1

κ
(c1

σn√
ερ

+ c2σ
2
n)

) 1
3

, (6.2)

where ρ is the local sampling density, κ is the local curvature, and c1 and c2 are
constants. The algorithm takes σn as input and iteratively evaluates r. In the first
iteration ρ and κ are evaluated based on empirically chosen k(=15) nearest neighbors
and then the radius r is obtained from Eq. 6.2.

Another application is discussed by Ohtake et al. [OBA+03]. They locally fit 3D
quadrics and bivariate quadratic functions to construct multi-level partition of unity
(MPU) implicit surfaces. These functions exhibit more degrees of freedom, and thus
are more suitable to represent curved surface parts. The radius r is adaptively in-
creased until sufficient k neighbors are found to solve the surface equations (10 for 3D
quadrics and 6 for the bivariate quadratic polynomials). The initial minimum radius
rmin is defined as 0.1mm. Typically, a constant value must be added to k in order to
compensate uneven sampling and noise.

Thus, the choice of the optimal radius r depends on the application and what function
the local surface part is assumed to have. However, there is another fact that must
be considered. Even an adaptive number of points or radii only have a local character.
If a small and a large object have the same point density, the optimal local point
number is the same, but the covered regions represent different scales of the surfaces
(see Table 6.1). A solution would be given by adjusting these parameters with regard to
the ratio between the local and global surface area. But in most cases a local analysis
must be performed before information on the global behavior can be obtained.

scanline

circum-
sphere

rmin

Fig. 6.3: Computing the minimum radius rmin for the sphere containing the neighboring scanlines.
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For the used 3D scanners, there is some a priori information that can be used to
adaptively determine a minimum radius. The movement and displacement between
two scanlines are known system parameters, which typically range between 0.1 and
0.5mm for the examined models. Thus, in any case, the minimum radius rmin must
at least be larger than the distance between two scanlines ∆s. Starting from a given
point on a scanline, a cubic region can be defined, which touches the neighboring
scanlines. Then, the circumsphere of this region contains a sufficient number of points
from the neighboring scanlines (see Fig. 6.3). Thus, the minimum radius rmin of this
circumsphere is defined by:

rmin =
√

2∆s + c , (6.3)

with the constant c to compensate uncertainties (usually c = 0.1mm). For the flexible
laser scanner, the point density is usually higher and the scanlines are oriented in an
arbitrary manner. In this case, rmin is adaptively increased until at least 20 points are
covered. The starting value must be defined by a value larger than the uncertainty of
the scanner, which is also c = 0.1 mm.

6.2.2 Data Density

As already discussed in the section before, the local point density is an important
parameter for applying certain methods to unevenly sampled surfaces. It allows the
adaptive adjustment of the search radius on the one hand, and it implicitly provides
information on the quality and completeness of a scan on the other hand.

Edges and shadowing effects can cause gaps and holes. Moreover, and unfavorable view-
ing and projection conditions in the data acquisition stage lead to different sampling
densities. The more parallel the laser plane and the surface are, the larger becomes
the distance ∆s between two scanlines on the surface ∆s′ (see Fig. 6.4(d)). This effect
depends on the unknown surface function and the positions of the laser. It especially
appears at strongly curved regions, which are hardly accessible for the optical sensors.

To compute the point density, these problematic surface parts are automatically deter-
mined (see Fig. 6.4). In further steps, it is possible to repeat the scan in those areas in
order to improve the quality of the scan. The point density is also useful to identify out-
liers, which are often characterized by a significant low density in their neighborhood
(e. g., ≤ 2 neighbors).

For computing the density ρ, the radius r for the neighborhood is computed as proposed
in the section before. The number of points within the neighborhood is counted and the
resulting number Np is divided by the area of the local plane within the circumsphere
to normalize the result:

ρ =
Np

πr2
. (6.4)

where π can be omitted in principle, since it is just a scaling factor.

For the examined models from Table 6.1, the local point density does not vary much
in most of all surface parts. Thus, the computation performance can be increased
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(a) (b) (c) (d)

Fig. 6.4: Illustration of the resulting point densities ρ for three different models with Eq. 6.4. The
colors indicate a decreasing density from blue to red (a). The influence of the object’s geometry on
the scanline density is shown in (d).

by estimating the globally best radius. Therefore, the radius of 1% of all points is
computed, provided that at least 20 points are covered. Their median value serves as
global radius estimation for the entire point cloud.

6.2.3 Surface Normal Estimation

The local orientation of the surface is described by its normal vectors. Since the surface
function is unknown in most cases, it must be approximated. Besides polygonal mesh-
ing, from which this information can directly be derived, there are different methods
to compute the normals from the point cloud.

Hoppe introduced an algorithm, which locally fits planes to the points in a fixed size
neighborhood [HDD+94]. The orientation of the plane is assumed as the normal vector
for the considered surface point. Mitra et al. proposed a method to adaptively com-
pute the optimal radius for the neighborhood [MNG04] in contrast to a fixed number
of neighbors. Additionally, Pauly et al. observed that the fitting plane for a point
p should respect the nearby points more than the distant points [PKKG03]. Hence,
the neighboring points are assigned weights based on their distances to p by using a
Gaussian function.

For an ideal, noise-free point set Amenta et al. proposed a Voronoi-based method for
normal estimation [AB99]. For a given set of three-dimensional points P , the Voronoi
diagram and its dual Delaunay triangulation of P are computed. They showed that
the line through a point p and the farthest vertex in the Voronoi cell can approximate
the normal at p. Since this property does not apply for noisy data, Dey and Goswami
extended this idea [DG04]. They observed that certain Delaunay balls remain relatively
large and can take the role of polar balls. Therefore, they redefine the pole for a point
p ∈ P as the furthest vertex of its Voronoi cell whose dual Delaunay ball is large by
comparing the radius of the nearest neighbor distances with a user-defined parameter.
In [DLS05], Dey et al. compared the different methods and found out that the last
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method is the most robust, but also the significantly slowest one. The main reason is
that it employs a Delaunay triangulation procedure to the entire point cloud, while the
other methods operate very locally.

For the scanned point clouds in this work, a plane fitting is performed, as well. Based
on the minimum radius, the corresponding neighbors for a considered point p are
determined. The plane fitting procedure is then based on a least-squares orthogonal
distance fitting (ODF) as proposed by Ahn [Ahn04]. Therefore, the model parameters
are determined by minimizing the square sum of the shortest distance between the
model feature and the measurement point. There are different categories of least-
squares fitting, i. e., algebraic fitting and geometric fitting. These are differentiated by
their respective definition of the error measure to be minimized. A plane which is given
by the algebraic equation ax + by + cz + d = 0 is an algebraic fit, if its parameters
(e.g. the coefficients) are determined in a least-squares optimization. In contrast, the
plane is a geometric fit, if the sum of the squares of the distances to the given points is
minimal. This procedure is numerically more stable. Therefore, the plane containing
the point X0 and normal vector n can be described as:

(X −Xo)
T n = 0 with ‖n‖ = 1 . (6.5)

The square sum of the orthogonal distances from each measured point {Xi}m
i=1 to this

plane is then defined by:

σ2
0 ≡

m∑
i=1

[(Xi −Xo)
T n]2 = nT

[
m∑

i=1

(Xi −Xo)(Xi −Xo)
T

]
n = nTMn , (6.6)

with the central moments tensor as the symmetric square matrix M:

M ≡

 Mxx Mxy Mzx

Mxy Myy Myz

Mzx Myz Mzz

 , (6.7)

where the components of M are given in relation to the mean values (Xo, Yo, Zo) by:

xi = Xi −Xo, yi = Yi − Yo, zi = Zi − Zo,
Mxx =

∑m
i=1 x2

i , Myy =
∑m

i=1 y2
i , Mzz =

∑m
i=1 z2

i ,
Mxy =

∑m
i=1 xiyi, Myz =

∑m
i=1 yizi, Mzx =

∑m
i=1 zixi .

(6.8)

In the next step the matrix M is decomposed by using the singular value decomposition
(SVD) of matrices. The SVD method is based on the following theorem of linear
algebra: Any M × N matrix A, with M ≥ N , can be written as the product of an
M × N column-orthogonal matrix U, an N × N diagonal matrix W with positive or
zero elements (the singular values), and the transpose of an N ×N orthogonal matrix
V (for further reading see [PTVF02]). Since M is a symmetric 3 × 3 square matrix,
the decomposition results in:

M = VMWMVM
T . (6.9)
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As a result, the diagonal matrix WM contains the principle central moments, and the
orthogonal matrix VM contains the principle axes of central moments. The fitting
plane is finally defined by the mass center X̄ and the principle axis vMj with the
corresponding smallest moment wM. Specifically:

(X − X̄)TvMj = 0 . (6.10)

Since WM contains only three values (on its diagonal), the smallest one is easily found,
and the corresponding column in VM can be extracted.

Solving this linear least-squares problem by using the SVD method is numerically the
most reliable, especially for ill-conditioned matrices, where elements in the matrices
are much smaller than others (for further discussion see [NW99]).

The orientation of the estimated normals from the plane fitting depends on the position
of the plane within the coordinate system. For the analysis and for an esthetic visual-
ization a consistent orientation is necessary. By exploiting given scanline information
of the camera or the laser position, the normal vector orientation problem becomes
trivial. An approximated normal ~n for a point p only needs to be flipped, if it points
contrary to the camera or laser (pc/pl). Specifically:

~n = −~n, if ~n ·
pc − p

‖pc − p‖
< 0 . (6.11)

6.2.4 Graph Representations for Unstructured Point Sets

Without additional system information, usually a global data structure is necessary
that encodes the neighborhood to ensure that neighboring tangent planes are consis-
tently oriented. Although the scanning system provides the necessary information, this
problem illustrates an often recurring application for neighborhood algorithms.

The problem can also be described as follows: Given the sample point set P , sought is a
set of consistently oriented normals. Therefore, any two neighboring data points pi and
pj are taken. If the unknown surface is smooth, and if the sample set P is dense, nearby
points will have tangent planes Pt that are close to being parallel, i. e., if Pt(pi) = (oi, ~ni)
and Pt(pj) = (oj, ~nj) then ~ni · ~nj ≈ ±1. Since the orientation of the tangent planes
should be consistent, either ~ni or ~nj needs to be flipped, if ~ni · ~nj ≈ −1. Additionally,
Pt(pi) should be consistently oriented with all neighboring tangent planes.

This normal orientation problem can be modeled as a graph optimization. The graph
contains one node Ni for each tangent plane Pt, and Ni will have edges to all nodes
that correspond to neighboring data points of pi. The cost on an edge E(i, j) is defined
as ~ni ·~nj, which is maximal for parallel normals. Thus, tangent plane orientations are
needed that maximize the total cost of the path. Since it has been shown that this kind
of problem is NP-hard (see Kruskal [Kru56]), an approximation must be used.

Therefore, the surface is assumed to be single connected. A reasonable starting point
is to construct the Euclidean Minimum Spanning Tree (EMST) for the set of tangent
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plane centers {o1, o2, ..., on} (in this case oi corresponds to pi). An edge E(i, j) is
added to the tree if either oi is in the neighborhood of oj or vice versa. Specifically, the
Euclidean minimum spanning tree of the point set P is the maximal tree EMST (P ) =
(P, E) such that E ⊆ P × P and the sum of all edge lengths

∑
l(ek) is minimum,

where l(ek) = |pi − pj| (early algorithms considering the EMST were also discussed by
Prim [Pri57] and Yao [Yao75]). Thus, the constructed graph is a connected graph
that encodes geometric proximity in the Euclidean norm in R3 of the tangent plane
centers oi. Such a graph is also called a Riemannian Graph [HDD+94] (see Fig. 6.5).

(a) (b) (c)

Fig. 6.5: Achieving a consistent orientation of the initial normal vectors (a) by flipping the normals (b)
depending on their parent nodes in the Riemannian Graph (c). An enlarged segment of the graph
with highlighted main path in red and its subgraphs in blue (b). Some seemingly overlaying subgraphs
in the image are due to the projection from 3D to 2D image space.

After constructing the Riemannian Graph, a heuristic to iteratively propagate the tan-
gent plane orientation is needed. If the propagation is solely based on the geometric
proximity, the resulting surface can be severely distorted due to noise and uneven
density. Particularly at sharp edges, where significant changes of neighboring tangent
planes may appear, this approach can fail. Thus, the best way is to propagate the
orientation along directions of low curvature. Therefore, a cost 1− |~ni ·~nj| is assigned
to the edge E(i, j) in the Riemannian graph, which is always positive and low, if the
tangent planes Pt(pi) and Pt(pj) are nearly parallel. Then, the propagating procedure
traverses the Euclidean Minimal Spanning Tree of the resulting graph. The starting
position for the propagation must be a point with known correct tangent plane orien-
tation. Since such a position is not known, a possible approximation is to take the
tangent plane center with the largest z-coordinate, and to assign the +z direction to
the corresponding normal vector. During traversal, each node is assigned an orienta-
tion consistent with that of its parent node, i. e., if Pt(pj) is the next tangent plane for
Pt(pi). Then, the direction of ~nj is reversed, if ~ni · ~nj < 0.

There are two important other graph representations for a point set P which were
discussed by Attene and Aurenhammer [AS00, Aur91]. The first one is the Nearest
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Neighbor Graph (NNG), which is the maximal graph NNG(P ) = (P, E) so that the
edges E ⊆ P × P and pj is the point of P closest to pi. A similarly defined construct
is the Gabriel Graph GG. Two points are called Gabriel points, and are connected
by an edge E if the sphere having this edge as diameter is empty. Thus, the Gabriel
graph of P is the maximal graph GG(P ) = (P, E) defined by E ⊆ P × P and the
smallest sphere for pi and pj does not contain any other point of P . Aurenhammer
also noticed that the Gabriel Graph just consists of those Delaunay edges that intersect
their dual Voronoi edges.

6.3 Point Cloud Optimization

Repeated scans in the same area of an object’s surface and the choice of the sensor
alignment can cause overlaying point clouds. The introduced redundancy can be helpful
to locally optimize the point cloud on the one hand. But on the other hand, a large
amount of points significantly reduces the processing speed of further algorithms. This
section discusses suitable methods to process the redundant information in order to
optimize and simplify a point cloud with respect to quality and curvature information
as derived in the chapters before.

6.3.1 Adaptive Smoothing

As discussed in the data acquisition section, rough and specular surfaces can cause
high-frequent noise for optical sensors. Furthermore, the local point distribution vari-
ates depending on the shape and the distance to the sensors. By applying smoothing
algorithms, this variance can be reduced. Overlaying scans can also produce errors
which origin from an imprecise calibration of the sensors to the axes movements. For
an aesthetic visualization and for more robust post-processing algorithms, a smoothing
procedure must be employed.

When smoothing noisy data, edges should be preserved and the quality of a point,
regarding to its viewing conditions, should have a notable influence on the resulting
point. The smoothing procedure locally operates in a neighborhood defined by the
k-nearest neighbors (typically k=20) and the minimal radius rmin, depending on the
scanline distance ∆s, as proposed in the section before. As long as the number of points
in the neighborhood is smaller than k, the search radius r is increased, starting from
rmin. A smoothed point is derived from all of its neighbors by applying a weighting
function that depends on the distance of the neighbor to the considered point di and a
weight ωi, regarding the scanline curvature κi and quality of the viewing conditions qi

(see Fig. 6.6(a)). Since a low quality can cause noise and thus a higher curvature, the
weight ωi is defined as the normalized sum of these measures by:

ωi = (1− α)κ̄i + α(1− q̄i) with 0 ≤ α ≤ 1 , (6.12)
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where α allows to manipulate the ratio between the influence of the viewing quality
(viewing and projection angles) and the edge values (typically α = 0.5). κ̄i and q̄i are
the normalized values of κi and qi with:

q̄i =
qi

π
, κ̄i =

{
κi

τ
, if κi < τ

1, otherwise .
(6.13)

This normalization is based on the following observation: Since the viewing quality
qi is defined by the viewing angle, its range is limited between 0 and π. The scale τ
defines the curvature value, that indicates significant edges. It is an empirical measure,
and for the scanline curvature based on 4th order NURBS curves it was found out that
τ = 0.2 is optimal (see Sect. 4.3.1).

(a) (b)

Fig. 6.6: Illustration of the weights for single points based on their scanline curvature κi and the
value qi for the viewing angle (a). The smoothing effect at the edges (in red) is lower than in planar
areas. The paths of three influence functions Φ are shown in (b). The empirically chosen parameters
α = 0.2 and β = 0.7 guarantee an influence between 5-20% at the edge of the neighborhood (x=1).

After having defined a weight for each neighbor, an influence function Φ is added.
Since the number of points within the bounding sphere of the neighborhood nonlinearly
increases with the radius r, the influence function should penalize points near the edge
of neighborhood more than nearby points. Based on the function Φ, its neighbors pi

and their weight ωi, the resulting smoothed point ps is computed by:

ps =
1

wsum

n∑
i=1

piωiΦ(d̄i) , with wsum =
n∑

i=1

ωiΦ(d̄i) , (6.14)

where the measure d̄i is the adaptively normalized distance di to the neighbor pi. Since
the maximum for di is limited by the radius r of the neighborhood, d̄i is defined as:

d̄i =
di

r
with di = |pi − p| . (6.15)

Together with the average function, three different nonlinear influence functions Φ1−Φ3

were applied in order to attain the desired result. The functions and their paths are
illustrated in Figure 6.6(b).
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(a) original. (b) average, r=0.4 . (c) average, r=1.0 .

(d) Φ1, r=1.0 . (e) Φ2, r=1.0 . (f) Φ3, r=1.0 .

Fig. 6.7: Triangulated models to visualize the effect of smoothing a point cloud in different stages.
The original noise point cloud (a) and the smoothed representation based on an average filtering (b).
The result of the quality and edge weighted approach is shown in (c). The slightly better results by
applying the influence functions Φi from Figure 6.6(b) are shown in the bottom row.

Different radii between 0.4 and 1.0mm were applied to evaluate the weighted smooth-
ing. The effects are shown at the example of the casting model in Figure 6.7. The
automatically determined radius rmin was 0.4mm. In this case, no significant differ-
ence between the weighted and the average function was found, since the covered region
was (optimally) small. But for a radius of 1mm the weighting effect becomes visible.
The influence functions slightly differ in the influence of very near or far points.

In summary the curvature and quality-based weighting with an influence function per-
formed well and exhibited a significant improvement compared to the simple average,
since edges are retained while more planar regions are smoothed. Due to its strong
slope, the exponential function(Φ3) operates more locally, and thus gives more influ-
ence to nearby points than the tangent function (Φ1). The best compromise with regard
to the computation time is given by the less complex cubic function (Φ2).

In order to control the smoothing, a test function is additionally applied, which checks
if the distance of a smoothed point ps to its original p exceeds a tolerance t. The value
of t depends on the measuring uncertainty or the accepted inaccuracy (e. g., t=0.1):

ps = p + t ·
p∗s − p

‖p∗s − p‖
. (6.16)
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Without having scanline curvature, Lange et al. propose a method for point cloud
fairing using an anisotropic geometric mean curvature flow [LP05]. Their method
solves a parabolic PDE with boundary constraints to obtain an anisotropic Laplacian
operator. Unfortunately, this approach requires many iterations and a user-defined
parameter called edge quotient that enables to emphasize corners. Furthermore, based
on the given normal vectors of a point cloud, a smoothing is also achieved by generating
an implicit volume model whose zero level isosurface interpolates the given points and
associated normal vectors [Nie04b].

In addition to point cloud smoothing, there are also many smoothing algorithms for
polygonal meshes. These methods benefit from the known local edge connections,
e. g., to relax the polygons [BKP07, Gib98]. Furthermore, Nealen et al. introduce
a framework for triangle shape optimization and feature preserving smoothing of trian-
gular meshes that is guided by the uniformly weighted Laplacian and the discrete mean
curvature normal [NISA06]. A comparative overview on polygonal mesh smoothing is
given in [BHP06].

6.3.2 Adaptive Correction

The quality of laser scanned 3D point clouds is mainly determined by the direction
of projection and the viewing direction of the camera onto the object’s surface. This
fact can be exploited in order to adaptively remove redundant information. After
registering the point clouds from different scan operations and sensors, the same small
neighborhood region N often has been multiply sampled and contains sample points
in different quality (see Fig. 6.9). Points of lower quality downgrade the influence of
points with high quality when applying neighborhood-based operations to these regions.
Therefore, low quality points should be removed from the merged point set.

To minimize the number of points that are removed, the minimal neighborhood radius
rmin should be selected for merging. Useful definitions for rmin are either based on the
distance between points or two scanlines ∆s (Eq. 6.3) or the expected uncertainty of the
3D scanner σM . For the analyzed point sets, ∆s is larger than the measuring uncertainty
in most cases, which causes relatively large neighborhood, and thus the removal of too
many points. The uncertainty (0.1mm) is more suitable for this purpose, but may be
too small if ∆s is large. A further adaptive measure is given by determining the typical
(average) distance of two points on the considered scanline ∆p. Since the directions of
all three measures are different, they are interpreted as a vector whose length is the
radius rc for the neighborhood in which the correction is performed.

rc =

√
∆2

p +
∆2

s

4
+ σ2

M (6.17)

For the normalized quality values qi of all points pi in the resulting neighborhood
N(rc), the average m̄q is computed. This value serves as a threshold which defines that
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Fig. 6.8: Illustration of the distance measures used to compute the optimal radius in the correction
procedure.

Input: sets of 3D points P from different scan operations
Output: merged and reduced point set
foreach point pi do

if pi is not already removed then
calculate Neighbors(pi,N ,r) in P
calculate Quality(n)
foreach neighbor n from N do

if Quality(n)<averageQuality(N) then
remove(n)

end

end

end

end
Algorithm 6.1: Algorithm for the quality-based merging of point sets from different
scan operations.

a point pi in N(rc) should be removed, if its quality is lower than the threshold m̄q.
Specifically:

As a result, the redundancy from the regions N is avoided by removing low quality
points (see Fig. 6.9(c)). For the flexible laser without constant distances between the
scanlines ∆s is set to zero.

It was also noticed that an adaptive correction for points with low quality on the basis
of neighboring high-quality points by weighting is not reasonable. On the one hand,
the uneven sampling would still remain and on the other, the necessary low weight for
the considered point causes only a weighted interpolation and smoothing between the
neighbors with negligible influence of the point itself.
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(a) (b) (c)

Fig. 6.9: Quality-based merging of redundant surface parts from different scan operations and sensors.
The data sets obtained from the lower and upper sensor with their corresponding viewing quality are
given in (a) and (b). The merged result is shown in (c).

6.3.3 Adaptive Simplification

Multiple scanning of the object’s surface is often necessary to assure the capturing
of all interesting surface parts. This often results in very large point clouds, with
no significant increase of information due to a higher density at overlaying regions.
After having merged overlaying points, the point density usually is still very high. In
order to increase the computation performance of the following algorithms, a point-
based simplification is applied. Usually, there is a differentiation between uniform and
adaptive non-uniform procedures. To ensure a constant, uniform distance du between
neighboring points, all points in the neighborhood of a point p with r = du are removed
(see Fig. 6.10(a)). The advantage of this approach is the high computation speed, but
its disadvantage is that it does not regard local surface properties. But especially this
adaptivity allows to remove more points in planar regions, than at edges and in curved
regions.

For visualization purposes, Pauly et al. presented an iterative method [PGK02].
They compute the local surface variation obtained from a covariance analysis of the k
nearest neighbors. From the eigenvalues λi, derived from the eigenvectors of the covari-
ance matrix, they determine the corresponding normal vectors and achieve a consistent
orientation with the procedure described in Section 6.2.4. The surface variation σ for
a point p is then defined by λ0 as the deviation from the plane, spanned by the mass
center of the neighborhood (with size n) and the normal vector.

σn(p) =
λ0

λ0 + λ1 + λ2

(6.18)

For example, a zero deviation σn(p) indicates that all points in the neighborhood of p lie
in a plane, and if all eigenvalues have the same length, i. e., σn(p) = 1/3, a completely
isotropically point distribution can be assumed. Points that cause the smallest error,
are removed from the set by an edge collapse operation in an iterative manner.
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When using point cloud simplification as preprocessing for surface measurements, the
input is a desired distance value da between two neighboring points that is only allowed
to decrease in strongly curved regions and at edges. The necessary local surface proper-
ties for the adaptivity of the approach is then given by the curvature measures κ, that
have been efficiently derived from the scanline analysis (see Fig. 6.10(b)). Therefore,
for each point p of the point set P all neighbors in the neighborhood da are identified
with the help of the kd-tree. For each pi, its value κ̄i from Eq. 6.13 is used to determine
the linear scale sr that describes how much points must remain in the neighborhood of
pi, whereas pi itself is never removed:

sr = Np(da) · κ̄i . (6.19)

If sr is always set to zero, all points except pi are removed and the procedure equals
a uniform simplification. Otherwise, points with low quality q̄i are removed first. To
ensure that edge points are not removed by processing planar neighborhoods, the pro-
cedure is applied to the edge points first. This is achieved by dividing the point set
into two subsets containing significant edge points on the one hand, and all remaining
points on the other hand. The computation performance is increased, since points are
not deleted from the kd-tree but labeled as removed. Although the tree becomes un-
balanced, the whole procedure is much faster than re-balancing the tree by removing a
point. At the end of the procedure, the tree is simply restored by unlabeling the knots.

(a) (b) (c)

Fig. 6.10: Point cloud simplification with r=0.5. The result of the uniform simplification is shown
in (a), the scanline curvature (b) is used for an adaptive simplification (c). For a better visualization,
illustration (c) shows the resulting density in gray levels instead of single points.

6.4 Case Studies

The proposed methods were applied to different models in order to evaluate their effec-
tiveness. Figure 6.11 illustrates the models and the processing pipeline. The polygonal
approximation of the initial point sets in the first column shows the influence of noise,
redundancy and uneven sampling. The most problematic case is an overlay of noisy
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point sets, since the local surface is then represented by multiple point layers. This
effect is significantly reduced by the correction step, which solves the redundancy by
removing low quality points in local neighborhoods. The correction is additionally sup-
ported by a following smoothing procedure, which is adapted to the scanline curvature
(second column) to preserve edges while smoothing noise. Since the smoothing per-
forms a weighted averaging, an uneven sampling is implicitly corrected, too. In order
to increase the computation speed of the following local point processing operations,
the number of points has been adaptively reduced. The models in Figure 6.11 also
show different kinds of curvature of small and large areas with sharp and more smooth
edges. Since the simplification procedure is also based on this curvature information, it
reduces the point number depending on the strength of the curvature (third column).
The point clouds processed this way show a significantly increased quality of their
polygonal approximation (last column), although the point density is also significantly
reduced.

6.5 Summary

In this chapter, different strategies for the management, analysis and processing of point
clouds derived from 3D scanners were presented. The methods are fast and robust and
adaptively derive their parameters from the data, without requiring a tesselation of the
underlying surface. The employed kd-tree only stores pointers to the complex scan data
structures, which is memory efficient and provides immediate access to the additional
system information generated during the scan process. The smoothing and point-based
simplification can significantly increase the performance when creating polygonal ap-
proximations of large data sets. Because on the one hand, the number of points to
be processed is reduced, and on the other the smoothing operations reduce topolog-
ical distortions due to noise. The presented methods also benefit from utilizing the
given system information, like quality measures, uncertainty estimations, and scanline
distances to increase the degree of automation and their adaptivity.

In the last three chapters, modular tools for managing and evaluating 3D point sets were
discussed. These methods employ as much structural information from the acquisition
principles as possible to increase the efficiency and adaptivity. Their application to real
measuring tasks is discussed in the next chapter.
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(a) 5.8M pts. (b) curvature. (c) thinned. (d) 0.4M pts.

(e) 5.7M pts. (f) curvature. (g) thinned. (h) 0.3M pts.

(i) 0.8M pts. (j) curvature. (k) thinned. (l) 0.4M pts.

(m) 1.0M pts. (n) curvature. (o) thinned. (p) 0.3M pts.

Fig. 6.11: Case studies for the proposed methods. The first column displays the triangulated models
of the initial raw point clouds. The second one shows the scanline curvature of the merged point clouds
from different scan operations/sensors. The third shows the density after the adaptive simplification
(r=0.5) and the last column points out the triangulated models of the smoothed and simplified point
clouds.
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Chapter 7

Practical Applications

Mass production of industrial workpieces requires continuous manufacturing control
to ensure constant quality. Therefore, assembly inspection is used to detect errors at
an early stage. Many conventional inspection methods are still in use, especially in
the automotive and supplier industry. Traditional inspection with gauges is rather
subjective and time-consuming. Moreover, such inspection only reaches an OK or
not OK decision and measurement of actual dimensions is impossible. Furthermore,
it is also impossible to specifically control and improve the manufacturing process.
Therefore, measurement systems were developed that reliably inspect the geometric
metrics of a manufactured item based on given reference data. The systems presented
have been developed in cooperation with other people at the Fraunhofer IFF and
manufacturers. The modular scan data algorithms introduced in the previous chapters
were integrated to evaluate the data with respect to the measuring tasks.

This chapter gives a brief overview on two exemplary industrial applications and the
measuring systems, where the methods presented in the previous chapters have been
successfully applied. The first system captures and evaluates the geometry of catalytic
converters automatically within an offline process. The second system evaluates a large
number of geometric measures at wheel rims within an online procedure, i. e., during
the manufacturing process. Both systems employ line-based laser triangulation sensors
and multi-axis locomotor systems to obtain the 3D measures.

7.1 Geometry Evaluation of Catalytic Converters

Since January 1993 all new cars in Germany are equipped with catalytic converters to
reduce pollutant emissions. Twelve million cars with converters are produced in Europe
every year. Reduced space in the engine compartment and the underbody make the
exact outside geometry of a converter very important. This geometry determines the
spatial curve of the connected exhaust pipes, and thus the mounting of the exhaust
system in a car. Therefore, quality assurance is an important task, and a significant
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quality criterion is compliance with geometric metrics. Variations detected can be
directly used to correct the production.

This section describes the measuring system and the corresponding methods for au-
tomated three-dimensional geometry inspection. This example is used to illustrate
the process of 3D data acquisition and evaluation under industrial working conditions.
Problems that arose during measurement are analyzed, and suitable solutions are pro-
posed. Problems include outside influences as well as other sources of error, e. g.,
converter materials or the measuring principle itself. Furthermore, several system pa-
rameters are identified that can be used in particular to qualitatively evaluate and
correct the point clouds as proposed in the chapters 1 and 2.

7.1.1 Functional Description

A converter consists of a stainless steel shell and a catalytic substrate. The shell con-
sists of three main parts: a cylindrical centerpiece with the catalytic substrate and
two funnels to connect the exhaust pipes. The funnels are welded to the centerpiece.
Different types of converters are illustrated in Figure 7.1(a). The position and orienta-
tion of the funnels relative to the centerpiece are sought. The measuring system has
to be able to digitize converters with a total length of 600mm without contact. The
system’s measuring uncertainty should not exceed 100 µm. The system has to extract
the spatial coordinates of the inlet and the outlet funnels from the measured 3D point
cloud.

(a) (b) (c)

Fig. 7.1: Different types of converter geometries. The principle constituents are the inlet and outlet
funnels and a cylindrical center piece. In contrast to the standard shapes in (a) and (b), a more
complex type with several attachments is shown in (c).

In addition to the complex measuring system (recall Sect. 3.1.1 and Fig. 3.1(a)), this
extension consists of three sensors. The system also uses structured laser light and
the triangulation principle to capture the 3D shape of a test item (recall Sect. 2.1.2).
Additionally, a multi-axis locomotor system moves the item in front of the sensors to
capture the entire surface. The sensors are rigidly mounted together with the locomotor
system on a hard stone slab (granite) with passive vibration absorbers (see Fig. 7.2(a))
in order to tolerate ambient influences. A housing protects sensitive components against
dust, external mechanical influences and incidence of outside light.
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In order to capture the (open) inlet and outlet funnels, they are sealed with a cylindrical
endpiece. A mounting, specifically for each converter, makes sure the converter remains
clamped during digitizing.

Ansicht von oben

Ansicht von vorn

base frame

vibration absorber

granitic slab

translatory axis

rotatory axis

adapter plate

mounting

catalytic converter

holder

light-section sensor
(camera + laser)

(a)

Attach converter
to mounting

Attach mounting
to adapter plate

User identification &
Select converter type

Start the
measurement

Digitizing process

Data evaluation

Display
measurement report

Removing converter

Initialization
process

(b)

Fig. 7.2: Schematic configuration of the converter measurement system (a) and the schematic mea-
suring procedure (b).

Digitizing and measuring operations are performed in a defined order (see Fig. 7.2(b)).
Afterwards, a measurement report is generated and used by a machine operator to ad-
just production. The report is additionally stored in a database to log the development
of values. Apart from setting and removing the converters, no other user-interaction is
needed.

7.1.2 Data Analysis

The result of the digitizing process is a set of 3D points captured from the shell of
the converter. This passage describes the extraction of the geometric properties and
features. The data evaluation has to complete two tasks: aligning the converter with
the reference coordinate system (e. g., the car coordinate system), and determining the
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positions of the inspected features. For purposes of simplification, a predefined CAD
dataset for any type of converter stored in a database is used. It includes information
on the possible feature positions, dimensions to be inspected, and coordinate system
alignments specific for each converter.

The features that have to be inspected are: the center points of the inlet and outlet
and the positions of boreholes, fastening bolts and plane areas in flanges and brackets.
Boreholes and threaded bolts are marked with measuring adapters for more accurate
and robust determination. These adapters are spherically or cylindrically shaped and
represent the center of the holes and the axis of the bolts, respectively. In an automated
search, all defined features must be identified and aligned in the reference coordinate
system. Afterward, the acquired geometry data is compared to the nominal values.

cylindrical
center piece

funnel

reference
plane

outlet

outlet
center

inlet

(a)

reference
plane

outlet

funnel

cylindrical
center piece

boreholes
inlet

(b)

Fig. 7.3: Extraction of the geometric properties to be verified (a) and (b). The open funnel outlets
are sealed with endpieces to capture their reference plane. Boreholes are sealed with hemispheres,
which are measured and evaluated as spheres (b) whose center represents the borehole center.

A simple example briefly explains the automated procedure. Using the database in-
formation, all relevant inspection features are separated from the digitized 3D point
cloud of the converter. Taking Figure 7.3 as an example, the circular bordered planes
are identified on the inlet and outlet, and a cylindrical centerpiece. The positions of
the planes are corrected by the thickness of the cap. Afterwards, the sections are mea-
sured using the cylindrical segments of the inlet and outlet. The center points of the
circles projected on each of the planes are the reference points for this converter. In
this case, the measured data is aligned by the axis of the cylindrical centerpiece that
constitutes the z-axis of the reference coordinate system. The remaining two degrees
of freedom around this axis are defined by the reference point on the inlet. The mea-
surement report finally provides the distance of the reference points in z-direction and
their positions in x and y.

Automated feature detection is an extremely important aspect of this approach. To
increase the level of automation, geometries should largely be identified automatically.
The following section describes a method for the efficient detection of simple geometries
using system parameters and characteristics specific to the measuring principle.
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7.1.3 Automated Feature Detection

Different converter types, and thus different shapes and surfaces limit the automation
of the process of data acquisition described. Algorithms are needed that automatically
detect the geometric features mentioned in Section 7.1.1. The measuring principle
and the system parameters can be used to efficiently detect such features within the
generated 3D dataset.

The three-dimensional points generated by each sensor are sorted based on the mea-
suring principle. This approach uses a laser that projects a thin line. As a result, all
captured surface points lie on the line distorted to a 3D curve in relation to the topol-
ogy of the surface. Thus, every position of the locomotor system has a curve consisting
of 3D points. Additionally, all points lie within a 3D plane known from the calibration
(recall Sect. 3.4). Each scanned line (scanline) is approximated by B-spline curves as
proposed in Section 4.1.1. These curves are used as analytical description for further
analysis. Due to the irregular point distributions, an adapted knot vector with values
based on the chordal distances was used.

Geometric features of a surface usually have sharp edges. Thus, the next step is to de-
termine these edges. Edge points are characterized by high curvatures κ. The strongest
κ values denote edge points that are further evaluated. In Section 4.3.1 it was found
out that κ = 0.2 reliably indicates these edge positions. Therefore, all edge points
per scanline are determined. The known sorting of the scanlines is then used to suc-
cessively connect neighboring edge points from scanline to scanline. Edge points are
automatically connected if they are neighbors within the radius rE = 0.5mm, which
was empirically ascertained. A set of neighboring, connected edge points is marked as
an edge contour for further processing (see Fig. 7.4(a) and 7.4(b)).

The measuring task requires to determine the positions of the circular areas of the
inlet and outlet. By CAD definition, all points within these areas lie on a plane. Both
features are used to automatically detect inlet/outlet locations within the point cloud.
Therefore, each of the identified edge contours is evaluated if a good fit of circular curve
can be achieved. This is done by fitting a circle in R3 [ARR99] to those points and
evaluating the standard deviation and the expected radius stored in the CAD file. In
the next step, the resulting set of circular objects is projected back to the original point
cloud, and points within the plane and circular area extracted. The fitted plane (recall
Sect. 6.2.3) yields the spatial orientation. Additionally, the sought funnel position is
obtained from the center of the circle (see Fig. 7.4). Based on this information, the
object coordinate system of the measurements is aligned with that of the CAD data. In
the following steps, the positions and dimensions stored in the CAD file are employed
to easily identify the other areas to be inspected.

This approach can automatically and efficiently determine the correct positions in more
than 95% of the converter types. For the other cases, expectation ranges and complex
heuristics must be manually stored in the database.
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edge
contours

mounting

reference
circle/plane

(a) (b) (c)

Fig. 7.4: Principle of an automated curvature-based feature detection (see red contours) using the
examples of two catalytic converters (a) and (b). The circular regions marked in green indicate the
sought reference planes. Points with a curvature κ > 0.2 (thick lines) denote significant edges (c).

The identification of the geometric primitives requires a preprocessing step. The usu-
ally very large point sets have to be reduced without appreciable loss of information.
Additionally, artifacts and noise influence processing with the proposed methods. The
B-spline description of a scanline can be used to drastically reduce the point cloud.
Usually, the scanner produces point sets with a density of 0.02mm within each scan-
line. During the development it was found out that a density of 0.1mm is sufficient.
Furthermore, high frequent noise was generated (recall Sect. 3.3.2). Therefore, the data
had to be preprocessed using the B-spline methods introduced in Chapter 4.

Discussion. This system has been working reliably in an industrial environment for
more than two years. The measuring system enables the offline inspection of samples
on the production line and is used by machine operators. Currently, the geometry of
30 different types of catalytic converters can be inspected. Mechanical gauges are no
longer used for that purpose. The results are directly used to control and correct the
manufacturing equipment (e. g., welding machines), and thus to maintain manufactur-
ing tolerances and quality.

Using this approach, a testing station for inspecting the geometry of wheel rims is
presented in the next section.
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7.2 Geometry Measurement of Wheel Rims

Quality assurance in the manufacturing is of vital importance. The high degree of
automation requires automated control and quality assurance as well. In this scope,
another 3D measuring device is presented that benefits from the scan data procedures
previously proposed in this work. The measuring machine was developed to support
the quality assurance in the manufacturing of wheel rims. Therefore, each wheel is mea-
sured, instead of taking single samples as for the converters in the section before. This
section gives a brief overview on the system configuration, the used sensor technology,
and the basic measuring procedure.

front

(a)

outer bead seat

flange
taper

hump

inner bead seat

(b)

pilot bore

lug bolt holes

inner/outer 
contact patch

wheel hub back

weight reduction
slots

(c)

Fig. 7.5: Illustration of the wheel construction. The wheel front showing the spoke design, the wheel
hub and the lug bolt holes is given in (a). The inspection areas at the bead seats are shown in (b)
and at the backside of the wheel hub in (c).

For high driving comfort and a maximum safety, the exact geometry of a wheel is very
important. If the metal parts are manufactured exactly, the rubber tire runs round.
Any deviation from the ideal shape leads to vibrations which are noticeable for the
driver. Especially the wheel hub, the pilot bore, and the lug bolt holes have a strong
influence, since they represent the interface between the axes of the vehicle and the road
(see Fig. 7.5). Important parameters are, for example, the radial and lateral run-out,
the absolute and relative positions of several bores as well as the distances between
inner/outer bead seat to each other and to the contact surface on the pilot bore.

Actually, the quality of a wheel is tested by the manufacturers with mechanical probes
moving along the wheel surface. This process enables the determination of dints or
deformations, which move the probe in radial direction. The application of mechani-
cal probes is a widely-used and approved method, but still has several disadvantages:
the probe wears out and the parameters cannot be acquired correctly. Additionally,
the surface must be digitized pointwise to capture other or more complex geometry
parameters, which becomes very time-consuming. Tactile machines are often placed in
air-conditioned rooms, and thus are not suitable for online inspections in many cases.
On the other hand, a temperature compensation is needed for optical (online) systems,
too.
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7.2.1 Functional Description

The measuring system mainly consists of three different subsystems: a 2D part identifi-
cation unit for “chaotic” part supply, a 3D measuring unit for capturing and evaluating
the wheel geometry and an additional elevator/side shift unit for NOK/Rework clas-
sifications. The single subsystems are connected by conveyers (see Fig. 7.6). In this
work, we only focus on the 3D measuring unit.

material flow

3D measuring2D identification
classification

(a) (b) (c)

Fig. 7.6: Schematic illustration of the wheel measuring machine (a), the real machine (b) and a closer
view on the sensor technology (c).

In contrast to the converter measuring machine, this system uses the principle of a
fixed wheel and moving sensors. Actually, this unit consists of four triangulation-based
sensors. Three line-based sensors are used to capture the inner and outer bead seats
and the center bore area with the contact patch and the lug bolt holes. The fourth
sensor measures ranges to the bolt holes pointwise from the outside. Therefore, the
sensors are mounted on two rotation axes (inner and outer sensors) with additional
lateral axes for the optimal horizontal and vertical orientation. Within a continuous
movement, the sensors are rotated around the wheel and 360 three-dimensional profiles
are computed and combined to one point cloud which is finally evaluated and compared
against the given nominal geometry from CAD.

The measuring system is designed to support all types of passenger car, SUV, and
truck wheels without mechanical re-setting. Therefore, all necessary information (ge-
ometry parameters, parameters for custom-specific data evaluation) derived from given
CAD data sets are stored in a database, which additionally enables an easy parameter
modification and the insertion of new wheel types.

The measuring concept requires a triggered data acquisition for establishing angular
relationships between successively captured scanlines. The basis for an equidistant
(related to rotation angles) data capturing are the rotary encoders. They generate
signals for a trigger unit, which again generates impulses for all connected devices. This
principle assures the real-time and synchronous generation of trigger signals. The basic
idea behind the hardware concept is the decoupled arrangement of data measuring and
hardware controlling functions. This allows the minimization of the digital i/o signals
between these systems.
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Finally, the measured data is transfered to a standard PC via Firewire (IEEE1394
standard) bus, which then performs the 3D data reconstruction, feature extraction and
evaluation.

7.2.2 Measuring Procedure

The wheel is automatically transported to the measuring system on a conveyer, which
is connected to the manufacturing process. Once the wheel enters the machine, it is
pre-centered and arrested. The measuring arms and axes, on which the sensors are
mounted, are automatically moved to the optimal measuring position. Within 3.6 sec-
onds, the sensors rotate around the wheel and capture data of all relevant parts. After
one complete rotation, 360 profiles (scanlines) were generated. Each profile initially
contains 1024 2D coordinates, which are merged to more than 1.1mio. 3D coordinates
for the measurements. On the basis of the given CAD data of the wheels, a geometric
matching compares the actual against the nominal shape. The entire process takes
about 12 seconds and 8 seconds remain for the 3D evaluation. Thus, as many evalua-
tions as possible must be applied to the scanlines as soon as they are acquired.

7.2.3 3D Calibration Procedure

The computation of 3D coordinates from the raw 2D profiles of the laser sensors requires
a mathematical model of the machine axes and movements and a calibration procedure
to calculate its parameters. Therefore, a setting master is used, whose global shape
is similar to a wheel rim but with several revolving reference areas forming cylinders
and planes (see Fig. 7.7(a)). Their dimensions are precisely determined using a tactile
coordinate measuring machine. The nominal parameters of the setting master are
stored in a database. For the adjustment of the sensors it was specified that the plane
spanned by the laser has to coincide with its rotation axis. Thereby, the most attention
is turned to the orthogonality between the plane normal and the direction of the axis.
With the center axis of the setting master running nearly parallel to the rotation axes
the complexity is reduces to a 2D problem.

The automated calibration procedure starts a regular measuring cycle for the setting
master. At each angular position ϕ and for each sensor, a multi-stage alignment pro-
cess starts. At first, a variant of the Iterative-End-Point-Fit algorithm (IEPF) [DH73,
MQ94] is used to cluster the measured points into sets of collinear points. Starting
with a line from the first to the last point of the ordered dataset, all distances to points
in between are computed, and the point with the maximum distance specifies the inter-
section of two new lines. This is done recursively until a specified minimum distance is
reached and the clusters are returned. After fitting lines to the point clusters according
to [ARR99], the complexity is reduced from 1024 points to up to 10 line segments (see
Fig. 7.7(b)), which makes the following calculations more efficient.
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The setting master with its measured faces only defines two or three reference lines in
the two-dimensional space for one sensor. All detected line segments are matched to the
reference structure, a quality coefficient is computed and, at last, there are up to four
possibilities to align the measured data to its reference. With the a priori knowledge
that the sensors for the bead seats have to be outside of the rim and the sensor for
the pilot bore has to be inside, the correct transformation [α, dX, dY ] is chosen (see
Fig. 7.7(c)).

The parameter α is the inclination of the sensor and [dX, dY ] its projection center
referring to the coordinate system of the setting master. A subsequent fitting pro-
cess [JH02, RL01] ensures the computation of transformation parameters for minimal
deviation. The raw sensor data [xs, ys] is transformed with the following equation.

xt = xs · cos α− ys · sin α + dX
yt = xs · sin α− ys · cos α + dY

(7.1)

The last step determines the transformation parameters for the rotary movement sep-
arately for each sensor. Because the setting masters center axis is not identical to the
rotation axis, the parameters change during the movement. These changes follow a cir-
cular path using the rotation angle ϕ and the corresponding α, dX and dY , respectively.
For example, fitting a circle for dX results in three new parameters dXu, dXv, dXr (see
Fig. 7.7(d)). For small displacements between the axes the current rotation angle ϕ
can also be used for the back transformation instead of using ϕ′:

dX =
√

dX2
r + 2dXr(dXu cos ϕ + dXv sin ϕ) + dX2

u + dX2
v . (7.2)

(a) (b)
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Fig. 7.7: The reference shape of the setting master (a), its 2D representation in the laser sensor (b),
the transformed shape after fitting to the reference (c) and the coordinate system for the calibration
with its transformation parameters (d).

The back transformation of all 2D profiles results in a 3D point cloud in the world
coordinate system. For the 3D data processing, an object coordinate system is defined
by the pilot bore with its theoretical rotation axis and the contact patch.
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7.2.4 3D Data Processing

Usually, the acquired 3D data contains some high-frequent noise within a certain toler-
ance. This is due to the discrete sampling of the optical sensor on the one hand, and
the different reflection properties of the surfaces on the other hand (recall Sect. 3.3.2).
Therefore, a scanline-based B-spline smoothing is performed. Since the point cloud con-
sists of single scanlines, we use this data structure to process the profiles independently
from each other. Interrelationships between multiple scans are considered afterwards
in the feature extraction and geometry evaluation steps.

To analyze a set of points on scanlines, B-splines are used as proposed in Chapter 4.
They are used to obtain an analytical description from which features can be easily
extracted. In addition, they are used to close small gaps between neighboring, discon-
nected sublines. Interpolating these gaps keeps the precision of measurements, if the
distance between the corresponding sublines is less than a 0.5mm.

3D Feature Extraction

The lateral and radial run-out determine the quality of the manufactured wheel as well
as the position of the bolt holes. Therefore, the set of single radii over all measured
features at pre-defined positions are considered. There are three important areas, which
must be analyzed: the inner and the outer bead seat and the area at and around the
pilot bore (see Fig. 7.8). The bead seat is the edge of the rim that creates a seal
between the tire bead and the wheel. At the bead seat, there are three features: the
rim flange, the rim taper, and the hump. The rim flange is the edge of the wheel and
the shoulder is the outer edge of the tire tread where it meets the sidewall. The small
hump is applied for safety reasons and ensures the optimal seat of the tire to the inner
wheel. The area at the pilot bore consists of a contact surface, a cylindrical area at the
hub, and the lug bolt holes for mounting the wheel at the vehicle axes.

A

B

C

(a)

hump

taper

flange

(b) (c) (d)

Fig. 7.8: Schematic wheel construction (a) with marked expectation ranges: outer and inner bead
seat [A], [B] and the area around the pilot bore [A]. Enlarged regions at the bead seats (b), (c) and
the reconstructed 3D point cloud (d).

For the feature extraction from the point clouds, we use a priori CAD geometry infor-
mation, since the wheel type is always known. Thus, expectation ranges are defined,
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which limit the possibilities, where a single feature can be found. In case of the bead
seat features, the lateral run-out (planarity) is determined. The radial run-out repre-
sents the roundness. The planarity or conicity of the contact surface at the pilot bore
is a direct quality measure, which also applies to the spatial position and diameters of
the pilot bore and the lug bolt holes.

Measures at the Bead Seat

The shape of the bead seat and its measures with respect to the pilot bore are important
parameters that significantly determine the runnability. If all radii to the rotation axis
are the same, the wheel was manufactured optimally. This also applies to the distances
of the bead seats to the outer contact plane at the pilot bore. The corresponding
measures are found at the slope heading up to the rim flange and at the shoulder (see
Fig. 7.9(a)). Therefore, a circle with a fixed radius of 8mm must be placed at the bead
seat, touching, but not intersecting the rim flange and the taper. This is achieved by
fitting lines to the slopes in these regions. A parallel translation of these lines (the
mandatory norm requires 8mm) yields an intersection point, which is the center of the
sought circle. The distances of the circle to the outer contact patch of the pilot bore and
to the rotation axis are the measures for the run out. This procedure is applied to all
scanlines of the inner and outer bead seat. As a result, a curve showing the development
over the perimeter is obtained (see Fig. 7.9(b)). The contour of the resulting curves

PHUMP

PBS1

PBS2

(a) (b) (c) (d)

Fig. 7.9: Measures at the sampled bead seat (a),(b) and result of the 1.–4. harmonic analysis (c).
Figure (d) compares the moving average method (top) and the Fourier smoothing (bottom) on the
radial distances. The noise in the signal is additionally amplified for a better visualization.

is evaluated by computing its Fourier series (Eq. 7.3). After decomposing the complex
signal into its frequencies, the contained shapes are rated (see Fig. 7.9(c)). For example,
the maximum of the first harmonic yields a direct measure of the deviation from a circle,
the second considers ellipses. In the manufacturing, the first four harmonics must be
analyzed.

F (x) =
1

2
a0 +

∞∑
n=1

an cos nx +
∞∑

n=1

bn sin nx (7.3)

Usually, the resulting curve is smoothed in a preliminary step based on a very fast
moving average approach. But in most cases this method is not able to smooth high
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frequencies sufficiently. A more sophisticated but slightly slower method is the Fourier
interpolation. High frequencies, which are contained in the last harmonics, are removed
by accumulating only the lower ones. The curve consists of 360 values, and with respect
to the sampling theorem, only 180 harmonics can be used to interpolate this curve
without oscillations. A smooth curve is obtained by accumulating only the first 90
harmonics (see Fig. 7.9(d)).

Measures at the Pilot Bore

The spatial position and the orientation of the pilot bore define the object coordinate
system on the one hand, and the shape and the dimensions at the contact patch are
geometric measures on the other hand. Each wheel has a cylindrical center bore, which
must be detected. Due to the arrangement of the hardware, the rotation axes of the
sensors and the wheel are nearly the same. This observation helps to detect an area
around these axes. The resulting point cloud represents a cylinder, which is limited in
its length by the inner contact patch (see Fig. 7.10(a)). Because of the varying wheel
geometries, optimal data for robust cylinder fittings cannot be provided in every case.
Therefore, the direction of the inner contact plane is employed. It is computed by
fitting a plane. All the data from the assumed cylinder are now projected to this plane
and constitute a circle. The center and radius of this circle and the direction of the
plane finally define the position and orientation of the pilot bore. The bolt holes are
found at locations parallel to the inner plane. Their shape is analyzed by approximating
spheres and cones into their bore. The center of the shape is the reference for further
measurements, such as other distances and radii.

(a) (b) (c)

Fig. 7.10: Scheme of the area at the pilot bore (a) and resulting point clouds with automatically
detected colored inner/outer contact patches and the detected lug bolt holes (b),(c).

Fitting standard geometries to incomplete data is a recurrent problem [FWSW03].
Even if the curve is quite simple, such as a circle, it is still hard to reconstruct it from
noisy data sampled along short arcs. Therefore, Chernov et al. study the least-
squares, geometric and algebraic fit of circular arcs to incomplete scattered data [CL05].
For the wheel measurements the geometric fittings of Ahn were employed [ARR99].
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Due to the fact that the machine is used in industrial environments, the influence of
temperature changes must also be considered. Thus, all measures V (distances, radii)
that have been directly computed, are corrected by a simple temperature compensation
(Eq. 7.4), which includes a temperature coefficient Tc (e. g., aluminum 23.8 · 10−6 per
degree) and the difference ∆T between the actual temperature and the nominal 20�:

Vc = V · (1.0 + Tc ·∆T ) . (7.4)

Since this procedure does not consider temperature influences for the locomotor system
and other mechanical parts, it is not yet complete.

Actually, the system is still a prototype to be introduced into manufacturing this year.
The system has already passed a test series with 700 wheels for the most important
measures, such as diameter of the pilot bore, lateral and planar run out and other
measures at the bead seats. The results have been analyzed by the customers using the
statistics software qs-Stat. They found the measures comparable to those of their tactile
machines. Furthermore, the repeatability was excellent, only showing variances of 2–
5µm. However, there are still some systematic deviations that must be explored and
corrected. The chief cause may be found in an incomplete calibration concept, which
does not cover all necessary mechanical uncertainties, such as elliptical movements of
the locomotor systems instead of the expected rotations. A more detailed error analysis
is in progress, but cannot be given due to secrecy agreements.

7.3 Summary

This section presented two industrial applications employing the scan data algorithms
presented in this work. At the beginning, an automated 3D geometry inspection system
for catalytic converters was introduced. This system is based on methods for automated
geometric feature detection derived from scanline curvature information. Furthermore,
local B-spline approximations are employed to revise single measurements in one step
and to scan geometric features in another step (e. g., curvatures, sharp edges). Impor-
tant geometric segments of a converter model (e. g., planes, circles, etc.) are scanned
automatically and compared to the nominal values. The result of a measurement is
a set of parameters describing the spatial location and the dimensions of parts of the
model geometry. Afterwards, the measured geometry is compared to given values from
drawings or CAD models, and deviations are identified. Deviations and errors are
classified using given tolerance values provided by the manufacturer.

In the second part of this chapter a wheel measuring machine was presented, which is
also based on the evaluation of 3D scanlines. A calibration procedure was proposed to
find the transformations between the coordinate systems of the machine and the sensors.
This approach is based on an alignment of the captured data to the nominal data of
a calibrated setting master. In the next steps, the 3D data evaluation was discussed.
Therefore, the acquired set of 3D data is corrected by approximating single scanlines
with B-spline curves, which have a smoothing character and are able to fill holes. In
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the next steps, geometry extraction approaches were presented that use the given CAD
data to adaptively define expectation ranges for the feature detection. The extracted
surface parts were analyzed and compared to the given ones by approximating the same
geometric primitives, such as lines, circles and planes.

Finally, a set of more than eighty measures and deviations are computed and stored
in a database for process control and documentation. Actually, the system is a pro-
totype, but this kind of 3D measurement is unique in the quality assurance for wheel
production.
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Chapter 8

Concluding Remarks

Modern quality assurance systems in the industry apply optical 3D scanners to capture
and evaluate the geometry of automatically manufactured parts. However, 3D model
acquisition is not limited to the industrial domain. Even 3D computer graphic applica-
tions employ these techniques to obtain and process model information from real-world
objects, e. g., for visualization purposes.

This dissertation discussed the 3D scan data acquisition and its adaptive preparation
and processing for the model based evaluation in practical applications. Thus, the
focus was on automation, efficiency and robustness against environmental influences.
Starting from the data acquisition, the entire process pipeline was considered. There-
fore, the work is divided into three basic parts. The first part introduced the technical
principles of 3D point cloud generation from optical (laser) scanners. In the second
part, evaluation methods were presented employing the underlying scan data structures
derived from the measuring principle. On this basis, procedures for the approximation
of parametric curves and surfaces for data analyses were devised. The algorithms pre-
sented adaptively determine their parameters by exploiting the scan data structure
and the known additional system information (e. g., sensor positions and movements).
Finally, the third part discussed the application of the proposed techniques using the
example of two industrial 3D measuring tasks.

The large amount of 3D measures, affected by noise and artifacts, usually complicates
the automation in practical applications. Typically, polygonal meshing algorithms are
employed for visualization and reconstruction of topological neighborhoods. Thus, the
entire point cloud is considered, which usually contains too much information for local
feature analyses. Therefore, the point cloud techniques in this work are based on the
logical subdivision into its scan data structure. This approach enables an adaptive,
directed and selective information reduction, which results in less complex evaluations
and thus in a higher robustness and efficiency.

In summary, by taking the entire process pipeline into account (see Fig. 8.1), the degree
of automation could be significantly increased. Therefore, modular tools were devel-
oped including simplification, smoothing or curvature evaluations based on adaptive
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scanline approximations by B-spline curves. Further evaluations were based on com-
bining successively acquired scanlines to regular row/column grids for B-spline patch
approximations and their evaluation. The remainder of this chapter summarizes the
main contributions, discusses points of criticism, and future directions.

Data Acquisition

laser light-section

fringe projection

photogrammetry

Point Cloud Processing

surface approximation

smoothing

simplification

Data Evaluation

features (edges, gaps, etc.)

measures (length, dim., etc.)

visualization (poly. meshes)

Scan Data Structure

scanlines, sublines

object movements

sensor positions

Quality Measures

2D image quality

viewing/projection angle

noise/uncertainties

quality measures

Fig. 8.1: The data acquisition pipeline and post-processing sequence. The scan data structure and
system specific information enriches the measured data for an optimized point cloud processing and
evaluation.

8.1 Summary of Contributions

When processing raw (unstructured) point clouds, a lot of information is thrown be-
tween data acquisition and data evaluation. Thus, the general strategy in this work
is to analyze and exploit as much information as possible from the acquisition for a
better evaluation. This procedure enables fewer errors from (information) approxima-
tions and a process- and sensor-adjusted data interpretation with higher processing
speeds. Although this concept may be obvious, it has not been implemented with this
complexity and completeness in practical applications before. On the one hand, the
reason was found in many different and proprietary 3D sensors, and inconsistent data
formats. On the other hand, point clouds without relation to acquisition hardware,
and thus without additional system information, are typically processed. In this thesis,
the entire procedure was considered. By employing 3D scanning technologies and data
evaluations for real industrial applications, all necessary steps were brought together.

In practice, there is no automatic (optical) 3D measuring system which generates single
point measurements independently from each other. Thus, there is always a structure
that can be employed for a more efficient processing, requiring less approximation tech-
niques. This results in an increasing robustness and degree of automation. At the
example of line based scanners, points on a line are stored as connected neighbors. If
the sensor is moved, successive lines are neighbors. The same assumption applies to
area scanners, such as fringe projection and phase-shifting, where the multiple neighbor-
ing lines are captured within one step. Even photogrammetric measurements contain
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these structure, since the image matrix is a natural grid parameterization. Besides
proprietary sensors, commercial devices were also used in the wheel measurement ap-
plication. However, these devices also produce scanlines that can be processed with
the proposed methods.

The data evaluation and analysis was discussed at three different consecutive abstrac-
tion levels. At first, the analysis of single measured contour lines (scanlines) was
discussed, which enables a very selective and fast processing. The combination of suc-
cessively captured scanlines to regular row/column grids represented the second level
and analyzed interrelationships between scanlines. In the third level, the entire point
cloud was finally processed.

It shall be mentioned that although this thesis has mainly focused on scan data evalu-
ation from laser scanners, the contributions are not restricted to this domain. In fact,
the techniques are suited to all optical measuring systems presented in the review of
Chapter 2, which may only require some minor adjustments.

8.1.1 Data Acquisition

The analysis of the measuring principles indicated that there is already ancillary in-
formation about the generation of 3D point clouds. This includes the geometry of
projected patterns, sensor positions, and defined movements during the acquisition.

At the example of two employed laser scanning systems, the data acquisition step and
the 3D point cloud generation were introduced. Therefore, the system and measur-
ing principle specific characteristics were extracted. Furthermore, a general scan data
structure was derived, basically consisting of scanlines and sublines on the one hand,
and additional system information about laser and camera positions on the other. In
this scope, a scanline represents an ordered set of sublines, which themselves consist of
an ordered sequence of points. An unambiguous point ordering is obtained from the
unique (laser) projection angle. The scanlines order itself is defined by the order of
the sensor movements. Furthermore, the influence from different error sources was dis-
cussed, which enables to perform error specific optimizations in the following processing
steps.

The introduced scan data structure can also be derived from the other optical measuring
systems, that generate point clouds line by line (e. g., fringe projection) or pointwise
(e. g., stereo-photogrammetry).

8.1.2 Data Evaluation

In the data evaluation stage, point clouds were approximated by a sorted set of B-
spline curves to obtain an analytical description. Based on this representation, edge
information was derived from these curves with respect to curvature values and the
viewing/projection quality of each single point. Furthermore, the curve approximation
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reduces high-frequent noise and allows to interpolate small gaps. Since the proposed
methods are based on the scanline approach discussed in Chapter 4, they may easily
be adapted to other scanning systems.

In addition to processing scanlines separately, an efficient procedure for the automated
preview generation from several scan operations was presented. Therefore, scanline
points were sorted according to their projection angle in the same way as proposed
for the curve processing. The movements of the sensors were additionally exploited
to establish an order between single scanlines. Based on the projection angles, an
approach to construct regular row/column grids was presented. Furthermore, a more
global data analysis, in contrast to the curve processing was employed in order to
check for surface features, geometric discontinuities, gaps and holes. Taking the grids
as a basis, a method for the rational B-spline surface approximation was presented.
These parametric surfaces were employed to evaluate the surface topology and compute
different surface curvatures, e. g., to check for surface fairness and existence of surface
features such as edges.

The next abstraction level discussed the processing of multiple grids and cases of un-
ordered scanlines sequences, e. g., as derived from the flexible scanner. Therefore, ap-
proved techniques to manage 3D point sets, such as kd-trees, were used. These methods
were adjusted by adding the a priori known system information and quality measures.
Furthermore, it was found out that the contained noise is normally distributed, which
enables an average based smoothing and simplification or fitting of geometric primitives
as outlined in Section 6.2.3.

Due to different application requirements (e. g., measuring task, object complexity, com-
putation speed, etc.), one or a combination of the three approaches may be used to
analyze, correct and evaluate the data. Due to the different abstractions it is hard to
compare the different results, because more or less (additional) information is available.
Thus, while the scanline evaluation is very fast, it is very local compared to the point
cloud approach. The grid approach exists between them.

Finally, two industrial applications were presented employing the scan data algorithms
presented in this work. At the beginning, an automated 3D geometry inspection system
for catalytic converters was introduced. In the second part, a wheel measuring machine
was presented. Both measuring systems employ the laser light section principle. There-
fore, the proposed methods could be used for automated geometric feature detection,
for example based on the scanline curvature information. The resulting measures are
finally compared to given values from drawings or CAD models and deviations are
identified.

8.2 Criticism

Although most of the proposed methods have been successfully applied to industrial
measuring tasks, there are still some limitations. For example, the scanline-based

124



8.3. THE HORIZON

curvature evaluation and edge detection require the scanline to “intersect” the object.
This requirement may not be fulfilled for some system/object configurations. But in
practice, there were mainly free form surfaces and this problem did not occur.

In case of grid construction from neighboring scanlines, the scanlines are not allowed
to overlap, which may result in degenerated shapes. This requirement is, for example,
not fulfilled by the presented flexible measuring device. However, even in this case, a
separate scanline processing can be applied for local analyses anyway. Global relations
must be derived from a general 3D point sets procedure as proposed in Chapter 6.

8.3 The Horizon

Throughout this thesis, extensions and improvements for processing optical 3D scan
data were discussed. In addition to the proposals for solving the problems discussed
above, there are also some major directions to continue the work presented in this
thesis.

8.3.1 A Unifying Scan Data Description

In this work, the possibilities of a formal description for optical 3D scan data have been
explored at the example of laser scanners. The implicitly given data structures and
system information (see Fig. 8.1) enable a significantly more efficient data processing
and robust data interpretation. However, as already mentioned, the derived structuring
is not limited to the employed laser scanners. Thus, a further goal is the development
of a formalism and the definition of a unifying data format for scan data from optical
3D scanners in general. This allows for the measuring system independent application
of the methods proposed. Furthermore, this approach enables the exchange of data
sets between several software packages from different developers comparable to simple
ASCII coordinate files. Furthermore, the variety of existing proprietary algorithms for
different scan data can be combined based on a standardized description.

8.3.2 Future Worker Support Systems

In addition to the quality assurance tasks presented, interdisciplinary approaches com-
bining optical 3D metrology and 3D computer graphics have a variety of further ap-
plication domains. The ideal case is the implementation of a worker support system.
The following scenario with respect to the converter application illustrates this idea:
Within the production step, the worker takes a sample item and puts it into the optical
measuring device. After data acquisition, the converter type is automatically detected.
In the following steps, the sought geometric measures are computed and the systems
detect the deviations. The derived 3D model is prepared to illustrate the problematic
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location and automatically aligned for an optimal view on it. Based on the given nomi-
nal data, a modification proposal is automatically made and visualized or animated to
the worker.

This scenario includes loads of subtasks that must be processed. The scan data prepa-
ration and automated feature detection may be performed by applying the methods
presented in this thesis. Methods for database-related type queries may be performed
by using either the features already obtained or the shape-based skeletons as described
in [Ise04].
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Appendix A

List of Implementations

The following table contains a list of tools that were implemented in connection with
this dissertation. In all implementations the programming language C++ was used.

tool author description
QTviewer Michael Schiller,

Nico Schmidt,
Christian Teutsch

scandata visualization for
optical sensors

GLviewer Christian Teutsch openGL scandata evaluation
and visualization tools

optoInspect Converter Erik Trostmann,
Michael Schiller,
Christian Teutsch

evaluation procedures for
the converter measuring
machine

optoInspect Rim Nico Schmidt,
Christian Teutsch,
Erik Trostmann

evaluation procedures and
tool for visualizing the
results of the rim measuring
machine

optoInspect Stereo Christian Teutsch photogrammetric stereo
application for measuring
and visualizing the front of
moving plastic profiles

math library Christian Teutsch,
Erik Trostmann

approximation of NURBS
curves, NURBS surfaces and
geometric primitives

sensor library Michael Schiller,
Christian Teutsch

methods for integrating the
scandata algorithms into
optical sensors functions

pointCloud library Christian Teutsch kd-tree-based point cloud
evaluation

Tab. A.1: List of implementations created in connection with this dissertation.
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Appendix B

Supplementary Details

In addition to Eqs. 5.6 to 5.9, the forward and backward differences for regular grids
of arbitrary order k are given by the following relations:

∆k
n = ∆kan =

k∑
i=0

(−1)i

(
k

i

)
an+k−1 (B.1)

∇k
p = ∇kfp =

k∑
m=0

(−1)m

(
k

m

)
fp−m . (B.2)

Furthermore, computing the derivatives of NURBS surface is much more complicated
than in the non-rational case. This is due the requirement, that influence of the weights
must be included into the computation of the rational basis functions. In addition to
Eqs. 5.18 to 5.22, the corresponding terms for for the (weighted) partial derivatives are
given here.

The nominators N and denominators D of Eqs. 5.18 to 5.22 are given by the following
expressions (also see [Rog01, PT95]):

N̄u =
n+1∑
i=1

m+1∑
j=1

hi,jBi,jN
′
i,k(u)Mj,l(v) (B.3)

N̄v =
n+1∑
i=1

m+1∑
j=1

hi,jBi,jNi,k(u)M ′
j,l(v) (B.4)

N̄uv =
n+1∑
i=1

m+1∑
j=1

hi,jBi,jN
′
i,k(u)M ′

j,l(v) (B.5)

N̄uu =
n+1∑
i=1

m+1∑
j=1

hi,jBi,jN
′′
i,k(u)Mj,l(v) (B.6)

N̄vv =
n+1∑
i=1

m+1∑
j=1

hi,jBi,jNi,k(u)M ′′
j,l(v) (B.7)
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D̄u =
n+1∑
i=1

m+1∑
j=1

hi,jN
′
i,k(u)Mj,l(v) (B.8)

D̄v =
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i=1
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j=1

hi,jNi,k(u)M ′
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j,l(v) (B.10)

D̄uu =
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′′
i,k(u)Mj,l(v) (B.11)
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