Student assistant (“HiWi”)

  • Ausschreibung Studentische Hilfskraft

    Wir suchen eine studentische Hilfskraft für die Tätigkeit umfasst eine monatliche Arbeitszeit von mind. 20 Stunden.

    Einstellungsvoraussetzungen:

    • Gute Kenntnisse in digitaler Bildverarbeitung inbesondere Bildregistrierung
    • Erfahrung im Umgang mit Matlab oder Python, ggf. Erfahrung mit MeVisLab
    • Sehr hohe Motivation
    • Engagement und Teamfähigkeit
    • Strukturiertes und organisiertes Arbeiten

    Deine Aufgaben:

    • Entwicklung einer Applikation (z.B. in MeVisLab) zur Registrierung von verschiedenen interventionellen MRT-Bilddatensätzen für die Leber
    • Entwicklung einer Applikation zur Registrierung von histologischen Schnitten zu den individuellen MRT-Datensätzen derselben Leber

    Wir bieten Dir:

    • Eine langfristige Anstellungsmöglichkeit mit flexiblen Arbeitszeiten
    • Spannendes Aufgabenfeld mit ausreichender Einarbeitungszeit
    • Bis auf regelmäßige Team-Treffen an der MHH kannst du von überall aus arbeiten
  • Ausschreibung Studentische Hilfskraft

    Wir suchen eine studentische Hilfskraft für die mediznische Visualisierung. Das Anwendungsgebiet sind hier vor allem Aneurysmen des Gehirns. Das sind sackartige, krankhafte Erweiterungen der Blutgefäße welche platzen können und daher möglichst gut untersucht werden müssen. Es gibt verschiedene Aufgaben, z.B. die Visualisierung von künstlich simuliertem Blutfluss oder auch die Darstellung der Aneurysmenwand. Wir haben aber auch die Möglichkeit neue intravaskuläre Bildgebungsmethoden auszuwerten, die höhere Auflösungen als MRT und CT aufweisen. Voraussetzung sind gute Programmierkenntnisse (C++ oder Matlab). Bereits bestehende Erfahrungen mit MeVisLab und VMTK sind hilfreich, aber keine Pflicht.

    Anforderungen: Programmiererfahrung in C++ (VTK-Kenntnisse hilfreich) oder MATLAB

  • Ausschreibung Studentische Hilfskraft

    Wir suchen eine studentische Hilfskraft, die vorhandene Methoden zur Klassifikation von Aneurysmen anpasst, um diese automatisch auf einer großen Menge von Datensätzen anzuwenden. Aneurysmen sind abnormale Erweiterungen von Gefäßwänden, die platzen können, was zu schwerwiegenden Folgen für den Patienten führen kann. Um eine optimale Behandlungsstrategie zu finden, müssen zahlreiche Parameter von Aneurysmen untersucht werden. Wir haben mehrere Methoden entwickelt, um diese Parameter automatisch für einzelne Datensätze zu berechnen. Das Ziel ist es unsere Methoden auch auf externe Datenbanken von Aneurysmendatensätzen anzuwenden, um eine verbesserte Analyse dieser zu ermöglichen. Dafür müssen bestimmte Aspekte unserer Methoden angepasst werden. Voraussetzung sind gute Programmierkenntnisse (C# oder C++). Bereits bestehende Erfahrungen mit MATLAB und VTK sind hilfreich, aber keine Pflicht.

    Anforderungen: Programmiererfahrung in C# oder C++ (MATLAB und VTK-Kenntnisse hilfreich)

  • Interactive VR Visualization to Assess the Collision Probability with Space Debris (joint topic with the German Aerospace Center)

    Description: The increasing amount of space debris in earth orbit poses a growing threat to space travel. Therefore, it is very important to know where space debris is located in orbit and whether there is a possibility of collisions with satellites or space crafts in operation.
    The goal is to develop a VR software that visualizes orbital objects. The prototype should facilitate the evaluation of possible collisions of objects and support the decision whether, for example, a course correction of a satellite is necessary. However, the determination of the position of objects in orbit is associated with uncertainties. Various influences on objects in Earth orbit, such as the interaction with the atmosphere or variations in the gravitational field, lead to a deviation between the actual position and the position calculated from the observation data.

    Tasks:

    • Research on existing debris visualizations and satellite propagation
    • Implementation of a real-time visualization of debris positions and collision probabilities of objects in orbit
    • Development of methods for the targeted, user-guided interactive analysis of space situations

    Requirements:

    • Study of computer science or comparable fields of study
    • Knowledge of computer graphics
    • Experience with software development in Unity/C#
  • DL Segmentation of Meningiomas

    We need you for our brain tumor segmentation project!
    We want to support our clinical cooperation partners from the University Hospital in Magdeburg. You will work with real medical data sets and you should develop a Deep Learning-based solution. Advantages: We have a Deep Learning server for remote work and the clinicians already provide sufficient ground truth data, so the data augmentation will be possible in feasible time.
    We expect high-qualified students interested in this project (hiwi job / student assistant or team projects, bachelor or master thesis). Please send your application!

  • Visual Analytics of Intracranial Aneurysm Classification & Similarity Matching

    Intracranial aneurysms are pathologic dilations of the intracranial vessel wall. They bear the risk of rupture and thus subarachnoidal hemorrhages with often fatal consequences for the patient. Since treatment may cause severe complications as well, substantial research was carried out to characterize the patient-specific rupture risk based on various morphological and hemodynamic parameters. Clinicians often adapt their treatment decisions by analyzing similar pathologies and conditions with respect to their treatment outcome. For this purpose, we provide a reference database (serving as our training data set). The goal is to identify the most similar reference cases for a new aneurysm. The similarity comprises various factors, e.g. location of the aneurysm, size or previously extracted shape parametres.
    Questions: 1) Given an aneurysm of interest, which are the k most similar aneurysms from the training set (i.e. the reference database)? 2) How much more similar is an aneurysm of interest to its most/second-most/etc. similar aneurysm from the training set in comparison with the average similarity towards an arbitrary aneurysm? 3) How does similarity change when the value of feature F is altered to x?
    Similarity calculation is dependent on the feature space. There should be two options for selecting an appropriate feature space: a) Supervised feature selection using a target variable (rupture status, course of treatment, …). Example: Correlation-based feature selection, b) Expert input. The medical expert (radiologist) selects a set of relevant features based on his knowledge.
    The proposed Visual Analytics system should contain the following components: i) a G U I for comparing aneurysms based on the most important parameters and similarity as described above, ii) input panels for similarity calculations, iii) a radar chart like visualization for juxtaposing 2 or more aneurysms w.r.t. a set of features, iv) further components upon consultation.

    Prerequisites

    • Experience with R (preferred), Python or MATLAB
    • Working knowledge of data mining

Falls darüber hinaus Interesse an einer Hiwi-Tätigkeit in unserer Arbeitsgruppe Visualisierung besteht, so können ggf. auch Themen unter Projekte & Praktika als Hiwi bearbeitet werden. Dazu sollten einfach die angegebenen wissenschaftlichen Mitarbeiter kontaktiert werden.