Themen in Magdeburg

Interactive Blood Flow Exploration – In collaboration with Dept. of Neurology, OVGU and Inria, France

In cerebral aneurysm research, CFD simulations allow us to gain a better understanding of the dynamics of the blood flow. The simulated flow is often visualized using integral curves resulting in cluttered “spaghetti plots”. Advanced approaches group similar curves and show only selected representatives (image). These approaches however, fail in showing the clusters’ spatial extent. In this thesis, an interactive approach facilitating a continuous transition between the full set of integral curves and an uncluttered abstracted visualization shall be developed. Browsing back and forth through various levels of abstraction shall allow the user to grasp both, the general structure of the blood flow pattern as well as the spatial extent of individual substructures.

Requirements: Good to very good programming skills (C++) are mandatory

Detektion von Aneurysmen mit Deep Learning

Im Rahmen aktueller Forschungsprojekte werden Aneurysmen und ihre Durchblutung untersucht. Dabei besitzt ein Patient häufig multiple Aneurysmen, welche erst in 3D Bilddaten detektiert werden können. Ziel des Projekts ist der Einsatz von Deep Learning Techniken zur automatischen Aneurysmadetektion basierend auf einer annotierten Trainingsdatenbank. Die Aufgabe eignet sich als Teamprojekt, kann aber auch für eine Hiwistelle oder Abschlussarbeit angepasst werden.

Anforderungen: Gute bis sehr gute Programmierkenntnisse (Python / Matlab) sind erforderlich

3D-Stereoverfahren für die Herzchirurgie

Im Rahmen der Arbeit sollen Stereoverfahren für die 3D-Rekonstruktion von Strukturen aus intraoperativen Endoskopiebildern entwickelt werden. Die Arbeit wird in enger Kooperation zwischen der Fakultät Informatik der OvGU Magdeburg (Dr. Sandy Engelhardt) und der Herzchirurgie des Universitätsklinikums Heidelberg (Prof. De Simone) durchgeführt. Weitere Themen für Abschlussarbeiten sind vorhanden. Melden Sie sich gern bei Interesse.

Aufgaben

  • Meshing einer rekonstruierten 3D-Punktewolke
  • Texturierung der Oberfläche
  • Fusion von verschiedenen Ansichten zu einem Mesh

Anforderungen: Programmiererfahrung in C++ (OpenCV- Kenntnisse hilfreich)

Master-Arbeit: Skizzenbasierte Kartenprojektion für zerebrale Aneurysmen

Zerebrale Aneurysmen sind pathologische Aussackungen der Gefäßwand, welche meistens an den Bifurkationen der großen Hirnarterien auftreten. Die Gefäßwand besitzt an diesen Stellen ein hohes Rupturisiko, was zu starken inneren Blutungen führt und in 60 % der Fälle den Tod des Patienten zur Folge hat. Daher ist eine patientenspezifische Einschätzung des Rupturrisikos nötig. Jedoch hängt die Ruptur von zahlreichen Kriterien ab, deren Zusammenhänge bisher nicht ausreichend verstanden sind. Blutflusssimulationen helfen dabei das patientenspezifische Rupturrisiko zu analysieren. Jedoch handelt es sich dabei um sehr komplexe Daten, was deren Auswertung enorm erschwert. Mit Hilfe von Standardtechniken wie Farbkodierungen und Animationen in 3D versuchen Experten rupturgefährdete Gefäßregionen ausfindig zu machen. Auftretende Verdeckungen machen es jedoch nahezu unmöglich über die Zeit Hochrisikoregionen zu finden. 2D Projektionen der 3D Gefäßgeometrie werden häufig eingesetzt, um verdeckungsfreie Überblicksvisualisierungen zu erzeugen. Jedoch führen derartige Projektionen zu Verzerrungen, die die Datenanalyse erschweren.

Ziel: Skizzenbasierte Katenprojektion für zerebrale Aneurysmen, die die verdeckungsfreie Darstellung des Aneurysmas und benachbarter Gefäße erlaubt

Anforderungen: Programmiererfahrung in C# oder C++ (VTK- und Matlab-Kenntnisse hilfreich) 

Evaluierung von Kartenprojektionen für zerebrale Aneurysmen

Zerebrale Aneurysmen sind pathologische Aussackungen der Gefäßwand, welche meistens an den Bifurkationen der großen Hirnarterien auftreten. Die Gefäßwand besitzt an diesen Stellen ein hohes Rupturisiko, was zu starken inneren Blutungen führt und in 60 % der Fälle den Tod des Patienten zur Folge hat. Blutflusssimulationen helfen dabei das patientenspezifische Rupturrisiko zu analysieren. Jedoch handelt es sich dabei um sehr komplexe Daten, was deren Auswertung enorm erschwert. Mit Hilfe von Standardtechniken wie Farbkodierungen und Animationen in 3D versuchen Experten rupturgefährdete Gefäßregionen ausfindig zu machen. Auftretende Verdeckungen machen es jedoch nahezu unmöglich über die Zeit Hochrisikoregionen zu finden.

Ziel: Evaluation verschiedene Projektionstechniken für eine eine verdeckunsfreie Darstellung des Gefäßes

Anforderungen: Programmiererfahrung in C# oder C++ (VTK- und Matlab-Kenntnisse hilfreich) 

Master-Arbeit: Evaluierung von Glättungsverfahren für Vektorfelder gemessener Blutflussdaten

Die patientenspezifische Hämodynamik spielt eine zentrale Rolle in der Entwicklung und dem Voranschreiten kardiovaskulärer Krankheiten. Informationen über die patientenspezifische Hämodynamik können nicht invasiv mit Hilfe der 4D Phasen-Kontrast-Magnet-Resonanz Bildgebung aufgenommen werden.Ein Nachteil gemessener Flussdaten ist ihre Anfälligkeit gegenüber Rauschen, was die weitere Analyse erschwert.

Ziel: Quantitative und qualitative Evaluation der Eignung verschiedener Glättungsverfahren für gemessene Flussdaten

Anforderungen: Programmiererfahrung in C# oder C++ (VTK- und Matlab-Kenntnisse hilfreich) 

Exploration von Clustering-Ergebnissen in zerebralen Aneurysmen

Zerebrale Aneurysmen sind pathologische Aussackungen der Gefäßwand, welche meistens an den Bifurkationen der großen Hirnarterien auftreten. Die Gefäßwand besitzt an diesen Stellen ein hohes Rupturisiko, was zu starken inneren Blutungen führt und in 60 % der Fälle den Tod des Patienten zur Folge hat. Neben morphologischen Aspekten werden bestimmte Blutflussmuster, wie Verwirbelungen mit einem erhöhten Rupturrisiko in Verbindung gebracht. Um den Einfluss von Verwirbelungen auf die Gefäßwand zu verstehen, müssen diese angemessen visualisiert und exploriert werden können. Eine Möglichkeit der Flussvisualisierung ist die Darstellung des gemessenen oder simulierten Vektorfeldes durch Integrallinien. Das Anzeigen aller Integrallinien führt jedoch zu visuellen Überlagerungen, wodurch die Exploration von zeitlich und/oder räumlich dicht zusammenliegenden Verwirbelungen erschwert wird. Daher wurden Clustering-Methoden entwickelt, die die Integrallinien zu Gruppen zusammenfassen.

Ziel: Eine stufenweise Visualisierung und Exploration dieser Gruppen

Anforderungen: Programmiererfahrung in C# oder C++ (VTK- und Matlab-Kenntnisse hilfreich) 

Unsicherheitsvisualisierung von Blutflussdaten

Für die Rupturvorhersage von zerebralen Aneurysmen wird mittels computational fluid dynamics simulation (CFD) das Blutflussverhalten simuliert. Dieses kann dann z.B. mit Streamlines visualisiert werden.
Bei der CFD Simulationen gibt es dennoch einige Parametervariationen, so dass das Ergebnis mit einer gewissen Unsicherheit behaftet ist. Um die Variation abschätzen zu können, werden Ensemble Simulations durchgeführt, womit statt eines skalaren Wertes, Intervalle für bestimmte Parameter extrahiert werden können.

Ziel: Eine Visualisierung der Unsicherheit der Parameter mittels Techniken der Uncertainty Visualization

Anforderungen: Programmiererfahrung in C++ (VTK-Kenntnisse hilfreich) 

Visual Analytics of Intracranial Aneurysm Classification & Similarity Matching

Intracranial aneurysms are pathologic dilations of the intracranial vessel wall. They bear the risk of rupture and thus subarachnoidal hemorrhages with often fatal consequences for the patient. Since treatment may cause severe complications as well, substantial research was carried out to characterize the patient-specific rupture risk based on various morphological and hemodynamic parameters. Clinicians often adapt their treatment decisions by analyzing similar pathologies and conditions with respect to their treatment outcome. For this purpose, we provide a reference database (serving as our training data set). The goal is to identify the most similar reference cases for a new aneurysm. The similarity comprises various factors, e.g. location of the aneurysm, size or previously extracted shape parametres.
Questions: 1) Given an aneurysm of interest, which are the k most similar aneurysms from the training set (i.e. the reference database)? 2) How much more similar is an aneurysm of interest to its most/second-most/etc. similar aneurysm from the training set in comparison with the average similarity towards an arbitrary aneurysm? 3) How does similarity change when the value of feature F is altered to x?
Similarity calculation is dependent on the feature space. There should be two options for selecting an appropriate feature space: a) Supervised feature selection using a target variable (rupture status, course of treatment, …). Example: Correlation-based feature selection, b) Expert input. The medical expert (radiologist) selects a set of relevant features based on his knowledge.
The proposed Visual Analytics system should contain the following components: i) a G U I for comparing aneurysms based on the most important parameters and similarity as described above, ii) input panels for similarity calculations, iii) a radar chart like visualization for juxtaposing 2 or more aneurysms w.r.t. a set of features, iv) further components upon consultation.

Prerequisites

  • Experience with R (preferred), Python or MATLAB
  • Working knowledge of data mining

Bachelor-/Master-Arbeit: Analyse und Visualisierung von Pflanzensamen

Am Leibnitz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben, werden Metabolismus und Morphologie von Pflanzensamen mit Hilfe nicht-invasiver bildgebender Techniken, wie z.B. Computertomographie, untersucht. Ziel ist es, die Architektur des Samens und seine Wachstumskontrolle besser zu verstehen.
Die studentische Arbeit besteht aus einem Bildanalyse- und einem Visualisierungsteil. In Ersterem soll die 3D-Verteilung von Zellen des Samens in Form und Größe auf Grundlage eines CT-Datensatzes quantifiziert werden. Dazu ist eine Detektion der Zellen notwendig. Weiterhin ist der Samen in mehrere Kompartimente aufgeteilt. Das Signal aus der Bildgebung ist über die Kompartimente aber sehr ähnlich, so dass die Anordnung der Zellen oder ein Modell des Samens für Abgrenzung der Kompartimente nötig sind.
Im zweiten Teil der Arbeit sollen die Zellen und Kompartimente in 3D visualisiert werden. Traditionell sind hierbei Verdeckungsprobleme zu berücksichtigen. Weiterhin ist die Größe der Daten beträchtlich (1430x1360x1517 Schichten), so dass effiziente Renderingtechniken nötig sind.
Die Bearbeitung des Themas erfolgt in enger Kooperation mit dem IPK Gatersleben und ist in einem Forschungsprojekt angesiedelt.

Literatur: Verboven et al.: „Void space inside the developing seed of Brassica napus and the modelling of its function”. New Phytol. 2013 September; 199(4): 936–947.