Master Thesis: Bridging the Domain Gap: Visualization Support for Transfer Learning on Time Series Data

End-of-line testing is an essential step in the production process to validate the functionality of units near the end of the production line. Defective products or those not matching manufacturing tolerances must be rejected before the products are shipped. To shorten production cycles, automatic testing increasingly replaces manual inspection performed by human operators. A unit under test is exposed to a stimulus and its response is recorded by different sensors. The resulting multivariate time signals are analyzed for defect identification and classification.
The goal is to bridge the domain gap between simulated and measured unit responses, such that a classification algorithm learned on simulation data can be applied to new (unlabeled) real-world data from sensor measurements. The units under test are electric motors, whose current dt. Strom signals are to be used for a defect classification. The transfer learning problem is characterized by a shift in the input domain (i.e. simulated vs. measured signals of the same motor) while the analysis task remains the same (i.e. classify the defect). The data are multivariate time series that are simulated/measured across various operating conditions. For defect-free motors, both simulated and corresponding measured signals are available. For defective motors, however, only simulated time series with corresponding defect labels are available. The lack of real-world training data for defective motors raises the need to learn from the simulated data a well-performing classifier that can be applied to real-word measurements.

Interactive VR Visualization to Assess the Collision Probability with Space Debris (joint topic with the German Aerospace Center)

Description: The increasing amount of space debris in earth orbit poses a growing threat to space travel. Therefore, it is very important to know where space debris is located in orbit and whether there is a possibility of collisions with satellites or space crafts in operation.
The goal is to develop a VR software that visualizes orbital objects. The prototype should facilitate the evaluation of possible collisions of objects and support the decision whether, for example, a course correction of a satellite is necessary. However, the determination of the position of objects in orbit is associated with uncertainties. Various influences on objects in Earth orbit, such as the interaction with the atmosphere or variations in the gravitational field, lead to a deviation between the actual position and the position calculated from the observation data.


  • Research on existing debris visualizations and satellite propagation
  • Implementation of a real-time visualization of debris positions and collision probabilities of objects in orbit
  • Development of methods for the targeted, user-guided interactive analysis of space situations


  • Study of computer science or comparable fields of study
  • Knowledge of computer graphics
  • Experience with software development in Unity/C#

Medizinische Ausbildung in der virtuellen Realität

Die immersive Wirkung der HTC Vive bietet ein großes Potenzial bei der Exploration medizinischer Objekte. Dieses Potential soll in dieser Masterarbeit genutzt werden, um Medizinstudierende zu unterstützen. Anstatt Namen und die Funktionsweise verschiedener Strukturen auf traditionelle Weise zu lernen, soll eine interaktive, virtuelle Lernumgebung geschaffen werden.


  • Erarbeitung eines medizinischen Lernszenarios
  • Einbettung dieses Szenarios in eine interaktive, virtuelle Welt
  • Geeignete Evaluierung des implementierten Prototyps

Anforderungen: Erfahrung in C# und Unity 

Kollaboratives Arbeiten in der Medizinausbildung mit der HTC Vive und dem zSpace

Das zSpace und die HTC Vive bieten durch ihre (semi-)immersive Ein- und Ausgabemethoden die Möglichkeit auf neue Weise mit virtuellen Objekten zu interagieren. Diese Möglichkeit soll genutzt werden, um eine Schüler-Lehrer-Szenario mithilfe beider Geräte umzusetzen.


  • Erarbeitung eines medizinischen Leitszenarios
  • Implementierung eines Prototyps der das gleichzeitige Arbeiten an medizinischen Strukturen mit der HTC Vive und dem zSpace ermöglicht
  • Geeignete Evaluierung des implementierten Prototyps

Anforderungen: Erfahrung in C# und Unity