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Abstract— Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and
visualization of fibrous structures. To inspect the local and individual diffusion tensors, expressed as 3× 3 symmetric and positive-
definite matrices, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion
tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to
investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information
out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept,
simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences
between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we designed a new
glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor
scale, anisotropy type, and orientation are related to anatomical information that is relevant in most DTI applications, we focus on
visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently
and effectively identify the tensor differences. We also applied our glyphs to investigate the differences between two DTI datasets of
the human brain acquired with different b-values, and from a healthy subject and an HIV-infected subject.

Index Terms—Glyph Design, Comparative Visualization, Diffusion Tensor Field

1 INTRODUCTION

Diffusion-Weighted MRI (DW-MRI) is an imaging technique that ex-
ploits the diffusion of water molecules to estimate the underlying
anatomical structures of fibrous tissues such as the brain white mat-
ter or the muscles. As the only in-vivo imaging modality, it plays a
major role in a large number of applications, e.g., the understanding of
brain connectivity and development, and the improvement of diagno-
sis and treatment for brain and muscle diseases. The characteristics of
water diffusion can be modeled by a second order tensor called Diffu-
sion Tensor Imaging (DTI) [5]. More advanced DW-MRI acquisition
and modeling techniques have been developed in the past decade, such
as high angular resolution diffusion imaging (HARDI) [37]. However,
DTI remains the preferred DW-MRI modality used in clinical practice.

Apart from analyses based on a single DTI dataset, for some ap-
plications it is necessary to analyze two or more DTI datasets. DTI
acquisition requires many parameters to be tuned (e.g., the gradient
sampling schemes [17,19] or the b-value [3]), which can affect the esti-
mation of the resulting tensors. In order to better understand the effects
of the related parameters, it is helpful to compare the generated DTI
datasets. This is also the case for investigating some pathologies (e.g,
dyslexia [35]), or the evaluation of DTI registration algorithms [20].

Comparative visualization refers to the process of understanding the
differences or similarities between two or more datasets by making use
of an easy-to-interpret visual representation. Gleicher et al. [16] pre-
sented a general taxonomy that groups visual comparison into three
categories: juxtaposition (or side-by-side), superposition (or overlay),
and explicit encoding of differences. Juxtaposition is straightforward
to implement but relies on the viewers’ memory for comparison. Su-
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perposition is effective for comparing objects, due to being in the same
frame of reference. However, it is likely to cause occlusions and vi-
sual clutter. Explicit encoding is effective for visually depicting rela-
tionships among objects. However, the information about the original
subjects themselves is lost, and the visual representations of the differ-
ences are not always intuitive to interpret.

In order to compare two DTI datasets at local level, the tensors are
usually reduced to scalar values that have anatomical or physiological
meanings. These derived scalar fields are then compared. Fractional
anisotropy (FA), for instance, is commonly associated with the in-
tegrity of fiber tracts. Their comparison can be performed using com-
mon scalar field comparative visualization techniques, e.g., side-by-
side visualization [4] or simple quantification of the differences [27].
These are the most commonly used methods for DTI dataset compari-
son in practice. However, scalar level comparisons reduce the original
information, and thus give a limited view of the differences.

Alternatively, the comparison can be performed directly on the ten-
sors. There is less information reduction for tensor level comparisons,
and most of the information can be integrally visualized as glyphs. The
method commonly employed for direct tensor comparison is to juxta-
pose the glyphs. For instance, Schultz et al. juxtaposed two groups
of glyphs for showing the influence of lower echo time on fiber vari-
ance [34]. Superposing glyphs is also used but can be easily affected
by occlusion [7, 20]. To the best of our knowledge, there is no pa-
per related to the explicit encoding of the differences between two
diffusion tensors. Da Silva et al. displayed the differences between
two DTI datasets by superposing the corresponding streamtubes [12].
However, changing the parameters used for extracting the streamtubes
might change the visually perceived differences between the datasets.
Therefore, we decided to compare DTI datasets directly at tensor level.

In Figure 1, we illustrate the results of juxtaposition and superpo-
sition using two synthetic datasets. Tensor dataset 1 in Figure 1a is
defined in the barycentric space of three geometric anisotropy met-
rics [41]. Tensor dataset 2, as shown in Figure 1b, is constructed by
applying a small amount of random variations to tensor dataset 1. Both
are visualized via superquadric glyphs [21]. With juxtaposition, the
viewers need to compare them mentally, and thus it is hard to dis-
tinguish subtle differences. With superposition, it becomes easier to
identify whether two tensors are different or not, if their sizes are com-
parable. If not, one could be totally enclosed in the other. Occlusion
is another problem when simply superposing glyphs. An option to
address the occlusion problem is using transparency. However, subtle
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Fig. 1.Different visual comparisons for two synthetic datasets. (a & b) juxtaposition, (c) superposition, and (d) superposition with transparency.

differences still remain unclear, as shown in Figure 1d. In all the meth-
ods mentioned above, the differences are integrally perceived rather
than separately characterized. In other words, even if it is easy to tell
whether or not two tensors are different, it is hard to tell, for example,
which factor contributes most to the overall perceived difference.

The symmetric second-order tensor can be decomposed into three
components, which are tensor scale, shape, and orientation in the con-
text of tensor glyph design [14, 33]. These components define the
whole tensor and give an intuitive interpretation. In order to support
the individual comparison of these three tensor components, we de-
signed a glyph to present tensor differences in scale, shape and orien-
tation separately. To the best of our knowledge, there are no glyph-
based methods for comparative visualization of two diffusion tensor
fields that go beyond juxtaposition or superposition.

In this work, we focus on the tensor comparison at local level and
present the Tensor difference (Tender) glyph to efficiently represent
the differences between two diffusion tensor fields based on the three
components scale, shape and orientation. The Tender glyph is inspired
by the checkerboard style visualization [36] and the superquadric ten-
sor glyph [21]. Checkerboard visualization, a type of juxtaposed visual
comparison, is frequently used to evaluate registration accuracy [25].
Differences result in obvious discontinuities along the checkerboard
edges, which can be easily perceived. The superquadric tensor glyph
generates a strong visual cue for tensor shape and orientation via sharp
edges, and largely reduces the visual ambiguity.

The main contributions of this work are:

• A novel glyph design, encoding differences between two diffu-
sion tensors in terms of scale, shape, and orientation which facil-
itates visual comparison.

• A tensor dissimilarity measure and the associated feature space
to explore the differences between two tensor fields.

Furthermore, we present a user study and two cases where we illustrate
the potential applicability of the Tender glyph.

2 RELATED WORK

The presented work is in the field of glyph-based visualization, which
is a common and creative form of visual design. Its major strength is
the ability to visually encode multivariate dataset in the spatial con-
text. Glyph-based visualization for DW-MRI as well as comparative
visualization literatures are described in this section.

2.1 Glyph-based Visualization
Glyph-based visualization enables the visual representation of multi-
variate data by encoding them into various visual channels (e.g., color,
size, shape). Compared to other visualization techniques for multi-
variate data, such as parallel coordinate plots, glyph-based visualiza-
tion can preserve the spatial context. Due to the inherent multivariate
characteristic of diffusion tensors, glyphs are commonly used to visu-
alize DTI datasets. The classic way is to employ ellipsoids [28, 31].
Westin et al. [40] designed a composite glyph to directly show the lin-
ear, planar, and spherical components. Kindlmann [21] proposed the
superquadric glyph to improve the visual perception and to reduce im-
age space ambiguity. Schultz and Kindlmann [33] proposed several

general principles for glyph-based visualization for symmetric tensor
data including the preservation of symmetry, continuity, and disambi-
guity. Ropinski et al. [32] presented a survey of some representative
glyph designs and the taxonomy of glyph properties for spatial multi-
variate medical data. Borgo et al. [8] proposed general glyph design
criteria and guidelines to help facilitate the effective design of glyph-
based visualization.

2.2 Comparative Visualization
Visualization techniques have been developed to facilitate compara-
tive data analysis in scientific research. Busking et al. [9] proposed
an image-based implementation to visually compare two intersecting
surfaces by local distance cues. van Pelt et al. [38] presented an intu-
itive details-on-demand glyph set for comparatively visualizing wall-
shear stresses between different stent configurations. However, few
methods are designed specifically for tensor fields. The most common
approach to compare subjects in DTI visualization is to place the re-
sulting images side-by-side. Hotz et al. [18] compared the results of
two tensor interpolation approaches by juxtaposition. The comparison
in quantitative DTI image analysis is more often performed discard-
ing the spatial information. Line charts or scatter plots of relevant
scalar-valued invariants are commonly juxtaposed and/or superposed
for comparison [13]. Parallel to our work, Abbasloo et al. [1] devel-
oped a framework to visualize the voxel-wise normal distribution of
diffusion tensors. They compared two diffusion tensors by superposi-
tion. They intended to avoid the occlusion problem by rendering them
in complementary colors, and adding the resulting images. However,
the rest of the issues about superposition presented before remain.

To the best of our knowledge, no glyph-based technique has been
presented that provides comparative visualization of two DTI fields
based on explicit visual encoding of differences.

2.3 Tensor Dissimilarity Measure
An important challenge in the data level comparison approach is to
design suitable metrics for the data compared [39]. In our case, the
metric means the tensor dissimilarity measure, which is also an im-
portant factor in tensor field segmentation [26].

There is no unique way to calculate the distance between tensors. In
literature, several measures have been proposed to calculate the simi-
larity or distance between tensors, see Peeters et al. [30]. An easy to
compute and widely used measure is the Frobenious norm, which can
be applied to all types of tensors. Other metrics have been proposed
specifically for symmetric and strictly positive definite tensors, such as
the Riemannian metric [15] or the log-Euclidean approach [2]. Kindl-
mann et al. [23] proposed a measure built on the geodesic-loxodrome
that divides the overall distance into components that have intuitive
meanings for DTI (i.e., shape-specific and orientation-specific dis-
tances). The fact that these measures produce intuitive distance com-
ponents makes it an interesting choice for our glyph design.

3 GLYPH DESIGN

The goal of our glyph design is to help the users gain insight into
the differences between two diffusion tensors beyond what a simple
juxtaposition or superposition can provide. The first step to build the



glyph is to analyze the tasks we want to achieve by comparing two DTI
datasets. Based on this analysis, a selection of dissimilarity measures
is done, and these measures are encoded into various visual channels
of the glyph. In this section, we present the whole design process.

3.1 Task Analysis
Before starting the design process, we must decide what kind of in-
formation is useful for comparing two diffusion tensor fields. In DTI,
diffusion scale (e.g., mean diffusivity, MD) represents the overall dif-
fusion extent. Consistent increases in MD in some fiber tracts may
indicate white matter degeneration [13]. The diffusion anisotropy type
is useful to identify the underlying fibrous structure patterns. In sin-
gle fiber areas such as the corpus callosum, the diffusion has a clearly
defined principle diffusion direction (i.e., linear anisotropy), while in
fiber crossing areas such as the centrum semiovale, the diffusion type
is more like a flat disc (i.e., planar anisotropy). Since diffusion scale
and anisotropy do not depend on orientation, they are rotationally in-
variant. If a tensor is not spherical, its diffusion orientation can be
defined. The orientation is important for the reconstruction of fiber
tracts, which represent the underlying white matter structures. There-
fore, we decided to divide the differences into diffusion scale, shape,
and orientation. These components are orthogonal to each other [22],
e.g., a change in orientation will not cause a change in shape.

Furthermore, we adopted two glyph design principles, which are
continuity and disambiguity [33]. The glyph for two distinct tensors
should emphasize the visual representation, while the glyph for two
nearly equal tensors should not. Disambiguity means that the shapes
of two distinctive tensors should be clearly distinguishable, and as in-
dependent of the viewing direction as possible. In this work, we also
employed the superquadric glyph, which can guarantee unambiguous
perception and at the same time preserve continuity. Some proper-
ties of the superquadric glyph can be found in Kindlmann et al. [21]
and Demiralp et al. [10]. To achieve our goal, the glyphs should also
be able to provide information about the amount of differences of the
three components (i.e., scale, shape, and orientation) independently.

3.2 Tensor Dissimilarity Measure
In order to define an appropriate dissimilarity measure, we decom-
posed the diffusion tensor in a similar way to Schultz et al. [33]. A
symmetric second-order positive-definite tensor T can be decomposed
to three ordered real eigenvalues {λ1 ≥ λ2 ≥ λ3}. The Frobenius norm

of a tensor is defined as ‖T‖=
√

∑
i

λ 2
i . Notice that the Frobenius norm

is rotationally invariant, as are the eigenvalues. Then we get the nor-
malized tensor T̃ = T/‖T‖ and normalized eigenvalues λ̃i = λi/‖T‖.

The Frobenius norm represents the overall diffusion scale, while the
set of three normalized ordered eigenvalues {λi} represents the diffu-
sion anisotropy type. The set of three orthonormal eigenvectors {ei}
represents the diffusion orientation. The tensor dissimilarity measures
between two tensors T(1) and T(2) are defined as:
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where ds is the scale difference, d̃ is the normalized tensor difference,
dsh is the shape difference, and do is the orientation difference.

The main idea is based on the Pythagorean theorem. The difference
between two normalized diffusion tensors can only be due to the shape
and/or orientation difference. If we subtract the shape difference from
the normalized difference, the orientation difference remains. Note
that d̃ could also be defined as the ‘angle’ between two normalized

tensors d̃ = arccos
(

T̃(1) : T̃(2)
)

( The ‘:’ operator denotes a tensor
contraction). If so, dsh should also be defined as the ‘angle’ between

two sets of normalized eigenvalues dsh = arccos
(

∑

(
λ̃i

(1)
λ̃
(2)
i

))
. Nu-

merically, these definitions make little differences.
The advantage of these measures is that they are easy to calcu-

late, intuitive, and fulfills our requirements. For instance, the orienta-
tion distance between an isotropic (i.e., spherical) tensor and a linear-
anisotropic tensor is zero. The orientation difference between linear
and planar anisotropy is the largest if the orientation of the linear tensor
is perpendicular to the plane defined by the planar anisotropy. Further-
more, shape difference and orientation difference are bounded. Using
the geodesic-loxodromes [23] as the dissimilarity measure would also
provide the desired characteristics for our glyph design. However, the
computational cost of calculating the geodesics is considerably high,
so we opted for the computationally simpler alternative presented here.

3.3 Visual Mapping
Once the three components of the tensor differences are computed as
described in the previous subsection, we encode them to various visual
channels that constitute the Tender glyph.

Shape Difference Encoding Following the design guideline of
intuitive mapping based on semantics [8], the shape difference dsh can
be encoded into the shape channel of the glyph. However, expressed
as a single scalar value, it gives little information concerning the char-
acteristics of the shape change. For instance, dsh can be the same
between isotropy and linear anisotropy as well as planar and linear
anisotropy. It is not easy to connect these back to the original tensor
shapes. Therefore, we do not use an explicit encoding of the shape
differences. Instead, we preserve the original tensor shapes as much
as possible while still facilitating their visual comparison.

Tensor shape is scale-invariant because shape and scale are orthog-
onal. Thus, we normalize both tensors before shape comparison. We
also observed that it is hard to identify the shape differences in terms of
three eigenvalues when two tensor glyphs have different orientations.
For instance, as shown in Figure 2a, two tensors are with unit scale but
different orientations and shapes. No matter how we compare them,
by juxtaposition (Figure 2a) or by superposition (Figure 2b bottom),
it is difficult to identify the shape differences by sight. As soon as we
align them to the orientation of one of these two tensor glyphs (Fig-
ure 2b top), it becomes easier to tell which tensor has larger or smaller
eigenvalues. However, occlusion still makes it hard to judge the extent
of shape differences. Transparency is used to handle occlusion (Fig-
ure 2c), but it remains hard to visually quantify the shape differences.

Inspired by the checkerboard visualization, we explain our idea in
2D in Figure 3a. One of the superquadric glyphs is first aligned with
the other (see Figure 3b). Therefore, we can maintain the original ori-
entation of one tensor. Then, we divide the 2D space into four quad-
rants (i.e., eight parts in 3D), each bounded by two half-axes displayed
as dotted black lines in Figure 3c, like a checkerboard. We alternate the
displaying of the corresponding parts of superquadric glyphs in each
quadrant. Figure 2d shows the corresponding 3D case. If two ten-
sors have similar shapes, there will be no significant changes along the
axes. Otherwise, abrupt changes appear which are easy to recognize.
The traditional checkerboard visualization introduces information loss
due to its characteristic of alternative displaying. However, there is no
shape-specific information loss in our case, since both the tensor and
the superquadric glyphs are symmetric and one octant contains all in-
formation. Furthermore, we still keep the sharp edges, which serve as
strong visual cues for orientation and shape [21]. Note that the use of
orthographic projection is necessary since the shape comparison relies
on the correct perception of length differences along the axes.

Scale Difference Encoding In the context of DTI, tensor scale
is interpreted as the ‘size’, representing the amount of diffusion. It is
intuitive to encode the scale difference ds to the size channel of the
Tender glyph. However, in this way, it is impossible to tell which
tensor has a larger or smaller scale. An alternative is to directly map
the original tensor scale ‖T‖ to the size of its corresponding part of



Fig. 2. The Tender glyph shows the shape difference between two ten-
sors of unit scale but with different orientations. (a) shows two tensor
glyphs placed side-by-side. (b) bottom shows them overlaid. (b) top
shows them overlaid, but the red glyph is aligned with the blue one.
(c) superposition with transparency. (d) the Tender glyph. The differ-
ences in terms of three eigenvalues are more obviously manifested by
the ”staircases” between two parts of the Tender glyph.

Fig. 3. 2D Illustration of the checkerboard style glyph design. (a) shows
two 2D glyphs side-by-side. (b) shows them overlaid but the red glyph
is aligned with the blue one. The solid lines represent the visible parts
while the dash-dot lines are the invisible parts due to occlusion. (c)
shows the result of our design. The two black dot lines divide the 2D
space into four parts. Two glyphs are displayed alternatively. There are
obvious discontinuities between two glyphs.

the checkerboard superquadrics. However, these mappings do pose a
problem for the perception of tensor scale. The superquadric glyph
inherently introduces volume differences for tensors with the same
Frobenius norm, but with different shapes. It is difficult to isolate the
diffusion scale differences. Therefore, we decided to encode either the
individual tensor scales (‖ T ‖) or the scale differences ds into color.

Encoding individual tensor scales enables voxel-wise scale compar-
ison, while encoding scale differences can facilitate the comparison
across the field. Additionally, we designed two colormaps for scale
information encoding. We use the same tensor datasets as shown in
Figure 1 for illustration. The dual hue colormap is used to show indi-
vidual tensor scales (see Figure 4a). Hue, as an effective categorical
cue, is used to distinguish tensor datasets. Scale information is re-
flected by color luminance. Perceptually, it is easier to compare color
luminance than to evaluate size differences when shapes vary. How-
ever, it is hard to compare the subtle luminance differences of two
colors with different hues for a given voxel (see Figure 4a). Thus,
we introduced the single hue colormap (see Figure 4b). It facilitates
detecting subtle luminance differences for both local individual scales
and scale differences across the field (see Figure 4d). Colors of the
same hue can facilitate the comparison of luminance. Glyph halos are
then added for distinguishing datasets. Similarly, Chung et al. [11]
used outline color for distinguishing home or opposition teams in the
visual analysis of rugby events.

When encoding the scale differences ds, the Tender glyph has the
same hue and luminance for all octants, and it becomes harder to iden-
tify the differences in shapes (see Figure 4d). Switching to the dual hue
colormap improves the combined perception of scale differences and
shape differences (see Figure 4c). Therefore, the single hue colormap
together with the halos is mainly for more accurate scale comparisons,
while the dual hue colormap is for the combined perception of scale
differences and shape differences simultaneously.

Orientation Difference Encoding The orientation of a diffusion
tensor is represented by its three eigenvectors. Straightforward visu-
alization of two sets of eigenvectors as vectors has several disadvan-
tages. The differences between them are not easily perceived due to
their 3D nature. More importantly, eigenvectors cannot be uniquely
defined for tensors of certain shape types. Therefore, we decided to
explicitly encode the scalar-valued orientation difference do, which is
semantically mapped to the open angle of a view-aligned arc.

Given two perfectly linear-anisotropic tensors T(1) = T(2) =
[1 0 0; 0 0 0; 0 0 0] (FA = 1.0, mode = 1.0 [14]) aligned with each
other, if we gradually rotate tensor one T(1) around vector (0, 0, 1)
from 0◦ to 180◦ while keeping tensor two T(2) fixed, the analytical
behavior of the orientation difference is do =

√
2sin(θ) with θ the

rotation angle, shown as the red curve in Figure 5.

Fig. 5. The red curve together with the red squares shows the ana-
lytic behavior of do between two perfectly linear-anisotropic tensors with
respect to the rotation angle. The green curve is the quadratic approx-
imation. Blue dots are do of other two linear-anisotropic tensors with
reduced FA.

For simplicity, we approximate it with a quadratic curve (see the
green curve in Figure 5). Then, the mapping from do to θ is

θ = 90◦
(

1−
√

1−
√

2do/2
)
.

If tensors are not perfectly linear-anisotropic, their orientation dif-
ference for the same rotation angle will be smaller. As an exam-
ple, the blue dots in Figure 5 indicate the values for T(1) = T(2) =
[0.99 0 0; 0 0.1 0; 0 0.1 0] (FA = 0.89, mode = 1.0 [14]). Figure 6a
shows the tensors used in this experiment, and the corresponding arcs
are shown in Figure 6b. Note that the left- and right-most arcs dis-
appear since there are no orientation differences, which meets the re-
quirements of continuity. Figure 6c illustrates the arcs for the case of
two perfectly linear-anisotropic tensors.

In a second experiment, we demonstrate that do does not
measure a spurious orientation difference in cases where one
of the tensors is isotropic. To this end, we select T(1) =

[0.94 0 0; 0 0.24 0; 0 0.24 0], T(2) = [0.24 0 0; 0 0.94 0; 0 0.24 0].
We keep tensor one T(1) fixed, and gradually change tensor two T(2)

to a spherical tensor by reducing its FA to 0 while preserving the scale
and mode [14], as shown in Figure 7. The open angle of the arc grad-
ually reduces to 0. This experiment again confirms the continuity of
our orientation difference measure and the arc representation.

Since the possible maximum of the normalized eigenvalue λ̃1 is
one, the radius of the arc is set to be slightly larger than one in or-
der to maintain its visibility. Within certain ranges of viewpoints,
those arcs could overlap. Thus, similar to Lie et al. [29], we added



(a) (b) (c) (d)

Fig. 4. Two scale encoding schemes and two colormaps. (a) and (b) show that individual tensor scales (‖ T ‖) are encoded into color with the dual
hue and the single hue colormaps, respectively. This encoding scheme is suitable for local voxel-wise scale comparison. (c) and (d) show that
tensor scale differences (ds) are encoded into color with the dual hue and the single hue colormaps, respectively. This encoding scheme is suitable
for scale comparison across the field. The single hue colormap is for more accurate comparison while the dual hue colormap is for combined
perception of scale and shape differences simultaneously.

Fig. 6. The arcs for encoding orientation differences. (a) shows a group of linear tensors with gradually varying orientations (blue) and a reference
tensor (red), and (b) shows the corresponding arcs for the orientation differences between each element tensor with the reference. (c) shows the
results for the perfectly linear-anisotropic tensors in the same manner.

Fig. 7. The behavior of do when reducing the FA of one linear-anisotropic
tensor (the red one) to 0 while keeping the other (the blue one) fixed.
Both are of unit scales. The open angle of the arc gradually decreases
until it disappears.

an eye-space fixed-width outline to support the depth perception and
individual identification. Our final design is achieved by adding the
checkerboard style superquadrics, scale-encoded color channels, and
the view-aligned arc for orientation differences together, as shown in
Figure 8a. The Tender glyphs are applied to visualize the differences
between the same synthetic datasets used in Figure 1. The dual hue
colormap is used to encode individual tensor scales.

4 GLYPH VISUALIZATION

If the glyphs are placed throughout the whole volume, they probably
occlude each other and cause visual clutter. Thus, glyph-based tech-
niques are more suited for 2D and/or sparse visualization. In this work
we place the glyphs at one or more selected slices. Furthermore, users
can restrict the display of the glyphs at anatomically meaningful struc-
tures of interest (e.g., corpus callosum). A smart glyph arrangement
strategy [24] can remove the distracting effects of the regular sampling
grid. However, this approach requires diffusion tensor interpolation.
Therefore, we decided to place the glyphs at the original grid points.

Since the tender glyph does not have an intrinsic orientation, we
developed various strategies for its orientation. The options include
a) aligned with DTI dataset 1; b) aligned with DTI dataset 2; c) view-

aligned oblique view; d) view-aligned projection of any pair of two
eigenvalues. Aligning the glyphs with respect to one of the datasets
is useful when preserving the original orientations are important. An
oblique view is good to provide the first impression of the differences
of all the three eigenvalues, while the projection of any two eigenval-
ues can support more accurate comparisons. How the Tender glyphs
look like with these orientation strategies can be seen in Figure 8. Fur-
thermore, we introduced an interaction for manipulating the glyphs,
which is termed as independent rotation. The glyphs can be freely
rotated around their own centers for a better perception of the shape
differences without changing the current camera settings.

To facilitate exploration, we incorporated the visualization of a fea-
ture space. It uses as features: scale difference ds, shape difference
dsh, orientation difference do, normalized tensor difference d̃ and the
Frobenius norm of the difference tensor dF =‖ T(1)−T(2) ‖. The
scatter plot matrix (SPLOM) approach is used to arrange the visual-
izations of these features (see Figure 9). Three histograms, placed at
the main diagonal, show the distributions of ds, dsh, and do, while the
histograms of d̃ and dF are shown at the upper diagonal. Logarithmic
scale is used for all the histograms. Three scatter plots at the lower
triangular part show the relationship between any pair of the features
ds, dsh and do. For each scatter plot, a density map generated from
the whole dataset serves as the context, while the green dots drawn on
top represent the distribution of the currently selected tensors. Linked
views with filtering are used to support interactive exploration.

5 IMPLEMENTATION

We implemented our prototype as a plug-in for vIST/e 1 in the C++
programming language. The Visualization Toolkit (VTK), OpenGL
library, and GLSL shading language were used as developing tools.

The geometries of the checkerboard-style superquadrics are con-
structed via a precomputed palette of base superquadric shapes [33].

1http://sourceforge.net/projects/viste/

http://sourceforge.net/projects/viste/


(a) Aligned with tensor dataset 1. (b) Aligned with tensor dataset 2. (c) View-aligned oblique view.

(d) View-aligned projection view with the first and
second normalized eigenvalues.

(e) View-aligned projection view with the first and
third normalized eigenvalues.

(f) View-aligned projection view with the second
and third normalized eigenvalues.

Fig. 8.Various strategies for orienting the Tender glyphs in 3D space.

In order to save graphics card memory, we only construct one eighth
of each of the possible glyph geometries due to inherent symmetry.
The total number of geometries for the precomputed palette is 231,
which is enough for our goals. The vertex positions and the normals
are stored in card memory. During rendering, the base geometry is
used four times to generate the checkerboard-styled superquadrics for
each tensor with its corresponding transformation matrix. Phong shad-
ing is employed to support the perception of the shapes. The halos are
rendered in a similar way as in Schultz et al. [33].

The arc of the Tender glyph is built in the geometry and fragment
shaders. A view-aligned quad is generated at each seeding point and
texture coordinates are assigned to each corner for subsequent pro-
cessing to obtain the expected open angle. 4× 4 multi-sampling is
implemented to relieve the aliasing problem for the outline. Since the
arc is analytically generated, the associated attributes for extra sam-
ples are computed in the fragment shader. This does not introduce any
noticeable performance loss.

6 USER STUDY

We conducted an initial user study in order to find out whether our
requirements have been achieved by the Tender glyph. Since we in-
tended to evaluate the effectiveness and efficiency of the glyph design
on its own, the feature space was not included in the study. To be able
to include more users, we abstracted from the diffusion-related con-
cepts. We had 13 participants with various backgrounds: computer
science (10; among them, 6 have experiences with computer graph-
ics), DTI image analysis (2), and applied mathematics (1). The eval-
uation, which took 90 minutes on average per participant, consisted
of three phases. In the first phase, we explained the three components
on which the Tender glyph is based, i.e., scale, shape, and orienta-
tion. We also introduced the juxtaposition/superposition comparison
techniques as well as superposition combined with transparency. 6
out of 13 did the test with all the three visualization methods while
the rest did without the superposition plus transparency. Finally, we
demonstrated our design in a live demo with our prototype. In the sec-
ond phase, the participants themselves tried both the Tender glyph, the

juxtaposed/superposed glyph, and the transparent superposed glyph to
get used to the visualization as well as the available interactions. In
the third phase, 22 or 33 controlled tests were performed depending
on whether the superposition with transparency test was added or not.
During each test, the participants had to perform a comparison task
and answer one to three questions as fast and accurately as possible.
For all tests except the last three, two datasets each with 8 tensors
were present, forming 8 tensor pairs. Participants needed to pick one
or more pairs out of these 8 pairs as the answer. For example, they
needed to find out which pairs have the smallest shape differences or
the largest orientation differences. For the last three tests, they had to
answer similar questions but with relatively large fields (9×9). In or-
der to correctly measure their accuracy in answering these questions,
we allowed them to give no answer when they were uncertain. One of
the three glyph-based methods was randomly assigned to visualize the
differences between the test datasets. None of the test datasets was re-
peated for the same participant. Each test dataset appeared only once
during the whole phase. In the end, open questions, designed to collect
their impression on the utility of our design, were asked. An overall
ranking on a scale from 0 to 10 about the usefulness of the juxtapo-
sition/superposition, superposition with transparency, and the Tender
glyph was asked as the last question.

There were 8, 4 and 8 questions asked for the comparison of ori-
entation, shape, and scale, respectively. The accuracy and efficiency
(i.e., time) results of orientation difference comparison tests are shown
as two boxplots in Figure 10a and 10b. In general, they achieved bet-
ter results with much less time using the Tender glyph. The results
confirm that the perception of orientation differences in terms of open
angles is easy to spot and interpret. The accuracy and efficiency of
shape-related questions are shown in Figure 10c and 10d. In terms of
accuracy, the results indicate that the Tender glyph provides more ac-
curate results, while in terms of efficiency there are no significant dif-
ferences among all the methods. Four participants stated in the open
questions that all the methods worked equally well for the shape com-
parison, so they had no preference. But it is interesting to observe that
they improved the accuracy and spent less time with the Tender glyph,



Fig. 9. The feature space is composed of three scatter plots and five
histograms. Three scatter plots are for the relationship of any pair of the
features ds, dsh and do. Five histograms are for ds, dsh, do, d̃ and dF .

despite their perception. There was one participant who correctly an-
swered all the shape-related questions with both transparent superposi-
tion and the Tender glyph. But this participant spent less time with the
Tender glyph (140s <177s), and also mentioned in the open questions
that the checkerboard design provides stronger visual cues for shape
differences, making them easier to recognize. The results for scale
comparison are shown in Figure 10e and 10f. In terms of accuracy, the
results do not clearly indicate whether Tender glyphs or superposition
with transparency is superior. The efficiency is clearly better with su-
perposition plus transparency. 5 out of 6 participants mentioned that
for small field comparisons they preferred superposition plus trans-
parency since they could roughly estimate the scale differences, as
well as decide which tensor has a large or small scale for a specific pair
simultaneously. Using the Tender glyphs to obtain the same informa-
tion requires extra interactions, which causes a more time consuming
exploration. For large field comparisons, they all agreed that it is easier
with the colormap-based encoding scheme. In practice, many compar-
isons would be performed on large fields, as shown in the following
two case studies. We also realized that the complexity of the interface
and the interaction with the prototype creates a steep learning curve for
the novice users of the Tender glyph. An interesting statement from
one participant with DTI image analysis background was that the dual
hue colormap is counter-intuitive since blue represents low values in
the rainbow colormap that is commonly used in his research.

The results of the questions, in relation to the preferences, are as
follows. The average ranking for superposition is 4.5. This method
could cause occlusions, which makes the comparisons more difficult.
They gave 5 on average for juxtaposition. In this way, they could
perceive full information which is helpful for rough comparisons in a
small field. For accurate comparisons, especially in a large field, it is
difficult to mentally match the corresponding tensor glyphs for com-
parison. They gave 6.2 on average for superposition with transparency.
The advantage of this method is that the occlusion problem and the
matching problem are relieved. But there are no strong visual cues for
shape comparison. Furthermore, for orientation comparison they had
to mentally imagine how to align two glyphs in order to deduce the
orientation difference. They gave 7.8 on average for the Tender glyph.
With the Tender glyph, the orientation comparison is easy to perform.
The Tender glyph also provides stronger visual cues for shape com-
parison than other glyph-based methods. For scale comparison, sev-

eral participants suggested that we should simplify the user interface
to make it simpler to learn. Furthermore, one participant with DTI
image analysis background suggested that the Tender glyph is useful,
when to avoid presenting and looking at several tensor scalar images
next to each other. With the Tender glyph, one image, containing all
the information about the tensor differences, would be sufficient.

Fig. 10.The results of the user study in terms of accuracy and efficiency.
(a), (c), and (e) represent results in terms of accuracy, while (b), (d), and
(f) represent results in terms of efficiency for comparison tasks related
to orientation, shape, and scale differences, respectively.

7 CASE STUDY

One of the main applications of DTI is the imaging of white matter in
the brain. It has the potential to provide better understanding of the
brain connectivity, and improve diagnosis and treatment of diseases
such as HIV [42]. Comparison of diffusion tensor fields is part of the
analysis to achieve these goals, e.g., to compare the results of different
acquisition settings to optimize acquisition sequences, or to compare
datasets to find markers that can distinguish pathological tissues.

The main idea of the Tender glyph is to improve the ability to vi-
sually reveal local tensor differences as well as large scale patterns in
the datasets. Furthermore, by linked selection of the associated fea-
ture space, interesting pattern identification is facilitated. Therefore,
in this section we illustrate the application of the Tender glyph in two
scenarios where two DTI datasets are compared.

B-value is an important parameter in DTI acquisition that defines
a trade-off between signal-to-noise ratio and contrast. It is often
unknown what exact output a b-value change will produce. Two
DTI datasets of the same subject, acquired with a b-value of 1000
and 2000 respectively, are compared. The size is 80× 80× 38 at
2.875× 2.875× 3mm resolution. A coronal slice is shown in Fig-
ure 11a. Blue corresponds to the b-value 1000 DTI dataset, while
red represents the b-value 2000 one. It can be immediately observed
that only the left bottom and right bottom areas of the slice show large
differences in orientation. Figure 11b shows the superposition of the
superquadric glyphs without normalization in the area marked with a
rectangle in Figure 11a. Due to large variations in tensor scales, most



(a) Tender glyphs on a coronal slice. (b) Superposition of non-normalized tensor
glyphs.

(c) Superposition of normalized tensor glyphs.

(d) Tender glyphs with single hue colormap to
show individual tensor scales.

(e) Tender glyphs with dual hue colormap. (f) Tender glyphs in the view-aligned projection
visual style with the first and second normalized
eigenvalues.

Fig. 11.The application of the Tender glyphs to compare two DTI datasets acquired with different b-values.

of the red glyphs are enclosed by the blue ones. Figure 11c shows the
superposition of normalized glyphs. Since they occlude each other, it
is hard to distinguish their shape and orientation differences. More-
over, the exact tensor scale differences are impossible to deduce after
normalization. Figure 11d visualizes the tensor differences with the
Tender glyphs. The voxels with the largest orientation differences (i.e.,
the largest open angles) can be quickly spotted via the arcs of the Ten-
der glyphs, indicating their pre-attentive capabilities. Most of the open
angles of the arcs are very small, which reveals that the orientation dif-
ferences are quite little within this area. The individual tensor scales
are encoded via the single hue colormap. By comparing lightness, the
extent of scale differences can be estimated. The halos around the
glyphs help to identify the corresponding DTI dataset. The single hue
colormap together with the halos clearly show that the tensors from
the DTI dataset of b-value 1000 have larger scales than that from the
b-value 2000 dataset, which was expected. The shape differences are
conveyed in terms of the checkerboard style edge differences. With
the single hue colormap, it is difficult to perceive shape differences for
tensors of similar scales. Figure 11e shows the Tender glyphs with
the dual hue colormap which is more suitable for distinguishing two
tensors with similar scales. A closeup of the Tender glyphs within the
area marked as the white rectangle in Figure 11e is shown in Figure 11f
in the view-aligned projection style of the first and second normalized
eigenvalues. Even the subtle differences, for example for the linear
tensors, can be efficiently identified.

The feature space selection can be used to find regions with large
differences or outliers. The locations with both large shape and ori-
entation differences are selected, as shown in Figure 12a, while the
corresponding feature space is shown at the top left corner. It can be
seen from Figure 12b that most of the Tender glyphs are shown at the
bottom of the DTI volume, which are probably in uninteresting regions
for analysis. However, there are two groups of glyphs located inside
the volume, as marked by the white rectangles in Figure 12a. Fig-
ure 12b shows a view of some of these normalized glyphs located on
one coronal slice. Figure 12c presents a view for this region without
encoding the tensor scales. The shape differences become more obvi-
ous via the Tender glyphs, and they can be more accurately assessed.

As another example of DTI dataset comparison the Tender glyph is
applied to compare a DTI dataset from a healthy subject and from an
HIV-infected subject. The datasets were pre-registered through FSL 2.
The size of each dataset is 112×112×55 with an isotropic resolution
of 2mm. Two regions of the corpus callosum (CC) on a sagittal slice
are selected as the ROIs shown as white rectangles in Figure 13a. Blue
represents the DTI dataset of a healthy subject, while red is for the
DTI dataset from an HIV-infected subject. Figure 13c clearly shows
the orientation differences, compared to the superposed tensor glyphs
shown in Figure 13b. Voxels with consistent orientation differences
are more efficiently recognized in the posterior region of the CC. Fig-
ure 13d, 13e, and 13f show the visualization results for the anterior
region of the CC. From Figure 13e and 13f we can see that the ori-
entations in the anterior region do not change a lot, but their shapes
do. The view-aligned style of the Tender glyphs in Figure 13f further
confirms that tensors of the HIV dataset are less linearly shaped in the
indicated region. Further studies are necessary to see whether these
findings remain consistent between larger populations.

8 CONCLUSIONS AND FUTURE WORK

A glyph-based comparative visualization for diffusion tensor datasets
is presented. We decomposed the overall tensor differences into dif-
ferences in shape, scale, and orientation, which have special interpre-
tations for the consequences in the underlying tissue. We designed a
novel glyph, i.e., the Tender glyph to encode and visually present them
in an easy-to-interpret way. The Tender glyph is composed of two su-
perquadric glyphs arranged in a checkerboard style that is efficient for
the visual comparison of tensor shapes. The individual tensor scales or
the scale differences are color-coded, and we also designed two col-
ormaps, each of which has its own advantages for certain purposes.
The arcs encode the orientation differences, which are intuitive and
pre-attentive for perception. We built a feature space that is helpful
for the interactive exploration and selection of relevant features. We
presented an initial user study that shows that the Tender glyph allows
a more accurate and effective analysis for orientation and shape differ-

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


(a) Find interesting areas with both large shape and
orientation differences via feature space selection.

(b) Superposed superquadric tensor glyphs. (c) The Tender glyphs clearly show the ori-
entation and shape differences in detail.

Fig. 12.Feather space filtering together with the Tender glyphs enable a detailed comparison at interesting areas.

(a) Two ROIs selected on the CC. (b) Superposed tensor glyphs at the posterior
area of CC.

(c) Tender glyphs reveal consist orientation dif-
ferences at the posterior area of CC.

(d) Superposed tensor glyphs at the anterior area
of CC.

(e) Tender glyphs at the anterior area of CC,
aligned with the healthy dataset.

(f) Tender glyphs at the anterior area of CC with
view-align projection style.

Fig. 13.The Tender glyphs clearly reveal the change of dominant tensor differences in different regions of CC.

ences, although it did not improve the time performance in all tasks.
Two cases based on brain DTI datasets illustrated the potential of the
Tender glyph in comparative analysis of real-world datasets.

In the future, we would like to carry out a more exhaustive user
study in a specific DTI application domain as well as a general evalu-
ation of the Tender glyph in the way presented in Demiralp et al. [10].

Furthermore, the most well-known problem for the single tensor
model is that it fails to model complex fiber configurations inside a
voxel such as fiber crossings. More sophisticated modeling techniques
such as HARDI can be used to describe those complex situations. How
to extend the Tender glyph to HARDI is an open problem. The Ten-
der glyph is currently only for pair-wise comparison. Though in the
case study with the HIV dataset we compared two individual subjects
from two groups, the Tender glyph can be applied to visualize the
differences between the corresponding group means for inter-group
comparison. However, in practice there are situations where multiple
datasets need to be compared. Therefore, another open problem is how
to extend the Tender glyph for comparison beyond two datasets. The
underlying uncertainty of DTI [6], which is caused by the noise and
the incomplete modeling, is another motivation for multiple datasets

comparison. We are currently working on how to integrate the under-
lying uncertainty into the Tender glyph.
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